Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):m1286–m1287. doi: 10.1107/S1600536810036524

Bis{1,4-bis­[(3-butyl­imidazolium-1-yl)meth­yl]benzene}­silver(I) bis­(hexa­fluoridophosphate)

Rosenani A Haque a, Abbas Washeel a, Siang Guan Teoh a, Madhukar Hemamalini b, Hoong-Kun Fun b,*,
PMCID: PMC2983204  PMID: 21587429

Abstract

The asymmetric unit of the title complex, [Ag2(C22H30N4)2](PF6)2, consists of one AgI ion, one 1,4-bis­[(3-butyl­imidazolium-1-yl)meth­yl]benzene ligand and one discrete hexa­fluoridophosphate anion. The formula unit is generated by an inversion center. The unique AgI ion is coordinated by two C atoms of two heterocyclic carbene ligands in an essentially linear geometry. In the crystal structure, cations and anions are linked through weak C—H⋯F hydrogen bonds, forming a three-dimensional network.

Related literature

For applications of N-heterocyclic carbenes, see: Tryg et al. (2005); Herrmann (2002); Herrmann et al. (1998); McGuinness et al. (1999); Tominaga et al. (2004); Magill et al. (2001); Yongbo et al. (2008); Garrison & Youngs (2005); Kascatan-Nebioglu et al. (2007); Özdemir et al. (2010); Medvetz et al. (2008); Catalano & Malwitz (2003). For a related structure, see: Chen & Liu (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). graphic file with name e-66-m1286-scheme1.jpg

Experimental

Crystal data

  • [Ag2(C22H30N4)2](PF6)2

  • M r = 1206.68

  • Triclinic, Inline graphic

  • a = 11.3636 (15) Å

  • b = 11.4119 (15) Å

  • c = 11.9918 (15) Å

  • α = 63.528 (2)°

  • β = 89.335 (2)°

  • γ = 65.811 (2)°

  • V = 1241.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 100 K

  • 0.24 × 0.14 × 0.08 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.806, T max = 0.930

  • 25433 measured reflections

  • 7142 independent reflections

  • 6512 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.161

  • S = 1.16

  • 7142 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 3.16 e Å−3

  • Δρmin = −1.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036524/lh5130sup1.cif

e-66-m1286-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036524/lh5130Isup2.hkl

e-66-m1286-Isup2.hkl (349.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F3i 0.93 2.42 3.251 (6) 149
C5—H5A⋯F1ii 0.93 2.52 3.392 (6) 157
C7—H7B⋯F5ii 0.97 2.44 3.367 (6) 160
C11—H11A⋯F6iii 0.97 2.44 3.364 (7) 159
C11—H11B⋯F2iv 0.97 2.38 3.129 (7) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

RAH, AW and SGT thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grant (1001/PKIMIA/813023 and 1001/PKIMIA/811157). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

N-heterocyclic carbenes (NHCs) are now ubiquitous in their usage as ligands for transition metals (Tryg et al., 2005; Herrmann, 2002). Carbene ligands have some similarities to phosphine ligands, but metal- carbene complexes are often more stable than similar metal phosphine complexes (Herrmann et al., 1998; McGuinness et al., 1999). N-heterocyclic carbene complexes of different metals such as Pd and Ru have been used as catalysts for many reactions; for example C–C coupling reactions and reactions involving olefin metathesis (Tominaga et al., 2004; Magill et al., 2001). Among these metal -NHC complexes, the family of silver -NHC complexes have been receiving continuous attention since they are often used as convenient carbene transfer reagents to make other metal-NHC complexes (Yongbo et al., 2008). The chemistry of silver-NHC complexes has been recently reviewed (Garrison & Youngs, 2005; Kascatan-Nebioglu et al., 2007). The biological activity of many of the silver-NHC complexes as antimicrobial and antitumour were also confirmed (Özdemir et al., 2010; Medvetz et al., 2008).

The asymmetric unit of the title compound, (I), consists of one AgI cation, one 1,4-bis(3-butylimidazolium-1-yl-methyl)benzene ligand and one discrete hexafluoridophosphate anion (Fig. 1). The other half of the title complex is generated by an inversion center (1/2, 1/2, 0). Each AgI cation is bis-coordinated by two 1,4-bis(3-butylimidazolium-1-yl-methyl)benzene ligands. and displays an essentially linear geometry. The Ag1–C8 = 2.089 (4) Å bond length is comparable to the values reported for other [Ag(carbene)2]+ complexes (Chen & Liu, 2003).

In the crystal structure, the cations and anions are linked together through intermolecular C2—H2A···F3; C5—H5A···F1; C7—H7B···F5; C11—H11A···F6 and C11—H11B···F2 hydrogen bonds, forming a three-dimensional network (Table 2 and Fig. 2).

Experimental

Silver oxide, Ag2O, (0.13 g, 0.56 mmol) was added to a solution of 1,4-bis(3-butylimidazolium-1-yl-metyl)benzene bis(hexafluoroposphate) (0.30 g, 0.467 mmol) in acetonitrile (40 ml). The mixture was refluxed at (343–363)K for 20 hr in glassware wrapped with aluminium foil to exclude the light. The resulting mixture was filtered through celite to remove excess Ag2O. After evaporation of the solvent, the white residue was washed with diethyl ether (2X5 ml) to afford the complex as a white powder. The yield was (0.25g, 45%), m.p = 550–552K. Crystal suitable for X-ray was obtained by slow evaporation of the salt solution in acetonitrile at 281K.

Refinement

All H atoms were positioned geometrically with C–H = 0.93–0.97 Å and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). The highest peak in the final difference map is found at a distance of 0.87 Å from C8 and the deepest trough is 1.37 Å from H22C.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. N1A–N4A/C1A–C22A/P1A and F1A–F6A are generated by the symmetry code -x+1, -y+1, -z (H atoms are omitted for clarity).

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing hydrogen bonds as dashed lines.

Crystal data

[Ag2(C22H30N4)2](PF6)2 Z = 1
Mr = 1206.68 F(000) = 612
Triclinic, P1 Dx = 1.614 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.3636 (15) Å Cell parameters from 9946 reflections
b = 11.4119 (15) Å θ = 2.5–30.1°
c = 11.9918 (15) Å µ = 0.94 mm1
α = 63.528 (2)° T = 100 K
β = 89.335 (2)° Block, colourless
γ = 65.811 (2)° 0.24 × 0.14 × 0.08 mm
V = 1241.7 (3) Å3

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 7142 independent reflections
Radiation source: fine-focus sealed tube 6512 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.806, Tmax = 0.930 k = −16→16
25433 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0678P)2 + 6.8955P] where P = (Fo2 + 2Fc2)/3
7142 reflections (Δ/σ)max < 0.001
309 parameters Δρmax = 3.16 e Å3
0 restraints Δρmin = −1.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.46248 (3) 0.12904 (3) 0.32515 (3) 0.01570 (10)
N1 0.2537 (4) 0.4313 (4) 0.2939 (3) 0.0193 (7)
N2 0.1692 (4) 0.2838 (4) 0.3325 (3) 0.0185 (7)
N3 0.2430 (3) 1.0310 (4) −0.3191 (3) 0.0170 (6)
N4 0.3348 (4) 1.1721 (4) −0.3546 (3) 0.0172 (6)
C1 0.3370 (5) 0.5534 (5) 0.0323 (4) 0.0238 (9)
H1A 0.3746 0.4529 0.0615 0.029*
C2 0.3085 (5) 0.6488 (5) −0.0971 (4) 0.0237 (9)
H2A 0.3260 0.6117 −0.1538 0.028*
C3 0.2540 (4) 0.7998 (5) −0.1432 (4) 0.0176 (7)
C4 0.2269 (5) 0.8525 (5) −0.0564 (4) 0.0221 (8)
H4A 0.1903 0.9529 −0.0855 0.026*
C5 0.2544 (5) 0.7555 (5) 0.0743 (4) 0.0214 (8)
H5A 0.2349 0.7922 0.1311 0.026*
C6 0.3102 (4) 0.6055 (4) 0.1198 (4) 0.0182 (7)
C7 0.3438 (5) 0.4986 (5) 0.2612 (4) 0.0212 (8)
H7A 0.4339 0.4226 0.2846 0.025*
H7B 0.3375 0.5499 0.3090 0.025*
C8 0.2850 (4) 0.2935 (4) 0.3183 (3) 0.0138 (6)
C9 0.1215 (5) 0.5068 (5) 0.2917 (4) 0.0239 (9)
H9A 0.0778 0.6033 0.2761 0.029*
C10 0.0679 (5) 0.4132 (5) 0.3166 (4) 0.0241 (9)
H10A −0.0192 0.4324 0.3219 0.029*
C11 0.1508 (5) 0.1543 (5) 0.3571 (4) 0.0230 (8)
H11A 0.0978 0.1383 0.4212 0.028*
H11B 0.2362 0.0685 0.3908 0.028*
C12 0.0843 (5) 0.1712 (5) 0.2381 (4) 0.0247 (9)
H12A −0.0006 0.2576 0.2044 0.030*
H12B 0.0682 0.0869 0.2616 0.030*
C13 0.1641 (5) 0.1852 (6) 0.1332 (5) 0.0304 (10)
H13A 0.1737 0.2743 0.1038 0.036*
H13B 0.2516 0.1027 0.1680 0.036*
C14 0.0986 (7) 0.1891 (8) 0.0216 (6) 0.0434 (14)
H14A 0.1528 0.1942 −0.0407 0.065*
H14B 0.0139 0.2737 −0.0160 0.065*
H14C 0.0874 0.1019 0.0506 0.065*
C15 0.2246 (4) 0.9007 (5) −0.2858 (4) 0.0199 (8)
H15A 0.2817 0.8464 −0.3245 0.024*
H15B 0.1342 0.9315 −0.3213 0.024*
C16 0.3620 (4) 1.0335 (5) −0.3299 (4) 0.0186 (7)
C17 0.1448 (4) 1.1638 (5) −0.3387 (4) 0.0229 (8)
H17A 0.0565 1.1870 −0.3363 0.027*
C18 0.2016 (4) 1.2543 (5) −0.3621 (4) 0.0227 (8)
H18A 0.1600 1.3516 −0.3796 0.027*
C19 0.4337 (5) 1.2264 (5) −0.3649 (4) 0.0220 (8)
H19A 0.4153 1.3055 −0.4508 0.026*
H19B 0.5203 1.1479 −0.3498 0.026*
C20 0.4346 (6) 1.2817 (6) −0.2701 (5) 0.0320 (10)
H20A 0.5015 1.3158 −0.2814 0.038*
H20B 0.3500 1.3657 −0.2911 0.038*
C21 0.4601 (6) 1.1718 (6) −0.1314 (5) 0.0320 (10)
H21A 0.5518 1.0988 −0.1039 0.038*
H21B 0.4060 1.1219 −0.1217 0.038*
C22 0.4300 (6) 1.2429 (6) −0.0469 (5) 0.0317 (10)
H22A 0.4439 1.1698 0.0396 0.048*
H22B 0.3398 1.3169 −0.0748 0.048*
H22C 0.4872 1.2871 −0.0519 0.048*
P1 0.76781 (11) 0.28501 (11) 0.51153 (10) 0.0165 (2)
F1 0.8121 (5) 0.2072 (4) 0.6636 (3) 0.0521 (11)
F2 0.6958 (3) 0.1871 (4) 0.5238 (4) 0.0452 (9)
F3 0.7303 (4) 0.3610 (3) 0.3605 (3) 0.0399 (8)
F4 0.8417 (3) 0.3835 (3) 0.4983 (3) 0.0347 (7)
F5 0.6356 (3) 0.4085 (3) 0.5124 (3) 0.0326 (7)
F6 0.9021 (3) 0.1590 (3) 0.5128 (3) 0.0294 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.01635 (15) 0.01335 (14) 0.01699 (14) −0.00615 (11) 0.00410 (10) −0.00754 (11)
N1 0.0274 (18) 0.0148 (15) 0.0154 (14) −0.0088 (14) 0.0061 (13) −0.0076 (12)
N2 0.0216 (17) 0.0157 (15) 0.0168 (15) −0.0091 (13) 0.0085 (13) −0.0063 (12)
N3 0.0173 (16) 0.0161 (15) 0.0147 (14) −0.0069 (13) 0.0025 (12) −0.0058 (12)
N4 0.0215 (17) 0.0127 (14) 0.0159 (14) −0.0080 (13) 0.0058 (12) −0.0056 (12)
C1 0.036 (2) 0.0166 (18) 0.0178 (18) −0.0101 (17) 0.0053 (16) −0.0090 (15)
C2 0.035 (2) 0.0196 (19) 0.0167 (17) −0.0111 (18) 0.0043 (16) −0.0101 (16)
C3 0.0198 (18) 0.0199 (18) 0.0152 (16) −0.0115 (15) 0.0034 (14) −0.0080 (14)
C4 0.030 (2) 0.0160 (18) 0.0188 (18) −0.0100 (16) 0.0060 (16) −0.0081 (15)
C5 0.031 (2) 0.0185 (18) 0.0179 (17) −0.0114 (17) 0.0064 (16) −0.0110 (15)
C6 0.024 (2) 0.0165 (17) 0.0159 (16) −0.0113 (15) 0.0051 (14) −0.0074 (14)
C7 0.032 (2) 0.0172 (18) 0.0157 (17) −0.0124 (17) 0.0034 (15) −0.0077 (15)
C8 0.0168 (17) 0.0095 (15) 0.0122 (15) −0.0040 (13) 0.0044 (12) −0.0047 (12)
C9 0.029 (2) 0.0188 (19) 0.0211 (19) −0.0084 (17) 0.0115 (16) −0.0096 (16)
C10 0.024 (2) 0.0195 (19) 0.024 (2) −0.0060 (16) 0.0102 (16) −0.0106 (16)
C11 0.028 (2) 0.0199 (19) 0.0218 (19) −0.0134 (17) 0.0084 (16) −0.0078 (16)
C12 0.026 (2) 0.027 (2) 0.024 (2) −0.0164 (18) 0.0064 (17) −0.0110 (17)
C13 0.035 (3) 0.041 (3) 0.026 (2) −0.023 (2) 0.0115 (19) −0.019 (2)
C14 0.058 (4) 0.055 (4) 0.034 (3) −0.034 (3) 0.010 (3) −0.026 (3)
C15 0.024 (2) 0.0234 (19) 0.0158 (16) −0.0157 (17) 0.0046 (14) −0.0080 (15)
C16 0.0218 (19) 0.0181 (18) 0.0155 (16) −0.0095 (15) 0.0031 (14) −0.0072 (14)
C17 0.0188 (19) 0.023 (2) 0.0209 (18) −0.0061 (16) 0.0003 (15) −0.0092 (16)
C18 0.022 (2) 0.0176 (18) 0.0221 (19) −0.0029 (16) 0.0036 (15) −0.0094 (16)
C19 0.032 (2) 0.0203 (19) 0.0213 (18) −0.0178 (18) 0.0104 (16) −0.0103 (16)
C20 0.039 (3) 0.039 (3) 0.026 (2) −0.024 (2) 0.009 (2) −0.016 (2)
C21 0.043 (3) 0.033 (3) 0.028 (2) −0.022 (2) 0.010 (2) −0.017 (2)
C22 0.037 (3) 0.042 (3) 0.031 (2) −0.023 (2) 0.012 (2) −0.024 (2)
P1 0.0183 (5) 0.0159 (4) 0.0173 (4) −0.0078 (4) 0.0065 (4) −0.0096 (4)
F1 0.085 (3) 0.0284 (16) 0.0167 (13) −0.0055 (18) 0.0095 (16) −0.0087 (12)
F2 0.0351 (18) 0.0304 (16) 0.087 (3) −0.0241 (15) 0.0275 (18) −0.0333 (19)
F3 0.068 (2) 0.0251 (15) 0.0168 (12) −0.0126 (15) 0.0001 (13) −0.0101 (11)
F4 0.0286 (15) 0.0293 (15) 0.057 (2) −0.0171 (13) 0.0074 (14) −0.0260 (15)
F5 0.0254 (15) 0.0274 (14) 0.0473 (18) −0.0080 (12) 0.0142 (13) −0.0235 (14)
F6 0.0217 (13) 0.0262 (14) 0.0408 (16) −0.0056 (11) 0.0103 (12) −0.0214 (13)

Geometric parameters (Å, °)

Ag1—C16i 2.073 (4) C12—C13 1.531 (7)
Ag1—C8 2.089 (4) C12—H12A 0.9700
N1—C8 1.348 (5) C12—H12B 0.9700
N1—C9 1.386 (6) C13—C14 1.514 (7)
N1—C7 1.470 (6) C13—H13A 0.9700
N2—C8 1.367 (5) C13—H13B 0.9700
N2—C10 1.379 (5) C14—H14A 0.9600
N2—C11 1.476 (6) C14—H14B 0.9600
N3—C16 1.368 (5) C14—H14C 0.9600
N3—C17 1.379 (6) C15—H15A 0.9700
N3—C15 1.463 (5) C15—H15B 0.9700
N4—C16 1.367 (5) C16—Ag1i 2.073 (4)
N4—C18 1.394 (6) C17—C18 1.360 (7)
N4—C19 1.470 (6) C17—H17A 0.9300
C1—C2 1.384 (6) C18—H18A 0.9300
C1—C6 1.395 (6) C19—C20 1.530 (7)
C1—H1A 0.9300 C19—H19A 0.9700
C2—C3 1.394 (6) C19—H19B 0.9700
C2—H2A 0.9300 C20—C21 1.509 (7)
C3—C4 1.392 (6) C20—H20A 0.9700
C3—C15 1.518 (5) C20—H20B 0.9700
C4—C5 1.400 (6) C21—C22 1.516 (7)
C4—H4A 0.9300 C21—H21A 0.9700
C5—C6 1.384 (6) C21—H21B 0.9700
C5—H5A 0.9300 C22—H22A 0.9600
C6—C7 1.516 (6) C22—H22B 0.9600
C7—H7A 0.9700 C22—H22C 0.9600
C7—H7B 0.9700 P1—F5 1.588 (3)
C9—C10 1.359 (7) P1—F3 1.590 (3)
C9—H9A 0.9300 P1—F2 1.594 (3)
C10—H10A 0.9300 P1—F1 1.606 (3)
C11—C12 1.518 (6) P1—F6 1.606 (3)
C11—H11A 0.9700 P1—F4 1.613 (3)
C11—H11B 0.9700
C16i—Ag1—C8 179.40 (15) C12—C13—H13B 109.3
C8—N1—C9 111.3 (4) H13A—C13—H13B 107.9
C8—N1—C7 124.8 (4) C13—C14—H14A 109.5
C9—N1—C7 123.7 (4) C13—C14—H14B 109.5
C8—N2—C10 111.7 (4) H14A—C14—H14B 109.5
C8—N2—C11 125.2 (4) C13—C14—H14C 109.5
C10—N2—C11 123.1 (4) H14A—C14—H14C 109.5
C16—N3—C17 111.9 (4) H14B—C14—H14C 109.5
C16—N3—C15 123.6 (4) N3—C15—C3 113.3 (3)
C17—N3—C15 124.5 (4) N3—C15—H15A 108.9
C16—N4—C18 111.5 (4) C3—C15—H15A 108.9
C16—N4—C19 124.8 (4) N3—C15—H15B 108.9
C18—N4—C19 123.6 (4) C3—C15—H15B 108.9
C2—C1—C6 121.1 (4) H15A—C15—H15B 107.7
C2—C1—H1A 119.4 N4—C16—N3 103.5 (4)
C6—C1—H1A 119.4 N4—C16—Ag1i 128.5 (3)
C1—C2—C3 120.6 (4) N3—C16—Ag1i 127.8 (3)
C1—C2—H2A 119.7 C18—C17—N3 106.8 (4)
C3—C2—H2A 119.7 C18—C17—H17A 126.6
C4—C3—C2 118.5 (4) N3—C17—H17A 126.6
C4—C3—C15 122.5 (4) C17—C18—N4 106.2 (4)
C2—C3—C15 119.0 (4) C17—C18—H18A 126.9
C3—C4—C5 120.6 (4) N4—C18—H18A 126.9
C3—C4—H4A 119.7 N4—C19—C20 112.2 (4)
C5—C4—H4A 119.7 N4—C19—H19A 109.2
C6—C5—C4 120.7 (4) C20—C19—H19A 109.2
C6—C5—H5A 119.6 N4—C19—H19B 109.2
C4—C5—H5A 119.6 C20—C19—H19B 109.2
C5—C6—C1 118.4 (4) H19A—C19—H19B 107.9
C5—C6—C7 121.5 (4) C21—C20—C19 115.9 (4)
C1—C6—C7 120.1 (4) C21—C20—H20A 108.3
N1—C7—C6 110.8 (3) C19—C20—H20A 108.3
N1—C7—H7A 109.5 C21—C20—H20B 108.3
C6—C7—H7A 109.5 C19—C20—H20B 108.3
N1—C7—H7B 109.5 H20A—C20—H20B 107.4
C6—C7—H7B 109.5 C20—C21—C22 112.4 (5)
H7A—C7—H7B 108.1 C20—C21—H21A 109.1
N1—C8—N2 104.1 (3) C22—C21—H21A 109.1
N1—C8—Ag1 130.4 (3) C20—C21—H21B 109.1
N2—C8—Ag1 125.4 (3) C22—C21—H21B 109.1
C10—C9—N1 107.0 (4) H21A—C21—H21B 107.9
C10—C9—H9A 126.5 C21—C22—H22A 109.5
N1—C9—H9A 126.5 C21—C22—H22B 109.5
C9—C10—N2 105.9 (4) H22A—C22—H22B 109.5
C9—C10—H10A 127.1 C21—C22—H22C 109.5
N2—C10—H10A 127.1 H22A—C22—H22C 109.5
N2—C11—C12 112.6 (4) H22B—C22—H22C 109.5
N2—C11—H11A 109.1 F5—P1—F3 90.87 (19)
C12—C11—H11A 109.1 F5—P1—F2 91.02 (18)
N2—C11—H11B 109.1 F3—P1—F2 90.1 (2)
C12—C11—H11B 109.1 F5—P1—F1 90.93 (19)
H11A—C11—H11B 107.8 F3—P1—F1 177.6 (2)
C11—C12—C13 114.1 (4) F2—P1—F1 91.5 (2)
C11—C12—H12A 108.7 F5—P1—F6 179.20 (18)
C13—C12—H12A 108.7 F3—P1—F6 89.93 (18)
C11—C12—H12B 108.7 F2—P1—F6 89.00 (17)
C13—C12—H12B 108.7 F1—P1—F6 88.27 (19)
H12A—C12—H12B 107.6 F5—P1—F4 89.49 (17)
C14—C13—C12 111.8 (5) F3—P1—F4 89.6 (2)
C14—C13—H13A 109.3 F2—P1—F4 179.4 (2)
C12—C13—H13A 109.3 F1—P1—F4 88.8 (2)
C14—C13—H13B 109.3 F6—P1—F4 90.49 (17)
C6—C1—C2—C3 1.0 (8) C11—N2—C10—C9 −177.9 (4)
C1—C2—C3—C4 −1.0 (7) C8—N2—C11—C12 −101.3 (5)
C1—C2—C3—C15 179.8 (4) C10—N2—C11—C12 76.3 (5)
C2—C3—C4—C5 0.2 (7) N2—C11—C12—C13 63.3 (5)
C15—C3—C4—C5 179.3 (4) C11—C12—C13—C14 175.3 (5)
C3—C4—C5—C6 0.7 (7) C16—N3—C15—C3 85.2 (5)
C4—C5—C6—C1 −0.8 (7) C17—N3—C15—C3 −92.3 (5)
C4—C5—C6—C7 178.5 (4) C4—C3—C15—N3 34.6 (6)
C2—C1—C6—C5 −0.1 (7) C2—C3—C15—N3 −146.2 (4)
C2—C1—C6—C7 −179.3 (5) C18—N4—C16—N3 −1.5 (4)
C8—N1—C7—C6 103.8 (4) C19—N4—C16—N3 175.3 (3)
C9—N1—C7—C6 −69.9 (5) C18—N4—C16—Ag1i 173.8 (3)
C5—C6—C7—N1 109.1 (5) C19—N4—C16—Ag1i −9.4 (6)
C1—C6—C7—N1 −71.7 (5) C17—N3—C16—N4 1.1 (4)
C9—N1—C8—N2 −0.4 (4) C15—N3—C16—N4 −176.7 (3)
C7—N1—C8—N2 −174.9 (3) C17—N3—C16—Ag1i −174.3 (3)
C9—N1—C8—Ag1 176.5 (3) C15—N3—C16—Ag1i 8.0 (6)
C7—N1—C8—Ag1 2.0 (6) C16—N3—C17—C18 −0.3 (5)
C10—N2—C8—N1 0.2 (4) C15—N3—C17—C18 177.4 (4)
C11—N2—C8—N1 178.1 (4) N3—C17—C18—N4 −0.6 (5)
C10—N2—C8—Ag1 −176.8 (3) C16—N4—C18—C17 1.4 (5)
C11—N2—C8—Ag1 1.0 (5) C19—N4—C18—C17 −175.4 (4)
C8—N1—C9—C10 0.5 (5) C16—N4—C19—C20 −122.3 (5)
C7—N1—C9—C10 175.0 (4) C18—N4—C19—C20 54.0 (6)
N1—C9—C10—N2 −0.3 (5) N4—C19—C20—C21 58.0 (6)
C8—N2—C10—C9 0.0 (5) C19—C20—C21—C22 −167.5 (5)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···F3i 0.93 2.42 3.251 (6) 149
C5—H5A···F1ii 0.93 2.52 3.392 (6) 157
C7—H7B···F5ii 0.97 2.44 3.367 (6) 160
C11—H11A···F6iii 0.97 2.44 3.364 (7) 159
C11—H11B···F2iv 0.97 2.38 3.129 (7) 134

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5130).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Catalano, V. J. & Malwitz, M. A. (2003). Inorg. Chem.42, 5483–5485. [DOI] [PubMed]
  3. Chen, W. & Liu, F. (2003). J. Organomet. Chem.673, 5–12.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev.105, 3978–4008. [DOI] [PubMed]
  6. Herrmann, W. A. (2002). Angew. Chem. Int. Ed.41, 1290–1309.
  7. Herrmann, W. A., Goossen, L. J. & Spiegler, M. (1998). Organometallics, 17, 2162–2168.
  8. Kascatan-Nebioglu, A., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Youngs, W. J. (2007). Coord. Chem. Rev.251, 884–895.
  9. Magill, A. M., McGuinness, D. S., Cavell, K. J., Britovsek, G. J. P., Gibson, V. C., White, A. J. P., Williams, D. J., White, A. H. & Skelton, B. W. (2001). J. Organomet. Chem.617, 546–560.
  10. McGuinness, D. S., Cavell, K. J., Skelton, B. W. & White, A. H. (1999). Organometallics, 18, 1596–1605.
  11. Medvetz, D. A., Hindi, K. M., Panzner, M. J., Ditto, A. J., Yun, Y. H. & Young, W. J. (2008). Met. Based Drugs, pp. 384010–384016. [DOI] [PMC free article] [PubMed]
  12. Özdemir, Í., Özcan, E. Ö., Günal, U. & Gürbüz, N. (2010). Molecules, 15, 2499–2508. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Tominaga, S., Oi, Y., Kato, T., An, D. K. & Okamoto, S. (2004). Tetrahedron Lett.45, 5585–5588.
  16. Tryg, R., Chris, J. P., Marc, S. A., William, H. & Tolman, B. (2005). J. Organomet. Chem.690, 5881–5891.
  17. Yongbo, Z., Zhang, X., Chen, W. & Qiu, H. (2008). J. Organomet. Chem.693, 205–215.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036524/lh5130sup1.cif

e-66-m1286-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036524/lh5130Isup2.hkl

e-66-m1286-Isup2.hkl (349.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES