Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):m1297. doi: 10.1107/S1600536810037025

[2,6-Bis(p-tol­ylimino­meth­yl)pyridine-κ3 N,N′,N′′]dichloridocopper(II)

Xiao-Ping Li a, Jian-She Zhao a, Seik Weng Ng b,*
PMCID: PMC2983193  PMID: 21587436

Abstract

The title compound, [CuCl2(C21H19N3)], lies on a twofold rotation axis that passes through the Npyrid­yl—Cu bond; this symmetry element relates one half of the organic ligand to the other as well as one Cl ligand to the other. The three N atoms span the axial–equatorial–axial sites of the trigonal-bipyramidal coordination polyhedron; the geometry of the CuII atom is 31% distorted from trigonal-bipyramidal (towards square-pyramidal along the Berry pseudorotation pathway).

Related literature

For a chromium chloride adduct with a similar ligand, see: Li et al. (2010).graphic file with name e-66-m1297-scheme1.jpg

Experimental

Crystal data

  • [CuCl2(C21H19N3)]

  • M r = 447.83

  • Orthorhombic, Inline graphic

  • a = 11.5220 (13) Å

  • b = 35.522 (4) Å

  • c = 9.327 (1) Å

  • V = 3817.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 100 K

  • 0.36 × 0.12 × 0.02 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.626, T max = 0.972

  • 8753 measured reflections

  • 2190 independent reflections

  • 2023 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.070

  • S = 1.04

  • 2190 reflections

  • 125 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 858 Friedel pairs

  • Flack parameter: 0.014 (14)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037025/xu5030sup1.cif

e-66-m1297-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037025/xu5030Isup2.hkl

e-66-m1297-Isup2.hkl (108KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N1 1.968 (3)
Cu1—N2 2.101 (2)
Cu1—Cl1 2.3187 (7)

Acknowledgments

We thank the Graduate Experimental Research Fund of Northwest University (project No. 09YSY22), the National Natural Science Foundation of China (No. 20971104) and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

A recent study reported the chromium(III) chloride adduct of 2,6-bis(p-bromphenylimino)pyridine; the N-heterocycle chelates to the metal atom in a terdentate manner (Li et al., 2010). The copper dichlroide adduct of 2,6-bis(p-tolylimino)pyridine adopts a similar structure. The CuCl2(C21H19N3) molecule (Scheme I, Fig. 1) lies on a twofold rotation axis that passes through the Npyridyl—Cu bond; this symmetry element relates one half of the organic ligand to the other. The three N atoms span the axial–equatorial-axial sites of the trigonal bipyramidal coordination polyhedron; the geometry of Cu is 31% distorted along the Berry pseudorotation pathway.

Experimental

2,6-Bis(p-tolylimino)pyridine (0.016 g, 0.05 mmol), and copper chloride dihydrate (0.01 g, 0.05 mmol) along with five drops of 1 M hydrochloric acid were dissolved in ethanol (10 ml). The mixture was heated in a Teflon-lined, stainless-steel Parr bomb at 363 K for 120 h. The bomb was cooled at 5 K per hour. Deep orange crystals were isolated.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of CuCl2(C21H19N3) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[CuCl2(C21H19N3)] F(000) = 1832
Mr = 447.83 Dx = 1.558 Mg m3
Orthorhombic, Fdd2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 2394 reflections
a = 11.5220 (13) Å θ = 2.3–26.1°
b = 35.522 (4) Å µ = 1.44 mm1
c = 9.327 (1) Å T = 100 K
V = 3817.4 (7) Å3 Prism, orange
Z = 8 0.36 × 0.12 × 0.02 mm

Data collection

Bruker SMART APEX diffractometer 2190 independent reflections
Radiation source: fine-focus sealed tube 2023 reflections with I > 2σ(I)
graphite Rint = 0.050
ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→14
Tmin = 0.626, Tmax = 0.972 k = −46→46
8753 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0349P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2190 reflections Δρmax = 0.29 e Å3
125 parameters Δρmin = −0.30 e Å3
1 restraint Absolute structure: Flack (1983), 858 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.014 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.0000 0.5000 0.50991 (4) 0.01349 (12)
Cl1 0.90550 (6) 0.543930 (17) 0.36785 (8) 0.01783 (15)
N1 1.0000 0.5000 0.7209 (3) 0.0136 (7)
N2 0.8670 (2) 0.46146 (6) 0.5570 (2) 0.0137 (5)
C1 1.0000 0.5000 1.0139 (7) 0.0233 (8)
H1 1.0000 0.5000 1.1158 0.028*
C2 0.9203 (3) 0.47824 (8) 0.9392 (3) 0.0197 (6)
H2 0.8648 0.4634 0.9889 0.024*
C3 0.9231 (2) 0.47860 (7) 0.7896 (3) 0.0148 (6)
C4 0.8502 (3) 0.45700 (8) 0.6925 (3) 0.0159 (6)
H4 0.7924 0.4403 0.7276 0.019*
C5 0.8043 (2) 0.43861 (7) 0.4590 (3) 0.0146 (5)
C6 0.7745 (2) 0.45364 (7) 0.3259 (3) 0.0162 (6)
H6 0.7996 0.4782 0.3003 0.019*
C7 0.7085 (2) 0.43273 (7) 0.2314 (3) 0.0155 (6)
H7 0.6854 0.4436 0.1429 0.019*
C8 0.6752 (2) 0.39602 (7) 0.2636 (3) 0.0184 (6)
C9 0.7099 (3) 0.38078 (8) 0.3943 (3) 0.0220 (6)
H9 0.6893 0.3556 0.4171 0.026*
C10 0.7736 (2) 0.40150 (8) 0.4910 (3) 0.0195 (6)
H10 0.7966 0.3906 0.5796 0.023*
C11 0.6078 (3) 0.37314 (8) 0.1571 (3) 0.0233 (6)
H11A 0.5523 0.3571 0.2079 0.035*
H11B 0.6613 0.3574 0.1017 0.035*
H11C 0.5659 0.3900 0.0921 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0124 (2) 0.0191 (2) 0.0089 (2) −0.00124 (19) 0.000 0.000
Cl1 0.0175 (3) 0.0185 (3) 0.0175 (3) 0.0010 (3) −0.0038 (3) 0.0027 (3)
N1 0.0098 (15) 0.0178 (15) 0.0131 (17) 0.0039 (13) 0.000 0.000
N2 0.0135 (12) 0.0152 (11) 0.0124 (11) 0.0023 (9) 0.0014 (9) 0.0001 (8)
C1 0.031 (2) 0.0271 (18) 0.0118 (18) 0.000 (2) 0.000 0.000
C2 0.0255 (16) 0.0207 (15) 0.0129 (14) 0.0006 (11) 0.0038 (11) −0.0004 (11)
C3 0.0139 (14) 0.0179 (13) 0.0124 (16) 0.0031 (10) 0.0043 (11) 0.0007 (10)
C4 0.0180 (15) 0.0165 (13) 0.0133 (14) 0.0010 (11) 0.0023 (11) 0.0002 (11)
C5 0.0134 (13) 0.0177 (13) 0.0126 (13) −0.0007 (11) 0.0018 (11) −0.0017 (10)
C6 0.0166 (13) 0.0152 (12) 0.0168 (14) 0.0013 (11) 0.0016 (11) 0.0001 (11)
C7 0.0158 (13) 0.0211 (13) 0.0095 (14) 0.0048 (11) 0.0007 (10) −0.0007 (10)
C8 0.0153 (13) 0.0215 (13) 0.0183 (14) −0.0026 (10) 0.0005 (14) −0.0032 (13)
C9 0.0271 (15) 0.0187 (14) 0.0201 (16) −0.0057 (11) 0.0014 (13) 0.0012 (11)
C10 0.0212 (15) 0.0196 (13) 0.0177 (16) −0.0026 (10) −0.0009 (12) 0.0043 (12)
C11 0.0252 (16) 0.0243 (15) 0.0203 (16) −0.0069 (13) −0.0020 (12) −0.0011 (12)

Geometric parameters (Å, °)

Cu1—N1 1.968 (3) C4—H4 0.9500
Cu1—N2i 2.101 (2) C5—C6 1.394 (4)
Cu1—N2 2.101 (2) C5—C10 1.397 (4)
Cu1—Cl1 2.3187 (7) C6—C7 1.381 (4)
Cu1—Cl1i 2.3187 (7) C6—H6 0.9500
N1—C3i 1.332 (3) C7—C8 1.392 (4)
N1—C3 1.332 (3) C7—H7 0.9500
N2—C4 1.288 (3) C8—C9 1.392 (4)
N2—C5 1.421 (4) C8—C11 1.500 (4)
C1—C2i 1.388 (5) C9—C10 1.377 (4)
C1—C2 1.388 (5) C9—H9 0.9500
C1—H1 0.9500 C10—H10 0.9500
C2—C3 1.396 (3) C11—H11A 0.9800
C2—H2 0.9500 C11—H11B 0.9800
C3—C4 1.454 (4) C11—H11C 0.9800
N1—Cu1—N2i 77.92 (7) N2—C4—H4 121.3
N1—Cu1—N2 77.92 (7) C3—C4—H4 121.3
N2i—Cu1—N2 155.85 (13) C6—C5—C10 119.3 (3)
N1—Cu1—Cl1 124.85 (2) C6—C5—N2 118.7 (2)
N2i—Cu1—Cl1 91.35 (6) C10—C5—N2 122.0 (2)
N2—Cu1—Cl1 102.45 (7) C7—C6—C5 119.8 (2)
N1—Cu1—Cl1i 124.85 (2) C7—C6—H6 120.1
N2i—Cu1—Cl1i 102.45 (7) C5—C6—H6 120.1
N2—Cu1—Cl1i 91.35 (6) C6—C7—C8 121.2 (3)
Cl1—Cu1—Cl1i 110.30 (4) C6—C7—H7 119.4
C3i—N1—C3 122.4 (3) C8—C7—H7 119.4
C3i—N1—Cu1 118.78 (17) C7—C8—C9 118.3 (3)
C3—N1—Cu1 118.78 (17) C7—C8—C11 120.5 (3)
C4—N2—C5 119.0 (2) C9—C8—C11 121.2 (2)
C4—N2—Cu1 113.3 (2) C10—C9—C8 121.3 (3)
C5—N2—Cu1 127.49 (18) C10—C9—H9 119.4
C2i—C1—C2 119.7 (5) C8—C9—H9 119.4
C2i—C1—H1 120.1 C9—C10—C5 119.9 (3)
C2—C1—H1 120.1 C9—C10—H10 120.0
C1—C2—C3 118.8 (4) C5—C10—H10 120.0
C1—C2—H2 120.6 C8—C11—H11A 109.5
C3—C2—H2 120.6 C8—C11—H11B 109.5
N1—C3—C2 120.2 (3) H11A—C11—H11B 109.5
N1—C3—C4 112.7 (2) C8—C11—H11C 109.5
C2—C3—C4 127.2 (3) H11A—C11—H11C 109.5
N2—C4—C3 117.3 (3) H11B—C11—H11C 109.5
N2i—Cu1—N1—C3i −1.14 (14) C1—C2—C3—N1 −1.1 (4)
N2—Cu1—N1—C3i 178.86 (14) C1—C2—C3—C4 177.8 (2)
Cl1—Cu1—N1—C3i −84.27 (13) C5—N2—C4—C3 174.8 (2)
Cl1i—Cu1—N1—C3i 95.73 (13) Cu1—N2—C4—C3 0.1 (3)
N2i—Cu1—N1—C3 178.86 (14) N1—C3—C4—N2 −1.0 (4)
N2—Cu1—N1—C3 −1.14 (14) C2—C3—C4—N2 −180.0 (3)
Cl1—Cu1—N1—C3 95.73 (13) C4—N2—C5—C6 148.0 (3)
Cl1i—Cu1—N1—C3 −84.27 (13) Cu1—N2—C5—C6 −38.1 (3)
N1—Cu1—N2—C4 0.5 (2) C4—N2—C5—C10 −33.1 (4)
N2i—Cu1—N2—C4 0.5 (2) Cu1—N2—C5—C10 140.8 (2)
Cl1—Cu1—N2—C4 −122.9 (2) C10—C5—C6—C7 4.4 (4)
Cl1i—Cu1—N2—C4 126.0 (2) N2—C5—C6—C7 −176.7 (2)
N1—Cu1—N2—C5 −173.7 (2) C5—C6—C7—C8 −3.0 (4)
N2i—Cu1—N2—C5 −173.7 (2) C6—C7—C8—C9 0.2 (4)
Cl1—Cu1—N2—C5 62.9 (2) C6—C7—C8—C11 −177.4 (3)
Cl1i—Cu1—N2—C5 −48.3 (2) C7—C8—C9—C10 1.3 (4)
C2i—C1—C2—C3 0.5 (2) C11—C8—C9—C10 178.8 (3)
C3i—N1—C3—C2 0.6 (2) C8—C9—C10—C5 0.1 (4)
Cu1—N1—C3—C2 −179.4 (2) C6—C5—C10—C9 −3.0 (4)
C3i—N1—C3—C4 −178.5 (2) N2—C5—C10—C9 178.2 (3)
Cu1—N1—C3—C4 1.5 (2)

Symmetry codes: (i) −x+2, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5030).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Li, X.-P., Liu, Y.-Y. & Zhao, J.-S. (2010). Acta Cryst. E66, m1215. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037025/xu5030sup1.cif

e-66-m1297-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037025/xu5030Isup2.hkl

e-66-m1297-Isup2.hkl (108KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES