Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 30;66(Pt 10):o2659. doi: 10.1107/S1600536810038195

(2,7-Dimeth­oxy­naphthalen-1-yl)(phen­yl)methanone

Yuichi Kato a, Atsushi Nagasawa a, Daichi Hijikata a, Akiko Okamoto a, Noriyuki Yonezawa a,*
PMCID: PMC2983196  PMID: 21587630

Abstract

The asymmetric unit of the title compound, C19H16O3, contains three independent conformers. Each of the three conformers has essentially the same feature of non-coplanar aromatic rings whereby the aroyl group at the 1-position of the naphthalene ring is twisted in a perpendicular manner to the naphthalene ring. The dihedral angles between the benzene ring planes and the naphthalene ring systems are 75.34 (7), 86.47 (7) and 76.55 (6)° in the three conformers. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For electrophilic aromatic substitution of naphthalene deriva­tives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Nakaema, Watanabe et al. (2008); Mitsui et al. (2008); Watanabe, Nagasawa et al. (2010); Hijikata, Nakaema, Watanabe et al. (2010a ,b ).graphic file with name e-66-o2659-scheme1.jpg

Experimental

Crystal data

  • C19H16O3

  • M r = 292.32

  • Monoclinic, Inline graphic

  • a = 23.4356 (4) Å

  • b = 7.84115 (14) Å

  • c = 26.7438 (5) Å

  • β = 111.786 (1)°

  • V = 4563.49 (14) Å3

  • Z = 12

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 193 K

  • 0.60 × 0.20 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.682, T max = 0.934

  • 76914 measured reflections

  • 8353 independent reflections

  • 6698 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.109

  • S = 1.12

  • 8353 reflections

  • 602 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038195/om2366sup1.cif

e-66-o2659-sup1.cif (36.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038195/om2366Isup2.hkl

e-66-o2659-Isup2.hkl (400.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C36—H36⋯O2 0.95 2.56 3.4116 (18) 149
C56—H56A⋯O5i 0.98 2.54 3.4862 (19) 161
C52—H52⋯O3i 0.95 2.46 3.395 (2) 168
C34—H34⋯O6ii 0.95 2.41 3.143 (2) 133
C54—H54⋯O9ii 0.95 2.58 3.2451 (19) 128
C19—H19B⋯O9iii 0.98 2.59 3.116 (2) 113

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors would express their gratitude to Professor Keiichi Noguchi for technical advice. This work partly was supported by a Sasagawa Scientific Research Grant from the Japan Science Society.

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone (Watanabe et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected almost perpendicularly but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. In the crystal of 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), molecules are arranged by C–H···O hydrogen bonding along the c axis of the unit cell, and a π–π stacking interaction perpendicular to the bc plane is also observed. Moreover, the X-ray crystal structural analyses of 1-(4-substituted benzoyl)naphthalenes, i.e., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008), 2-(2,7-dimethoxy-1-naphthoyl)benzoic acid (Hijikata et al.., 2010a) and methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate (Hijikata et al., 2010b), have also revealed to have essentially the same non-coplanar structure with the 1,8-diaroylated naphthalenes. As a part of the course of our continuous study on the molecular structures of this kind of homologous molecules, the crystal structure of title compound, 1-benzoylatednaphthalene, is discussed in this paper.

There are three independent conformers in the crystal structure of the title compound. The independent conformers are labeled (A), (B), and (C) and are shown in Fig. 1. Each conformer has essentially the same non-coplanar structure. The respective dihedral angles between the naphthalene rings and the benzene rings of the three conformers are 75.34 (7), 86.46 (7), and 76.55 (6)°. The bridging carbonyl planes make large dihedral angles of 77.57 (7)° [C2—C1—C11—O3 torsion angle = -77.82 (18)°], 88.38 (7)° [C21—C20—C30—O6 torsion angle = -90.52 (18)°], and 81.87 (7)° [C40—C39—C49—O9 torsion angle = -101.94 (17)°] with the naphthalene ring systems. On the other hand, the dihedral angles between the bridging carbonyl planes and the benzene rings are rather small, such as 8.27 (9)° [O3—C11—C12—C17 torsion angle = -173.33 (14)°], 10.23 (9)° [O6—C30—C31—C36 torsion angle = -170.51 (15)°], and 15.95 (8)° [O9—C49—C50—C55 torsion angle = 167.01 (14)°]. The methyl groups of the methoxy groups adjacent to the aroyl groups, are oriented to the exo sites of the molecules and the other methyl groups are directed to endo sites. The crystal structure is stabilized by intermolecular hydrogen bonds among three different conformers and between same types of conformers (Table 1, Fig. 2, 3). Among three different conformers, hydrogen bonds between conformers (A) and (B) [C36–H36···O2= 2.564 Å], between conformers (B) and (C) [C56—H56A···O5 = 2.544 Å], and between conformers (C) and (A) [C52—H52···O3 = 2.460 Å] are observed. In addition, the conformers (B) are connected to each other by intermolecular hydrogen bonds between carbonyl oxygen and aromatic hydrogen [C34–H34···O6 = 2.413 Å].The conformers (C) are also linked with intermolecular hydrogen bonds between carbonyl oxygen and aromatic hydrogen [C54–H54···O9 = 2.576 Å]. The conformers (B) and (C) are stacked along the b axis and form the columnar structures, respectively. On the other hand, the conformers (A) have no interactions with themselves along the b axis. They have only weak intermolecular interactions with conformers (C) [C19–H19B···O9 = 2.593 Å] and are piled in the gap of the two different columnar structures of conformers (B) and (C) (Fig. 4).

Experimental

To a 100 ml flask, benzoyl chloride (8.1 mmol, 0.923 ml), aluminium chloride (AlCl3; 10.4 mmo1, 1.38 g) and methylene chloride (CH2Cl2; 19 ml) were placed and stirred at 273 K. To the reaction mixture thus obtained 2,7-dimethoxynaphthalene (7.5 mmol, 1.372 g) in methylene chloride (CH2Cl2; 19 ml) were added. After the reactionmixture was stirred at 273 K for 6 h, it was poured into ice-cold water (10 ml)and the mixture was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure togive a cake (98% yield). The crude product was purified by recrystallization from hexane-chloroform. Yellow platelet single-crystals suitable for X-ray diffraction were obtained by crystallization from hexane-methylene chloride.

Spectroscopic Data:

1H NMR δ (300 MHz, CDCl3); 3.71 (3H, s), 3.78 (3H, s, J = 8.6 Hz), 6.79 (1H, d, J = 2.4 Hz), 7.01 (1H, dd, J = 8.7, 2.4 Hz), 7.16 (1H, d, J = 9.0 Hz), 7.43 (2H, t, J = 7.8 Hz), 7.57 (1H, t, J = 7.2 Hz), 7.72 (1H, d, J = 8.7 Hz), 7.72 (1H, d, J = 8.7 Hz), 7.84–7.89 (3H, m) p.p.m..

13C NMR δ (300 MHz, CDCl3); 55.09, 56.24, 102.02, 110.17, 117.01, 121.67,124.29, 128.48, 129.44, 129.62, 130.96, 132.98, 133.31, 137.98, 154.93, 158.77,198.07 p.p.m..

IR(KBr):1663.30 (C=O), 1626.66 (Ar) cm-1.

HRMS(m/z): [M + H]+ Calcd for C19H17O3, 293.3365; found, 293.1185.

m.p.= 358.5–362 K

Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C–H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the conformers (A), (B), and (C), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.

Fig. 2.

Fig. 2.

The intermolecular C—H···O hydrogen bonds among conformer (A), (B), and (C). They are shown as dashed lines.

Fig. 3.

Fig. 3.

Partial crystal packing diagram, viewed down the a axis. C—H···O hydroghen bonds are shown as dashed lines.

Fig. 4.

Fig. 4.

The arrangement of the molecules in the crystal structure, viewed down the b axis.

Crystal data

C19H16O3 F(000) = 1848
Mr = 292.32 Dx = 1.276 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2yn Cell parameters from 57393 reflections
a = 23.4356 (4) Å θ = 3.2–68.2°
b = 7.84115 (14) Å µ = 0.69 mm1
c = 26.7438 (5) Å T = 193 K
β = 111.786 (1)° Plate, colorless
V = 4563.49 (14) Å3 0.60 × 0.20 × 0.10 mm
Z = 12

Data collection

Rigaku R-AXIS RAPID diffractometer 8353 independent reflections
Radiation source: rotating anode 6698 reflections with I > 2σ(I)
graphite Rint = 0.021
Detector resolution: 10.00 pixels mm-1 θmax = 68.2°, θmin = 3.2°
ω scans h = −28→28
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −9→9
Tmin = 0.682, Tmax = 0.934 l = −32→32
76914 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.663P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.001
8353 reflections Δρmax = 0.22 e Å3
602 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00122 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.51486 (4) 0.16611 (14) 1.04957 (4) 0.0587 (3)
O2 0.20220 (5) 0.45515 (18) 0.91435 (4) 0.0722 (3)
O3 0.39690 (5) 0.04069 (13) 1.06125 (4) 0.0560 (3)
O4 0.22870 (5) 0.15222 (16) 0.76495 (4) 0.0637 (3)
O5 0.00579 (5) −0.09657 (16) 0.87951 (4) 0.0670 (3)
O6 0.08863 (5) 0.01795 (14) 0.71223 (4) 0.0641 (3)
O7 0.03065 (4) 0.71601 (15) 0.02183 (4) 0.0577 (3)
O8 0.24498 (5) 0.39304 (15) 0.27448 (4) 0.0674 (3)
O9 0.16772 (5) 0.50304 (14) 0.06449 (5) 0.0648 (3)
C1 0.41405 (6) 0.25521 (18) 1.00606 (5) 0.0440 (3)
C2 0.47190 (6) 0.23724 (18) 1.00467 (5) 0.0475 (3)
C3 0.48429 (7) 0.2895 (2) 0.95928 (6) 0.0532 (4)
H3 0.5240 0.2738 0.9583 0.064*
C4 0.43877 (7) 0.3629 (2) 0.91685 (6) 0.0551 (4)
H4 0.4474 0.3988 0.8865 0.066*
C5 0.37912 (7) 0.38701 (19) 0.91685 (5) 0.0497 (3)
C6 0.33197 (8) 0.4678 (2) 0.87400 (6) 0.0594 (4)
H6 0.3403 0.5080 0.8439 0.071*
C7 0.27523 (8) 0.4887 (2) 0.87511 (6) 0.0633 (4)
H7 0.2443 0.5443 0.8460 0.076*
C8 0.26156 (7) 0.4287 (2) 0.91910 (6) 0.0555 (4)
C9 0.30564 (6) 0.3513 (2) 0.96189 (5) 0.0501 (3)
H9 0.2959 0.3118 0.9914 0.060*
C10 0.36631 (6) 0.32983 (18) 0.96222 (5) 0.0448 (3)
C11 0.40345 (6) 0.19262 (19) 1.05519 (5) 0.0438 (3)
C12 0.40215 (6) 0.32003 (18) 1.09617 (5) 0.0426 (3)
C13 0.40109 (6) 0.2633 (2) 1.14507 (5) 0.0506 (3)
H13 0.3999 0.1446 1.1516 0.061*
C14 0.40184 (8) 0.3792 (2) 1.18399 (6) 0.0633 (4)
H14 0.4016 0.3401 1.2176 0.076*
C15 0.40288 (8) 0.5516 (2) 1.17444 (7) 0.0673 (4)
H15 0.4033 0.6307 1.2015 0.081*
C16 0.40328 (8) 0.6104 (2) 1.12605 (6) 0.0614 (4)
H16 0.4036 0.7294 1.1195 0.074*
C17 0.40328 (6) 0.49406 (19) 1.08707 (6) 0.0501 (3)
H17 0.4041 0.5338 1.0538 0.060*
C18 0.57707 (7) 0.1598 (2) 1.05318 (7) 0.0634 (4)
H18A 0.6028 0.1091 1.0877 0.076*
H18B 0.5915 0.2756 1.0507 0.076*
H18C 0.5797 0.0904 1.0236 0.076*
C19 0.18576 (8) 0.4047 (3) 0.95842 (7) 0.0807 (6)
H19A 0.1441 0.4446 0.9524 0.097*
H19B 0.2147 0.4547 0.9918 0.097*
H19C 0.1872 0.2801 0.9614 0.097*
C20 0.15701 (6) 0.06924 (18) 0.80110 (5) 0.0469 (3)
C21 0.21794 (7) 0.0817 (2) 0.80740 (6) 0.0544 (4)
C22 0.26461 (7) 0.0244 (2) 0.85476 (7) 0.0658 (4)
H22 0.3065 0.0315 0.8585 0.079*
C23 0.24920 (8) −0.0414 (2) 0.89516 (7) 0.0707 (5)
H23 0.2809 −0.0801 0.9271 0.085*
C24 0.18744 (8) −0.0538 (2) 0.89106 (6) 0.0591 (4)
C25 0.17046 (9) −0.1199 (2) 0.93278 (7) 0.0729 (5)
H25 0.2017 −0.1580 0.9651 0.087*
C26 0.11109 (9) −0.1306 (2) 0.92800 (6) 0.0715 (5)
H26 0.1010 −0.1749 0.9567 0.086*
C27 0.06410 (8) −0.0755 (2) 0.87998 (6) 0.0562 (4)
C28 0.07786 (7) −0.00943 (18) 0.83870 (5) 0.0484 (3)
H28 0.0458 0.0285 0.8069 0.058*
C29 0.14004 (7) 0.00297 (18) 0.84305 (5) 0.0479 (3)
C30 0.10937 (6) 0.12284 (18) 0.74798 (5) 0.0446 (3)
C31 0.08962 (6) 0.30293 (18) 0.74001 (5) 0.0430 (3)
C32 0.05343 (7) 0.3591 (2) 0.68843 (6) 0.0576 (4)
H32 0.0416 0.2817 0.6590 0.069*
C33 0.03497 (8) 0.5264 (3) 0.68028 (8) 0.0740 (5)
H33 0.0108 0.5648 0.6451 0.089*
C34 0.05123 (8) 0.6386 (2) 0.72272 (9) 0.0743 (5)
H34 0.0379 0.7539 0.7168 0.089*
C35 0.08686 (7) 0.5846 (2) 0.77408 (8) 0.0621 (4)
H35 0.0980 0.6627 0.8033 0.074*
C36 0.10630 (6) 0.41692 (18) 0.78287 (6) 0.0475 (3)
H36 0.1310 0.3797 0.8181 0.057*
C37 0.29031 (7) 0.1551 (3) 0.76654 (7) 0.0699 (5)
H37A 0.2911 0.2093 0.7338 0.084*
H37B 0.3058 0.0380 0.7688 0.084*
H37C 0.3164 0.2198 0.7981 0.084*
C38 −0.04394 (8) −0.0657 (2) 0.83044 (6) 0.0654 (4)
H38A −0.0824 −0.1006 0.8340 0.078*
H38B −0.0381 −0.1314 0.8015 0.078*
H38C −0.0458 0.0561 0.8218 0.078*
C39 0.09947 (6) 0.61155 (17) 0.10299 (5) 0.0419 (3)
C40 0.04007 (6) 0.65911 (19) 0.07253 (5) 0.0476 (3)
C41 −0.00646 (7) 0.6483 (2) 0.09395 (6) 0.0569 (4)
H41 −0.0474 0.6806 0.0727 0.068*
C42 0.00761 (7) 0.5913 (2) 0.14520 (6) 0.0583 (4)
H42 −0.0240 0.5848 0.1593 0.070*
C43 0.06762 (7) 0.54153 (18) 0.17787 (6) 0.0487 (3)
C44 0.08383 (8) 0.4859 (2) 0.23198 (6) 0.0576 (4)
H44 0.0531 0.4809 0.2472 0.069*
C45 0.14218 (8) 0.4399 (2) 0.26228 (6) 0.0593 (4)
H45 0.1521 0.4049 0.2985 0.071*
C46 0.18824 (7) 0.44396 (19) 0.24015 (6) 0.0522 (3)
C47 0.17515 (6) 0.49750 (17) 0.18847 (5) 0.0459 (3)
H47 0.2066 0.5004 0.1741 0.055*
C48 0.11454 (6) 0.54875 (17) 0.15616 (5) 0.0424 (3)
C49 0.14990 (6) 0.62845 (18) 0.08130 (5) 0.0428 (3)
C50 0.17969 (6) 0.79661 (18) 0.08434 (5) 0.0417 (3)
C51 0.23651 (6) 0.8059 (2) 0.07907 (5) 0.0524 (4)
H51 0.2557 0.7051 0.0733 0.063*
C52 0.26507 (7) 0.9625 (2) 0.08230 (6) 0.0642 (4)
H52 0.3040 0.9689 0.0790 0.077*
C53 0.23724 (8) 1.1088 (2) 0.09031 (7) 0.0671 (5)
H53 0.2568 1.2158 0.0920 0.080*
C54 0.18128 (7) 1.1013 (2) 0.09587 (7) 0.0630 (4)
H54 0.1624 1.2028 0.1016 0.076*
C55 0.15267 (6) 0.94555 (18) 0.09310 (6) 0.0499 (3)
H55 0.1142 0.9403 0.0972 0.060*
C56 −0.02987 (7) 0.7708 (2) −0.01110 (6) 0.0648 (4)
H56A −0.0303 0.8070 −0.0463 0.078*
H56B −0.0420 0.8666 0.0063 0.078*
H56C −0.0588 0.6763 −0.0159 0.078*
C57 0.29362 (8) 0.4032 (2) 0.25505 (7) 0.0727 (5)
H57A 0.3319 0.3647 0.2831 0.087*
H57B 0.2983 0.5215 0.2454 0.087*
H57C 0.2842 0.3305 0.2232 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0487 (5) 0.0714 (7) 0.0598 (6) 0.0031 (5) 0.0247 (5) 0.0035 (5)
O2 0.0533 (6) 0.1092 (10) 0.0484 (6) 0.0056 (6) 0.0124 (5) −0.0032 (6)
O3 0.0721 (7) 0.0479 (6) 0.0583 (6) −0.0100 (5) 0.0363 (5) −0.0031 (5)
O4 0.0544 (6) 0.0787 (8) 0.0639 (6) 0.0019 (5) 0.0287 (5) 0.0013 (6)
O5 0.0777 (7) 0.0800 (8) 0.0522 (6) 0.0030 (6) 0.0344 (6) 0.0090 (6)
O6 0.0835 (8) 0.0590 (7) 0.0465 (6) −0.0073 (6) 0.0203 (5) −0.0127 (5)
O7 0.0461 (5) 0.0767 (7) 0.0457 (5) −0.0034 (5) 0.0116 (4) 0.0116 (5)
O8 0.0720 (7) 0.0703 (8) 0.0495 (6) 0.0015 (6) 0.0104 (5) 0.0125 (5)
O9 0.0827 (8) 0.0509 (6) 0.0801 (8) −0.0027 (5) 0.0526 (6) −0.0072 (5)
C1 0.0504 (7) 0.0462 (8) 0.0402 (7) −0.0091 (6) 0.0225 (6) −0.0065 (6)
C2 0.0511 (8) 0.0472 (8) 0.0488 (7) −0.0079 (6) 0.0237 (6) −0.0081 (6)
C3 0.0575 (8) 0.0567 (9) 0.0569 (8) −0.0119 (7) 0.0346 (7) −0.0090 (7)
C4 0.0703 (9) 0.0570 (9) 0.0489 (8) −0.0145 (8) 0.0348 (7) −0.0076 (7)
C5 0.0639 (9) 0.0511 (8) 0.0395 (7) −0.0125 (7) 0.0254 (6) −0.0079 (6)
C6 0.0751 (10) 0.0656 (10) 0.0397 (7) −0.0108 (8) 0.0240 (7) −0.0027 (7)
C7 0.0701 (10) 0.0741 (11) 0.0396 (8) −0.0030 (8) 0.0132 (7) −0.0014 (7)
C8 0.0520 (8) 0.0707 (11) 0.0409 (7) −0.0041 (7) 0.0140 (6) −0.0093 (7)
C9 0.0531 (8) 0.0620 (9) 0.0370 (7) −0.0088 (7) 0.0188 (6) −0.0072 (6)
C10 0.0533 (7) 0.0458 (8) 0.0382 (7) −0.0092 (6) 0.0202 (6) −0.0073 (6)
C11 0.0419 (7) 0.0491 (9) 0.0425 (7) −0.0060 (6) 0.0179 (5) −0.0005 (6)
C12 0.0404 (6) 0.0502 (8) 0.0387 (6) −0.0053 (6) 0.0164 (5) −0.0022 (6)
C13 0.0560 (8) 0.0564 (9) 0.0421 (7) −0.0008 (7) 0.0213 (6) 0.0018 (6)
C14 0.0792 (11) 0.0728 (12) 0.0428 (8) 0.0048 (9) 0.0283 (7) −0.0024 (7)
C15 0.0831 (12) 0.0667 (11) 0.0522 (9) 0.0063 (9) 0.0253 (8) −0.0147 (8)
C16 0.0734 (10) 0.0526 (9) 0.0558 (9) −0.0025 (8) 0.0214 (8) −0.0074 (7)
C17 0.0562 (8) 0.0514 (9) 0.0431 (7) −0.0076 (7) 0.0189 (6) −0.0034 (6)
C18 0.0481 (8) 0.0660 (11) 0.0800 (11) −0.0018 (7) 0.0281 (8) −0.0105 (9)
C19 0.0503 (9) 0.1288 (18) 0.0647 (11) 0.0001 (10) 0.0235 (8) −0.0012 (11)
C20 0.0524 (8) 0.0443 (8) 0.0428 (7) 0.0064 (6) 0.0161 (6) −0.0046 (6)
C21 0.0538 (8) 0.0541 (9) 0.0543 (8) 0.0066 (7) 0.0190 (7) −0.0057 (7)
C22 0.0522 (9) 0.0711 (11) 0.0680 (10) 0.0111 (8) 0.0152 (8) −0.0005 (9)
C23 0.0637 (10) 0.0743 (12) 0.0596 (10) 0.0198 (9) 0.0061 (8) 0.0057 (9)
C24 0.0661 (10) 0.0587 (10) 0.0458 (8) 0.0139 (8) 0.0129 (7) 0.0032 (7)
C25 0.0838 (12) 0.0798 (12) 0.0462 (9) 0.0191 (10) 0.0138 (8) 0.0158 (8)
C26 0.0922 (13) 0.0774 (12) 0.0470 (9) 0.0135 (10) 0.0282 (9) 0.0156 (8)
C27 0.0720 (10) 0.0560 (9) 0.0456 (8) 0.0060 (7) 0.0277 (7) 0.0013 (7)
C28 0.0609 (8) 0.0468 (8) 0.0374 (7) 0.0079 (6) 0.0180 (6) 0.0001 (6)
C29 0.0592 (8) 0.0422 (8) 0.0408 (7) 0.0087 (6) 0.0166 (6) −0.0028 (6)
C30 0.0499 (7) 0.0499 (8) 0.0378 (7) −0.0040 (6) 0.0206 (6) −0.0053 (6)
C31 0.0389 (6) 0.0499 (8) 0.0421 (7) −0.0024 (6) 0.0171 (5) 0.0015 (6)
C32 0.0514 (8) 0.0688 (11) 0.0477 (8) −0.0051 (7) 0.0127 (6) 0.0090 (7)
C33 0.0592 (10) 0.0759 (13) 0.0786 (12) 0.0030 (9) 0.0159 (9) 0.0323 (10)
C34 0.0591 (10) 0.0533 (10) 0.1152 (16) 0.0061 (8) 0.0377 (10) 0.0239 (11)
C35 0.0583 (9) 0.0487 (9) 0.0877 (12) −0.0038 (7) 0.0370 (9) −0.0069 (8)
C36 0.0449 (7) 0.0497 (8) 0.0508 (8) −0.0018 (6) 0.0211 (6) −0.0027 (6)
C37 0.0543 (9) 0.0845 (13) 0.0775 (11) −0.0077 (8) 0.0322 (8) −0.0207 (10)
C38 0.0677 (10) 0.0766 (12) 0.0564 (9) −0.0061 (9) 0.0281 (8) −0.0016 (8)
C39 0.0455 (7) 0.0409 (7) 0.0420 (7) −0.0058 (6) 0.0193 (6) −0.0018 (6)
C40 0.0468 (7) 0.0502 (8) 0.0459 (7) −0.0070 (6) 0.0172 (6) 0.0025 (6)
C41 0.0433 (7) 0.0673 (10) 0.0611 (9) −0.0073 (7) 0.0204 (7) 0.0036 (8)
C42 0.0542 (8) 0.0655 (10) 0.0661 (10) −0.0084 (7) 0.0351 (8) 0.0009 (8)
C43 0.0573 (8) 0.0469 (8) 0.0495 (8) −0.0102 (6) 0.0285 (7) −0.0028 (6)
C44 0.0760 (10) 0.0571 (9) 0.0508 (8) −0.0134 (8) 0.0364 (8) −0.0038 (7)
C45 0.0855 (11) 0.0553 (9) 0.0404 (7) −0.0115 (8) 0.0271 (8) 0.0007 (7)
C46 0.0650 (9) 0.0437 (8) 0.0433 (7) −0.0045 (7) 0.0150 (7) 0.0012 (6)
C47 0.0527 (8) 0.0430 (8) 0.0437 (7) −0.0033 (6) 0.0199 (6) −0.0006 (6)
C48 0.0527 (7) 0.0361 (7) 0.0416 (7) −0.0069 (6) 0.0212 (6) −0.0028 (5)
C49 0.0478 (7) 0.0462 (8) 0.0359 (6) −0.0005 (6) 0.0173 (6) 0.0015 (6)
C50 0.0425 (7) 0.0495 (8) 0.0319 (6) −0.0033 (6) 0.0125 (5) 0.0035 (5)
C51 0.0465 (7) 0.0678 (10) 0.0445 (7) −0.0055 (7) 0.0187 (6) 0.0017 (7)
C52 0.0512 (8) 0.0851 (13) 0.0567 (9) −0.0212 (9) 0.0205 (7) 0.0038 (8)
C53 0.0659 (10) 0.0604 (11) 0.0662 (10) −0.0209 (8) 0.0144 (8) 0.0093 (8)
C54 0.0619 (9) 0.0480 (9) 0.0704 (10) −0.0062 (7) 0.0145 (8) 0.0047 (8)
C55 0.0464 (7) 0.0493 (8) 0.0507 (8) −0.0028 (6) 0.0141 (6) 0.0026 (6)
C56 0.0522 (9) 0.0776 (12) 0.0547 (9) −0.0015 (8) 0.0081 (7) 0.0095 (8)
C57 0.0609 (10) 0.0713 (12) 0.0724 (11) 0.0022 (8) 0.0089 (8) 0.0193 (9)

Geometric parameters (Å, °)

O1—C2 1.3671 (17) C25—C26 1.352 (3)
O1—C18 1.4257 (17) C25—H25 0.9500
O2—C8 1.3650 (18) C26—C27 1.414 (2)
O2—C19 1.425 (2) C26—H26 0.9500
O3—C11 1.2196 (17) C27—C28 1.362 (2)
O4—C21 1.3677 (18) C28—C29 1.422 (2)
O4—C37 1.4288 (18) C28—H28 0.9500
O5—C27 1.3718 (19) C30—C31 1.477 (2)
O5—C38 1.4154 (19) C31—C36 1.3902 (19)
O6—C30 1.2172 (16) C31—C32 1.3957 (19)
O7—C40 1.3653 (16) C32—C33 1.373 (2)
O7—C56 1.4298 (17) C32—H32 0.9500
O8—C46 1.3656 (18) C33—C34 1.373 (3)
O8—C57 1.420 (2) C33—H33 0.9500
O9—C49 1.2178 (16) C34—C35 1.383 (3)
C1—C2 1.3773 (18) C34—H34 0.9500
C1—C10 1.4125 (19) C35—C36 1.383 (2)
C1—C11 1.5069 (17) C35—H35 0.9500
C2—C3 1.4097 (19) C36—H36 0.9500
C3—C4 1.363 (2) C37—H37A 0.9800
C3—H3 0.9500 C37—H37B 0.9800
C4—C5 1.411 (2) C37—H37C 0.9800
C4—H4 0.9500 C38—H38A 0.9800
C5—C6 1.412 (2) C38—H38B 0.9800
C5—C10 1.4260 (18) C38—H38C 0.9800
C6—C7 1.351 (2) C39—C40 1.3780 (19)
C6—H6 0.9500 C39—C48 1.4198 (18)
C7—C8 1.410 (2) C39—C49 1.5034 (17)
C7—H7 0.9500 C40—C41 1.4101 (19)
C8—C9 1.367 (2) C41—C42 1.361 (2)
C9—C10 1.4285 (19) C41—H41 0.9500
C9—H9 0.9500 C42—C43 1.407 (2)
C11—C12 1.4916 (18) C42—H42 0.9500
C12—C17 1.388 (2) C43—C44 1.422 (2)
C12—C13 1.3904 (18) C43—C48 1.4225 (18)
C13—C14 1.377 (2) C44—C45 1.354 (2)
C13—H13 0.9500 C44—H44 0.9500
C14—C15 1.378 (2) C45—C46 1.411 (2)
C14—H14 0.9500 C45—H45 0.9500
C15—C16 1.377 (2) C46—C47 1.3659 (19)
C15—H15 0.9500 C47—C48 1.4194 (19)
C16—C17 1.385 (2) C47—H47 0.9500
C16—H16 0.9500 C49—C50 1.4800 (19)
C17—H17 0.9500 C50—C55 1.389 (2)
C18—H18A 0.9800 C50—C51 1.3919 (18)
C18—H18B 0.9800 C51—C52 1.386 (2)
C18—H18C 0.9800 C51—H51 0.9500
C19—H19A 0.9800 C52—C53 1.375 (3)
C19—H19B 0.9800 C52—H52 0.9500
C19—H19C 0.9800 C53—C54 1.375 (2)
C20—C21 1.378 (2) C53—H53 0.9500
C20—C29 1.420 (2) C54—C55 1.382 (2)
C20—C30 1.5047 (18) C54—H54 0.9500
C21—C22 1.405 (2) C55—H55 0.9500
C22—C23 1.361 (3) C56—H56A 0.9800
C22—H22 0.9500 C56—H56B 0.9800
C23—C24 1.414 (2) C56—H56C 0.9800
C23—H23 0.9500 C57—H57A 0.9800
C24—C25 1.415 (2) C57—H57B 0.9800
C24—C29 1.422 (2) C57—H57C 0.9800
C2—O1—C18 118.35 (12) C28—C29—C24 119.08 (13)
C8—O2—C19 117.38 (12) O6—C30—C31 121.36 (13)
C21—O4—C37 118.51 (13) O6—C30—C20 119.53 (13)
C27—O5—C38 117.56 (11) C31—C30—C20 119.10 (11)
C40—O7—C56 117.87 (11) C36—C31—C32 119.58 (14)
C46—O8—C57 116.82 (12) C36—C31—C30 121.25 (12)
C2—C1—C10 120.29 (12) C32—C31—C30 119.17 (13)
C2—C1—C11 118.21 (12) C33—C32—C31 119.91 (16)
C10—C1—C11 121.50 (12) C33—C32—H32 120.0
O1—C2—C1 115.43 (12) C31—C32—H32 120.0
O1—C2—C3 123.71 (13) C32—C33—C34 120.42 (17)
C1—C2—C3 120.86 (13) C32—C33—H33 119.8
C4—C3—C2 119.47 (13) C34—C33—H33 119.8
C4—C3—H3 120.3 C33—C34—C35 120.31 (17)
C2—C3—H3 120.3 C33—C34—H34 119.8
C3—C4—C5 121.72 (13) C35—C34—H34 119.8
C3—C4—H4 119.1 C34—C35—C36 119.97 (17)
C5—C4—H4 119.1 C34—C35—H35 120.0
C4—C5—C6 122.46 (13) C36—C35—H35 120.0
C4—C5—C10 118.65 (13) C35—C36—C31 119.81 (14)
C6—C5—C10 118.88 (13) C35—C36—H36 120.1
C7—C6—C5 121.10 (14) C31—C36—H36 120.1
C7—C6—H6 119.5 O4—C37—H37A 109.5
C5—C6—H6 119.5 O4—C37—H37B 109.5
C6—C7—C8 120.54 (15) H37A—C37—H37B 109.5
C6—C7—H7 119.7 O4—C37—H37C 109.5
C8—C7—H7 119.7 H37A—C37—H37C 109.5
O2—C8—C9 124.95 (14) H37B—C37—H37C 109.5
O2—C8—C7 114.27 (14) O5—C38—H38A 109.5
C9—C8—C7 120.78 (14) O5—C38—H38B 109.5
C8—C9—C10 119.92 (13) H38A—C38—H38B 109.5
C8—C9—H9 120.0 O5—C38—H38C 109.5
C10—C9—H9 120.0 H38A—C38—H38C 109.5
C1—C10—C5 118.98 (13) H38B—C38—H38C 109.5
C1—C10—C9 122.27 (12) C40—C39—C48 120.48 (12)
C5—C10—C9 118.75 (13) C40—C39—C49 120.95 (12)
O3—C11—C12 121.24 (12) C48—C39—C49 118.56 (11)
O3—C11—C1 120.24 (12) O7—C40—C39 115.54 (12)
C12—C11—C1 118.51 (12) O7—C40—C41 123.97 (12)
C17—C12—C13 119.17 (13) C39—C40—C41 120.49 (13)
C17—C12—C11 121.52 (12) C42—C41—C40 119.61 (14)
C13—C12—C11 119.29 (13) C42—C41—H41 120.2
C14—C13—C12 120.03 (15) C40—C41—H41 120.2
C14—C13—H13 120.0 C41—C42—C43 121.94 (13)
C12—C13—H13 120.0 C41—C42—H42 119.0
C13—C14—C15 120.22 (15) C43—C42—H42 119.0
C13—C14—H14 119.9 C42—C43—C44 123.02 (13)
C15—C14—H14 119.9 C42—C43—C48 118.77 (13)
C16—C15—C14 120.62 (15) C44—C43—C48 118.21 (14)
C16—C15—H15 119.7 C45—C44—C43 121.32 (14)
C14—C15—H15 119.7 C45—C44—H44 119.3
C15—C16—C17 119.28 (16) C43—C44—H44 119.3
C15—C16—H16 120.4 C44—C45—C46 120.20 (13)
C17—C16—H16 120.4 C44—C45—H45 119.9
C16—C17—C12 120.67 (14) C46—C45—H45 119.9
C16—C17—H17 119.7 O8—C46—C47 124.56 (14)
C12—C17—H17 119.7 O8—C46—C45 114.65 (13)
O1—C18—H18A 109.5 C47—C46—C45 120.78 (14)
O1—C18—H18B 109.5 C46—C47—C48 120.08 (13)
H18A—C18—H18B 109.5 C46—C47—H47 120.0
O1—C18—H18C 109.5 C48—C47—H47 120.0
H18A—C18—H18C 109.5 C47—C48—C39 121.91 (12)
H18B—C18—H18C 109.5 C47—C48—C43 119.39 (12)
O2—C19—H19A 109.5 C39—C48—C43 118.68 (12)
O2—C19—H19B 109.5 O9—C49—C50 121.35 (12)
H19A—C19—H19B 109.5 O9—C49—C39 119.85 (12)
O2—C19—H19C 109.5 C50—C49—C39 118.67 (11)
H19A—C19—H19C 109.5 C55—C50—C51 119.09 (13)
H19B—C19—H19C 109.5 C55—C50—C49 121.53 (12)
C21—C20—C29 120.70 (13) C51—C50—C49 119.37 (13)
C21—C20—C30 117.90 (13) C52—C51—C50 119.87 (15)
C29—C20—C30 121.38 (12) C52—C51—H51 120.1
O4—C21—C20 115.41 (13) C50—C51—H51 120.1
O4—C21—C22 123.77 (14) C53—C52—C51 120.18 (15)
C20—C21—C22 120.82 (15) C53—C52—H52 119.9
C23—C22—C21 119.31 (16) C51—C52—H52 119.9
C23—C22—H22 120.3 C52—C53—C54 120.55 (15)
C21—C22—H22 120.3 C52—C53—H53 119.7
C22—C23—C24 122.01 (15) C54—C53—H53 119.7
C22—C23—H23 119.0 C53—C54—C55 119.67 (16)
C24—C23—H23 119.0 C53—C54—H54 120.2
C23—C24—C25 122.93 (15) C55—C54—H54 120.2
C23—C24—C29 118.85 (15) C54—C55—C50 120.63 (14)
C25—C24—C29 118.21 (15) C54—C55—H55 119.7
C26—C25—C24 121.94 (15) C50—C55—H55 119.7
C26—C25—H25 119.0 O7—C56—H56A 109.5
C24—C25—H25 119.0 O7—C56—H56B 109.5
C25—C26—C27 119.62 (15) H56A—C56—H56B 109.5
C25—C26—H26 120.2 O7—C56—H56C 109.5
C27—C26—H26 120.2 H56A—C56—H56C 109.5
C28—C27—O5 124.96 (14) H56B—C56—H56C 109.5
C28—C27—C26 120.91 (16) O8—C57—H57A 109.5
O5—C27—C26 114.13 (14) O8—C57—H57B 109.5
C27—C28—C29 120.23 (13) H57A—C57—H57B 109.5
C27—C28—H28 119.9 O8—C57—H57C 109.5
C29—C28—H28 119.9 H57A—C57—H57C 109.5
C20—C29—C28 122.64 (12) H57B—C57—H57C 109.5
C20—C29—C24 118.28 (14)
C18—O1—C2—C1 −173.65 (13) C30—C20—C29—C24 176.62 (13)
C18—O1—C2—C3 6.5 (2) C27—C28—C29—C20 179.41 (14)
C10—C1—C2—O1 178.93 (12) C27—C28—C29—C24 −0.3 (2)
C11—C1—C2—O1 −1.35 (19) C23—C24—C29—C20 0.2 (2)
C10—C1—C2—C3 −1.3 (2) C25—C24—C29—C20 −179.92 (15)
C11—C1—C2—C3 178.45 (13) C23—C24—C29—C28 179.91 (14)
O1—C2—C3—C4 −178.48 (14) C25—C24—C29—C28 −0.2 (2)
C1—C2—C3—C4 1.7 (2) C21—C20—C30—O6 90.52 (17)
C2—C3—C4—C5 −0.5 (2) C29—C20—C30—O6 −87.62 (17)
C3—C4—C5—C6 177.90 (15) C21—C20—C30—C31 −88.33 (16)
C3—C4—C5—C10 −1.2 (2) C29—C20—C30—C31 93.53 (16)
C4—C5—C6—C7 179.86 (15) O6—C30—C31—C36 170.52 (13)
C10—C5—C6—C7 −1.1 (2) C20—C30—C31—C36 −10.65 (18)
C5—C6—C7—C8 −0.6 (3) O6—C30—C31—C32 −9.4 (2)
C19—O2—C8—C9 2.8 (2) C20—C30—C31—C32 169.46 (12)
C19—O2—C8—C7 −177.25 (16) C36—C31—C32—C33 0.5 (2)
C6—C7—C8—O2 −178.67 (15) C30—C31—C32—C33 −179.62 (14)
C6—C7—C8—C9 1.3 (3) C31—C32—C33—C34 −0.8 (2)
O2—C8—C9—C10 179.67 (14) C32—C33—C34—C35 0.6 (3)
C7—C8—C9—C10 −0.3 (2) C33—C34—C35—C36 0.0 (2)
C2—C1—C10—C5 −0.4 (2) C34—C35—C36—C31 −0.4 (2)
C11—C1—C10—C5 179.88 (12) C32—C31—C36—C35 0.1 (2)
C2—C1—C10—C9 −179.93 (13) C30—C31—C36—C35 −179.77 (12)
C11—C1—C10—C9 0.4 (2) C56—O7—C40—C39 −178.58 (13)
C4—C5—C10—C1 1.6 (2) C56—O7—C40—C41 1.2 (2)
C6—C5—C10—C1 −177.49 (13) C48—C39—C40—O7 −179.37 (12)
C4—C5—C10—C9 −178.87 (13) C49—C39—C40—O7 1.99 (19)
C6—C5—C10—C9 2.0 (2) C48—C39—C40—C41 0.9 (2)
C8—C9—C10—C1 178.14 (14) C49—C39—C40—C41 −177.78 (13)
C8—C9—C10—C5 −1.4 (2) O7—C40—C41—C42 −179.41 (15)
C2—C1—C11—O3 −77.82 (17) C39—C40—C41—C42 0.3 (2)
C10—C1—C11—O3 101.89 (16) C40—C41—C42—C43 −0.2 (2)
C2—C1—C11—C12 101.28 (15) C41—C42—C43—C44 178.24 (15)
C10—C1—C11—C12 −79.00 (16) C41—C42—C43—C48 −1.0 (2)
O3—C11—C12—C17 −173.34 (13) C42—C43—C44—C45 −179.64 (15)
C1—C11—C12—C17 7.57 (18) C48—C43—C44—C45 −0.4 (2)
O3—C11—C12—C13 8.05 (19) C43—C44—C45—C46 −1.0 (2)
C1—C11—C12—C13 −171.04 (12) C57—O8—C46—C47 2.4 (2)
C17—C12—C13—C14 −0.7 (2) C57—O8—C46—C45 −176.83 (14)
C11—C12—C13—C14 177.96 (13) C44—C45—C46—O8 −179.35 (14)
C12—C13—C14—C15 0.8 (2) C44—C45—C46—C47 1.4 (2)
C13—C14—C15—C16 −0.1 (3) O8—C46—C47—C48 −179.64 (13)
C14—C15—C16—C17 −0.7 (3) C45—C46—C47—C48 −0.5 (2)
C15—C16—C17—C12 0.8 (2) C46—C47—C48—C39 177.48 (13)
C13—C12—C17—C16 −0.1 (2) C46—C47—C48—C43 −0.9 (2)
C11—C12—C17—C16 −178.70 (13) C40—C39—C48—C47 179.53 (13)
C37—O4—C21—C20 −174.38 (13) C49—C39—C48—C47 −1.80 (19)
C37—O4—C21—C22 5.6 (2) C40—C39—C48—C43 −2.12 (19)
C29—C20—C21—O4 −178.09 (13) C49—C39—C48—C43 176.55 (12)
C30—C20—C21—O4 3.8 (2) C42—C43—C48—C47 −179.42 (13)
C29—C20—C21—C22 2.0 (2) C44—C43—C48—C47 1.3 (2)
C30—C20—C21—C22 −176.19 (14) C42—C43—C48—C39 2.2 (2)
O4—C21—C22—C23 178.90 (16) C44—C43—C48—C39 −177.13 (13)
C20—C21—C22—C23 −1.2 (3) C40—C39—C49—O9 −101.93 (16)
C21—C22—C23—C24 −0.1 (3) C48—C39—C49—O9 79.40 (17)
C22—C23—C24—C25 −179.28 (18) C40—C39—C49—C50 82.13 (16)
C22—C23—C24—C29 0.5 (3) C48—C39—C49—C50 −96.53 (15)
C23—C24—C25—C26 179.99 (18) O9—C49—C50—C55 167.01 (13)
C29—C24—C25—C26 0.2 (3) C39—C49—C50—C55 −17.12 (18)
C24—C25—C26—C27 0.4 (3) O9—C49—C50—C51 −13.91 (19)
C38—O5—C27—C28 7.5 (2) C39—C49—C50—C51 161.96 (12)
C38—O5—C27—C26 −171.85 (15) C55—C50—C51—C52 −0.36 (19)
C25—C26—C27—C28 −0.9 (3) C49—C50—C51—C52 −179.46 (13)
C25—C26—C27—O5 178.48 (16) C50—C51—C52—C53 −0.5 (2)
O5—C27—C28—C29 −178.51 (14) C51—C52—C53—C54 0.8 (2)
C26—C27—C28—C29 0.8 (2) C52—C53—C54—C55 −0.3 (2)
C21—C20—C29—C28 178.86 (13) C53—C54—C55—C50 −0.5 (2)
C30—C20—C29—C28 −3.0 (2) C51—C50—C55—C54 0.8 (2)
C21—C20—C29—C24 −1.5 (2) C49—C50—C55—C54 179.92 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C36—H36···O2 0.95 2.56 3.4116 (18) 149
C56—H56A···O5i 0.98 2.54 3.4862 (19) 161
C52—H52···O3i 0.95 2.46 3.395 (2) 168
C34—H34···O6ii 0.95 2.41 3.143 (2) 133
C54—H54···O9ii 0.95 2.58 3.2451 (19) 128
C19—H19B···O9iii 0.98 2.59 3.116 (2) 113

Symmetry codes: (i) x, y+1, z−1; (ii) x, y+1, z; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2366).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & &Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o554. [DOI] [PMC free article] [PubMed]
  5. Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o713. [DOI] [PMC free article] [PubMed]
  6. Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. [DOI] [PMC free article] [PubMed]
  7. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  8. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett.38, 914–915.
  9. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038195/om2366sup1.cif

e-66-o2659-sup1.cif (36.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038195/om2366Isup2.hkl

e-66-o2659-Isup2.hkl (400.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES