Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):o2637. doi: 10.1107/S1600536810037657

1,3,5-Triaza­adamantan-7-amine

Jaclyn Thomson a, Danielle M Chisholm a, Allen G Oliver b,*, J Scott McIndoe a,*
PMCID: PMC2983202  PMID: 21587609

Abstract

The title compound, C7H14N4, represents the first structurally characterized, isolated triaza­adamantane. In the crystal structure, weak inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into columns about the crystallographic fourfold axis.

Related literature

For general background to applications of the title compound and its preparation, see: Hodge (1972); Karelina et al. (1987); Kuznetsov et al. (2001); Nielsen (1975, 1977); Safar et al. (1975). For related structures, see: de Namor et al. (2008).graphic file with name e-66-o2637-scheme1.jpg

Experimental

Crystal data

  • C7H14N4

  • M r = 154.22

  • Tetragonal, Inline graphic

  • a = 15.5402 (8) Å

  • c = 6.5074 (7) Å

  • V = 1571.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.32 × 0.24 × 0.15 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008a ) T min = 0.973, T max = 0.987

  • 15555 measured reflections

  • 1960 independent reflections

  • 1662 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.122

  • S = 1.52

  • 1960 reflections

  • 106 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: XP (Sheldrick, 2008b ) and POV-RAY (Cason, 2003); software used to prepare material for publication: XCIF (Sheldrick, 2008b ) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037657/cv2767sup1.cif

e-66-o2637-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037657/cv2767Isup2.hkl

e-66-o2637-Isup2.hkl (96.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯N3i 0.898 (12) 2.335 (13) 3.2316 (13) 176.0 (12)
N11—H11B⋯N11ii 0.895 (14) 2.253 (14) 3.1465 (14) 175.2 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Data were recorded on an instrument supported by the National Science Foundation, Major Research Instrumentation (MRI) Program under grant No. CHE-0521569.

supplementary crystallographic information

Comment

The title compound, 7-amino-1,3,5-triazaadamantane, 1, is a member of the class of adamantane compounds. To the best of our knowledge there are only two structurally characterized compounds containing the 1,3,5-triazaadamantane moiety (de Namor et al., 2008). However, both of the previously characterized species incorporate 7-nitro-1,3,5-triazaadamantane and are complexed with mercury.

7-Amino-1,3,5-triazaadamantane has been used as a curing agent in a number of processes from providing an alternative fuel source (Nielsen, 1977) to rubber manufacture (Karelina et al., 1987). Further it has been used as a precursor to other adamantane compounds (notably phosphaazaadamantanes, see for example Kuznetsov et al., 2001). The reactivity of the amino functionality has been investigated widely.

In the solid state the compound forms one-dimensional H-bonded (Table 1) chains that run through the lattice parallel to the crystallographic c-axis about the 42 screw-axis (Figure 2). The hydrogen-bonding is only exhibited through contacts from the amino group to neighbouring amino groups. The three N atoms in the azaadamantane portion of the molecule are not involved in any intermolecular contacts.

Experimental

7-Amino-1,3,5-triazaadamantane was prepared (Safar et al., 1975) by Pd/C/H2 reduction of 7-nitro-1,3,5-triazaadamantane (Hodge, 1972) in ethanol. NMR data was consistent with literature values (Nielsen, 1975). Single crystals suitable for X-ray crystallography were obtained from cooling a saturated ethanol solution of 7-amino-1,3,5-triazaadamantane to 4°C for one week.

Refinement

C-bound H atoms were placed in geometrically idealized positions (C—H = 0.99 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) . Amino H-atoms were located on a difference map, and refined with bond restraint N—H = 0.90 (1) Å, and constraint Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

View of 1 showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Hydrogen-bonding and packing of 1 viewed along the c-axis. Dotted lines represent hydrogen bonding.

Crystal data

C7H14N4 Dx = 1.304 Mg m3
Mr = 154.22 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/n Cell parameters from 4624 reflections
Hall symbol: -P 4bc θ = 2.6–28.2°
a = 15.5402 (8) Å µ = 0.09 mm1
c = 6.5074 (7) Å T = 150 K
V = 1571.5 (2) Å3 Columnar, colourless
Z = 8 0.32 × 0.24 × 0.15 mm
F(000) = 672

Data collection

Bruker APEXII diffractometer 1960 independent reflections
Radiation source: fine-focus sealed tube 1662 reflections with I > 2σ(I)
graphite Rint = 0.032
Detector resolution: 83.33 pixels mm-1 θmax = 28.3°, θmin = 1.9°
ω/2θ–scans h = −20→20
Absorption correction: numerical (SADABS; Sheldrick, 2008a) k = −19→20
Tmin = 0.973, Tmax = 0.987 l = −8→8
15555 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H atoms treated by a mixture of independent and constrained refinement
S = 1.52 w = 1/[σ2(Fo2) + (0.056P)2] where P = (Fo2 + 2Fc2)/3
1960 reflections (Δ/σ)max = 0.035
106 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.The amino H atoms were located from a difference Fourier map and included with refined coordinates and thermal parameters tied to that of N11. All other H atoms were included in geometrically calculated positions with thermal parameters tied to that of the carbon to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.62365 (6) 0.43256 (6) 0.53674 (13) 0.0254 (2)
C2 0.62425 (7) 0.48052 (7) 0.73108 (16) 0.0269 (3)
H2A 0.6191 0.4393 0.8464 0.032*
H2B 0.5734 0.5189 0.7352 0.032*
N3 0.70245 (6) 0.53264 (6) 0.76040 (12) 0.0251 (2)
C4 0.77644 (8) 0.47390 (7) 0.75022 (15) 0.0304 (3)
H4A 0.7729 0.4328 0.8661 0.037*
H4B 0.8300 0.5077 0.7673 0.037*
N5 0.78167 (6) 0.42511 (6) 0.55650 (14) 0.0283 (2)
C6 0.78851 (7) 0.48753 (7) 0.38591 (16) 0.0251 (2)
H6A 0.7917 0.4560 0.2539 0.030*
H6B 0.8422 0.5212 0.4014 0.030*
C7 0.71110 (6) 0.54920 (6) 0.38172 (14) 0.0199 (2)
C8 0.62901 (7) 0.49473 (7) 0.36610 (16) 0.0243 (2)
H8A 0.5781 0.5329 0.3692 0.029*
H8B 0.6287 0.4634 0.2337 0.029*
C9 0.70056 (7) 0.37757 (7) 0.53292 (17) 0.0297 (3)
H9A 0.6961 0.3346 0.6448 0.036*
H9B 0.7020 0.3458 0.4010 0.036*
C10 0.70855 (7) 0.59524 (6) 0.59025 (14) 0.0222 (2)
H10A 0.7613 0.6303 0.6070 0.027*
H10B 0.6584 0.6344 0.5947 0.027*
N11 0.71492 (6) 0.61249 (6) 0.21797 (14) 0.0255 (2)
H11A 0.7093 (8) 0.5886 (8) 0.0929 (19) 0.031*
H11B 0.7652 (9) 0.6402 (9) 0.2292 (18) 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0272 (5) 0.0259 (5) 0.0232 (4) −0.0056 (3) 0.0002 (3) −0.0014 (3)
C2 0.0300 (6) 0.0293 (6) 0.0213 (5) −0.0041 (4) 0.0042 (4) 0.0000 (4)
N3 0.0312 (5) 0.0259 (5) 0.0181 (4) −0.0026 (4) −0.0029 (3) 0.0000 (3)
C4 0.0318 (6) 0.0313 (6) 0.0282 (6) 0.0007 (5) −0.0092 (4) 0.0038 (4)
N5 0.0273 (5) 0.0244 (5) 0.0332 (5) 0.0036 (3) −0.0004 (4) 0.0017 (4)
C6 0.0224 (5) 0.0244 (5) 0.0285 (5) 0.0022 (4) 0.0039 (4) −0.0012 (4)
C7 0.0200 (5) 0.0217 (5) 0.0179 (5) 0.0001 (4) 0.0004 (3) −0.0009 (3)
C8 0.0238 (5) 0.0294 (6) 0.0198 (5) −0.0038 (4) −0.0027 (4) −0.0024 (4)
C9 0.0364 (7) 0.0216 (6) 0.0312 (6) −0.0017 (4) 0.0015 (4) −0.0014 (4)
C10 0.0249 (5) 0.0216 (5) 0.0202 (5) −0.0003 (4) −0.0017 (4) −0.0019 (4)
N11 0.0300 (5) 0.0274 (5) 0.0191 (4) −0.0016 (4) 0.0006 (3) 0.0009 (3)

Geometric parameters (Å, °)

N1—C2 1.4679 (13) C6—H6A 0.9900
N1—C9 1.4695 (15) C6—H6B 0.9900
N1—C8 1.4742 (13) C7—N11 1.4514 (12)
C2—N3 1.4729 (14) C7—C10 1.5346 (13)
C2—H2A 0.9900 C7—C8 1.5343 (14)
C2—H2B 0.9900 C8—H8A 0.9900
N3—C4 1.4696 (14) C8—H8B 0.9900
N3—C10 1.4769 (12) C9—H9A 0.9900
C4—N5 1.4733 (13) C9—H9B 0.9900
C4—H4A 0.9900 C10—H10A 0.9900
C4—H4B 0.9900 C10—H10B 0.9900
N5—C9 1.4691 (14) N11—H11A 0.898 (12)
N5—C6 1.4780 (13) N11—H11B 0.895 (14)
C6—C7 1.5383 (14)
C2—N1—C9 107.74 (8) N11—C7—C10 109.53 (8)
C2—N1—C8 108.41 (8) N11—C7—C8 111.06 (8)
C9—N1—C8 108.81 (8) C10—C7—C8 107.12 (8)
N1—C2—N3 113.33 (8) N11—C7—C6 113.78 (8)
N1—C2—H2A 108.9 C10—C7—C6 107.16 (8)
N3—C2—H2A 108.9 C8—C7—C6 107.92 (8)
N1—C2—H2B 108.9 N1—C8—C7 111.01 (8)
N3—C2—H2B 108.9 N1—C8—H8A 109.4
H2A—C2—H2B 107.7 C7—C8—H8A 109.4
C4—N3—C2 107.35 (8) N1—C8—H8B 109.4
C4—N3—C10 108.97 (8) C7—C8—H8B 109.4
C2—N3—C10 108.54 (8) H8A—C8—H8B 108.0
N3—C4—N5 113.67 (8) N5—C9—N1 113.80 (9)
N3—C4—H4A 108.8 N5—C9—H9A 108.8
N5—C4—H4A 108.8 N1—C9—H9A 108.8
N3—C4—H4B 108.8 N5—C9—H9B 108.8
N5—C4—H4B 108.8 N1—C9—H9B 108.8
H4A—C4—H4B 107.7 H9A—C9—H9B 107.7
C9—N5—C4 107.51 (9) N3—C10—C7 110.95 (8)
C9—N5—C6 108.26 (8) N3—C10—H10A 109.4
C4—N5—C6 107.99 (8) C7—C10—H10A 109.5
N5—C6—C7 111.46 (8) N3—C10—H10B 109.4
N5—C6—H6A 109.3 C7—C10—H10B 109.5
C7—C6—H6A 109.3 H10A—C10—H10B 108.0
N5—C6—H6B 109.3 C7—N11—H11A 112.4 (8)
C7—C6—H6B 109.3 C7—N11—H11B 107.6 (8)
H6A—C6—H6B 108.0 H11A—N11—H11B 110.9 (11)
C9—N1—C2—N3 57.51 (11) C9—N1—C8—C7 −57.88 (10)
C8—N1—C2—N3 −60.09 (11) N11—C7—C8—N1 −177.96 (8)
N1—C2—N3—C4 −57.78 (11) C10—C7—C8—N1 −58.39 (10)
N1—C2—N3—C10 59.87 (11) C6—C7—C8—N1 56.69 (10)
C2—N3—C4—N5 57.63 (11) C4—N5—C9—N1 56.62 (11)
C10—N3—C4—N5 −59.73 (11) C6—N5—C9—N1 −59.81 (11)
N3—C4—N5—C9 −57.06 (12) C2—N1—C9—N5 −57.07 (11)
N3—C4—N5—C6 59.55 (12) C8—N1—C9—N5 60.27 (11)
C9—N5—C6—C7 57.55 (11) C4—N3—C10—C7 58.16 (11)
C4—N5—C6—C7 −58.57 (11) C2—N3—C10—C7 −58.45 (11)
N5—C6—C7—N11 179.47 (8) N11—C7—C10—N3 178.59 (8)
N5—C6—C7—C10 58.25 (10) C8—C7—C10—N3 58.05 (10)
N5—C6—C7—C8 −56.81 (10) C6—C7—C10—N3 −57.55 (10)
C2—N1—C8—C7 59.04 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N11—H11A···N3i 0.898 (12) 2.335 (13) 3.2316 (13) 176.0 (12)
N11—H11B···N11ii 0.895 (14) 2.253 (14) 3.1465 (14) 175.2 (11)

Symmetry codes: (i) x, y, z−1; (ii) −y+3/2, x, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2767).

References

  1. Bruker (2005). APEX2 and SAINT Bruker-Nonius AXS, Madison, Wisconsin, USA.
  2. Cason, C. J. (2003). POV-RAY Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.
  3. Hodge, E. B. (1972). J. Org. Chem., 37, 320–321.
  4. Karelina, V. N., Goncharov, V. M., Mirontseva, T. V., Delektorskii, A. A. & Orekhov, S. V. (1987). USSR Patent SU1359277, December 12, 1987.
  5. Kuznetsov, R. M., Balueva, A. S., Serova, T. M. & Nikonov, G. N. (2001). Russ. J. Gen. Chem.71, 899–902.
  6. Namor, A. F. D. de, Nwogu, N. A., Zveitcovich-Guerra, J. A., Piro, O. E. & Castellano, E. E. (2008). J. Phys. Chem. B., 113, 4775–4780. [DOI] [PubMed]
  7. Nielsen, A. T. (1975). J. Heterocycl. Chem.12, 161–164.
  8. Nielsen, A. T. (1977). 7-(N-Methyl-N-Alkylamino)-1,3,5-Triazaadamantanes. US Patent 4012384, March 15, 1977.
  9. Safar, M., Galik, V., Kafka, Z. & Landa, S. (1975). Collect. Czech. Chem. Commun.40, 2179–2182.
  10. Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037657/cv2767sup1.cif

e-66-o2637-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037657/cv2767Isup2.hkl

e-66-o2637-Isup2.hkl (96.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES