Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 11;66(Pt 10):o2537–o2538. doi: 10.1107/S1600536810035956

N,N′-[(8-endo,11-endo-Dihy­droxy­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecane-8,11-di­yl)bis­(methyl­enecarbon­yl)]di-l-phenyl­alanine

Rajshekhar Karpoormath a, Patrick Govender b, Hendrik G Kruger a, Thavendran Govender c, Glenn E M Maguire a,*
PMCID: PMC2983209  PMID: 21587528

Abstract

The title compound, C33H36N2O8, is the first example of a disubstituted peptidic pentacycloundecane (PCU) diol. The structure displays an array of inter- and intra­molecular hydrogen bonding by both amide and alcohol functional groups. This hydrogen-bonding system connects the mol­ecules into a three-dimensional network.

Related literature

For examples of PCU cage structures which exhibit C—C bond lengths that deviate from the norm, see: Flippen-Anderson et al. (1991); Linden et al. (2005); Kruger et al. (2005, 2006). For analogous PCU cage structures and their packing, see: Kruger et al. (2006); Boyle et al. (2007a ,b ); Vasquez et al. (2002); Anderson et al. (2007). For different cage crystal structures, see: Bott et al. (1998).graphic file with name e-66-o2537-scheme1.jpg

Experimental

Crystal data

  • C33H36N2O8

  • M r = 588.64

  • Orthorhombic, Inline graphic

  • a = 10.6230 (5) Å

  • b = 14.7773 (6) Å

  • c = 18.2819 (8) Å

  • V = 2869.9 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 100 K

  • 0.33 × 0.28 × 0.18 mm

Data collection

  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.678, T max = 0.875

  • 17910 measured reflections

  • 4968 independent reflections

  • 4892 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.085

  • S = 1.06

  • 4968 reflections

  • 412 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 2058 Friedel pairs

  • Flack parameter: −0.02 (14)

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035956/gw2085sup1.cif

e-66-o2537-sup1.cif (30KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035956/gw2085Isup2.hkl

e-66-o2537-Isup2.hkl (243.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6i 0.95 (1) 1.90 (1) 2.8399 (18) 172 (2)
N2—H2N⋯O5 0.96 (1) 2.01 (2) 2.7579 (18) 134 (2)
O1—H1O⋯O2 0.96 (1) 1.79 (2) 2.6649 (16) 150 (2)
O5—H5O⋯O1 0.95 (1) 1.58 (1) 2.4886 (16) 158 (3)
O4—H4O⋯O7ii 0.96 (1) 1.84 (2) 2.7425 (18) 154 (2)
O8—H8O⋯O5iii 0.97 (1) 1.68 (1) 2.6501 (17) 177 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors would like to thank Dr Hong Su (The University of Capetown) for the data collection and structure refinement.

supplementary crystallographic information

Comment

The novel compound (I) was synthesized as a part of an ongoing project looking into the biological activity of cage compounds and their derivatives. It can be converted to a diacid and coupled to desired peptides as a potential HIV-1 protease inhibitor. The title compound (I) consists of a large apolar (lipophilic) hydrocarbon skeleton with polar amide and hydroxy units (Fig.1). (I) crystallized with four molecules in the asymmetric unit all of which show shortening and elongation of specific C—C bonds in the cage moiety as observed by previous authors (Flippen-Anderson et al., 1991; Linden et al., 2005; Kruger et al., 2005; Kruger et al., 2006, Boyle et al., 2007a,b). The shortest C—C bond lengths in the cage occur between C1—C7, C1—C2, C4—C5 and C9—C10, with the values ranging between 1.499–1.533 Å. The longest C—C bond length is between C6—C11 with a value of 1.616 (3) Å. This is the first example of a bis-amino acid substituted pentacyloundecane diol reported. We believe it to be the primary example of a PCU diol with aromatic residues positioned close to the cage. As the phenylalanine derivative it is interesting to see that there are no obvious π-stacking contributions to the overall structure. A striking aspect of the structure is its hydrogen bonding arrangements. In previous examples PCU diols were reported as being hydrogen bonded in both intra and intermolecular fashion giving rise to two-dimensional crystal planes (Vasquez et al., 2002). In (I) there are several possibly sites for hydrogen bonding to occur and all of the centers do in fact take an active part. The hydrogen bonding arrangements can be seen in Fig. 2. Intramolecular hydrogen bonding occurs between the amide N(2)–H···O5, the alcohol group O(5)–H···O(1) and the next alcohol O(1)–H···O(2). This is a similar arrangement to that found by Anderson et al., 2007 when three and four alcohol groups respectively were reported. In the case of intermolecular bonding a far more intricate arrangement occurs than previously reported examples. An intermolecular hydrogen bond is generated by the amide group N(1)–H···O(6) (symmetry code; -x + 1, y - 1/2, -z + 1/2). All of the other intermolecular bonds are formed by the carboxylic residues in two distinct arrangements. First, by O(8)–H···O(5) on the PCU cage (symmetry code; -x, y + 1/2, -z + 1/2). Second by O(4)–H···O(7) at the terminals of the two molecules (symmetry code; -x + 1/2, -y + 2, z - 1/2). These interactions create the interlocking arrangements rendering the three dimensional expansion of the structure.

Experimental

A solution of PCU cage diol diacid (0.50 g, 1.7 mmol) in dry DCM (15 ml) was stirred at room temperature for 5 min. To this mixture was added tert-butyl 2-amino-3-phenylpropanoate (1.50 g, 6.8 mmol) and cooled in ice water bath and stirred for 5 min. To the above cooled mixture was added HATU (3.24 g, 8.5 mmol) followed by DIPEA (2.4 ml, 13.6 mmol) as a base. The solution was then slowly brought to room temperature and stirred for 6 h. The crude reaction mixtures was washed with water (100 ml) and then with 10% HCL (100 ml). The organic layer was dried over anhydrous sodium sulfate (Na2SO4) and filtered. The crude product was evaporated to dryness under vacuum using a teflon pump at 40 °C to obtain thick yellow oil. This crude oily product was further dissolved in DCM and TFA (1:1) solvent mixture and stirred overnight. TFA was removed by bubbling air through the peptide and the remaining DCM was removed under vacuum at 30°C. The product was obtained as a yellow oil which was purified by preparative HPLC and solid phase extraction. Crystallization of the product was carried out by dissolving the pure compound in DCM and TFA (1:1, 3 ml) and was stored at 20 °C. The percentage yield of the pure final compound was 67% (0.67 g).

1H NMR (MeOD, 600 MHz): δH 1.05 (1H, d, J = 10.68), 1.39 (1H, d, J = 10.56), 1.67 (1H, d, J = 8.84 Hz), 1.90 (1H, d, J = 8.88 Hz), 2.20–2.36 (7H, m), 2.45–2.46 (2H, m), 2.91–2.99 (2H, m), 3.24–3.29 (2H, m), 4.69–4.71 (1H, m), 4.77–4.87 (1H, m), 7.13–7.16 (1H, m), 7.21–7.30 (9H, m).

IR (film) vmax: 3261.55 cm-1, 2957.06 cm-1, 1758.52 cm-1, 1638.17 cm-1, 1522.71 cm-1, 1191.53 cm-1, 758.74 cm-1, 701.36 cm-1, 489.06 cm-1.

Melting point: 414–415 K. HR ESI m/z: Calc. for C33H36N2O8: [M+H]+ m/z 589.2544. Found: [M+H]+ m/z 589.2541.

Refinement

The crystal structure was solved by direct methods using SHELXS (Sheldrick, 2008). Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXL (Sheldrick, 2008) using the graphics interface X-SEED (Barbour, 2001). Hydrogen atoms, first located in the difference map, were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 1.00 (CH), 0.99 (CH2), or 0.98 (CH3). They were then refined with a riding model with Uiso(H) = 1.5Ueq(CH3) and Uiso(H) = 1.2Ueq(X) for X = CH or CH2.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (1) showing numbering scheme with all hydrogen atoms omitted for clarity. All non-hydrogen atoms are shown as ellipsoids with probability level of 40%.

Fig. 2.

Fig. 2.

Projection viewed along [100]. Only the hydrogen atoms involved in hydrogen bonds are shown. Other hydrogen atoms are omitted for clarity. The hydrogen bonds are shown as dotted lines.

Crystal data

C33H36N2O8 Dx = 1.362 Mg m3
Mr = 588.64 Melting point: 414 K
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54199 Å
Hall symbol: P 2ac 2ab Cell parameters from 4968 reflections
a = 10.6230 (5) Å θ = 3.9–67.3°
b = 14.7773 (6) Å µ = 0.80 mm1
c = 18.2819 (8) Å T = 100 K
V = 2869.9 (2) Å3 Needle, colourless
Z = 4 0.33 × 0.28 × 0.18 mm
F(000) = 1248

Data collection

Bruker Kappa DUO APEXII diffractometer 4968 independent reflections
Radiation source: fine-focus sealed tube 4892 reflections with I > 2σ(I)
graphite Rint = 0.018
1.2° φ scans and ω scans θmax = 67.3°, θmin = 3.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −12→12
Tmin = 0.678, Tmax = 0.875 k = −17→17
17910 measured reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.8276P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
4968 reflections Δρmax = 0.63 e Å3
412 parameters Δρmin = −0.19 e Å3
6 restraints Absolute structure: Flack (1983), 2058 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.02 (14)

Special details

Experimental. Half sphere of data collected using COLLECT strategy (Nonius, 2000). Crystal to detector distance = 45 mm; combination of φ and ω scans of 1.2°, 80 s per °, 2 iterations.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.26914 (11) 0.87395 (8) 0.16405 (6) 0.0244 (2)
H1O 0.299 (2) 0.8757 (16) 0.1144 (7) 0.044 (6)*
O2 0.40843 (12) 0.84037 (9) 0.04589 (7) 0.0301 (3)
O3 0.60107 (13) 0.69337 (9) −0.04532 (7) 0.0347 (3)
O4 0.64015 (15) 0.80350 (9) −0.12717 (7) 0.0377 (3)
H4O 0.620 (3) 0.7565 (13) −0.1617 (12) 0.057 (7)*
O5 0.15544 (11) 0.99230 (8) 0.23485 (6) 0.0230 (2)
H5O 0.181 (2) 0.9478 (13) 0.2006 (12) 0.053 (7)*
O6 0.21685 (12) 1.25096 (8) 0.32318 (7) 0.0291 (3)
O7 −0.06852 (12) 1.28739 (9) 0.24885 (7) 0.0317 (3)
O8 0.03196 (12) 1.40531 (8) 0.20026 (7) 0.0314 (3)
H8O −0.035 (2) 1.4387 (18) 0.2239 (15) 0.072 (9)*
N1 0.61453 (14) 0.81718 (10) 0.06881 (7) 0.0241 (3)
H1N 0.6770 (17) 0.7959 (15) 0.1017 (11) 0.042 (6)*
N2 0.13816 (14) 1.17823 (9) 0.22652 (7) 0.0237 (3)
H2N 0.120 (2) 1.1205 (10) 0.2053 (13) 0.046 (6)*
C1 0.60049 (19) 1.03551 (14) 0.28800 (11) 0.0371 (4)
H1A 0.6632 1.0307 0.3279 0.045*
H1B 0.6278 1.0809 0.2515 0.045*
C2 0.56791 (17) 0.94515 (12) 0.25429 (10) 0.0298 (4)
H2 0.6403 0.9140 0.2300 0.036*
C3 0.45567 (16) 0.96466 (11) 0.20319 (9) 0.0214 (3)
H3 0.4825 0.9846 0.1533 0.026*
C4 0.38679 (15) 0.87291 (11) 0.20250 (9) 0.0220 (3)
C5 0.37308 (16) 0.85663 (11) 0.28471 (9) 0.0248 (3)
H5 0.3493 0.7934 0.2986 0.030*
C6 0.50323 (18) 0.88894 (13) 0.31455 (10) 0.0320 (4)
H6 0.5556 0.8445 0.3424 0.038*
C7 0.46939 (18) 1.05156 (13) 0.31537 (10) 0.0307 (4)
H7 0.4585 1.1100 0.3422 0.037*
C8 0.38393 (16) 1.04175 (11) 0.24716 (9) 0.0218 (3)
H8 0.3765 1.0993 0.2187 0.026*
C9 0.25780 (16) 1.01308 (10) 0.28335 (9) 0.0216 (3)
C10 0.30414 (16) 0.93324 (11) 0.32961 (9) 0.0232 (3)
H10 0.2433 0.9112 0.3674 0.028*
C11 0.43220 (18) 0.96760 (13) 0.36003 (10) 0.0314 (4)
H11 0.4439 0.9695 0.4143 0.038*
C12 0.46489 (16) 0.79656 (11) 0.16772 (9) 0.0256 (4)
H12A 0.5445 0.7888 0.1952 0.031*
H12B 0.4174 0.7390 0.1704 0.031*
C13 0.49385 (16) 0.81869 (11) 0.08861 (9) 0.0236 (3)
C14 0.65210 (17) 0.84505 (12) −0.00387 (9) 0.0257 (4)
H14 0.5983 0.8978 −0.0179 0.031*
C15 0.62849 (17) 0.77022 (12) −0.05975 (10) 0.0276 (4)
C16 0.78958 (17) 0.87780 (12) −0.00307 (10) 0.0289 (4)
H16A 0.8445 0.8295 0.0167 0.035*
H16B 0.8172 0.8913 −0.0536 0.035*
C17 0.80165 (16) 0.96194 (12) 0.04362 (10) 0.0265 (4)
C18 0.85097 (17) 0.95746 (12) 0.11397 (10) 0.0300 (4)
H18 0.8838 0.9018 0.1316 0.036*
C19 0.85280 (18) 1.03328 (13) 0.15874 (11) 0.0323 (4)
H19 0.8856 1.0290 0.2070 0.039*
C20 0.80709 (18) 1.11473 (13) 0.13338 (11) 0.0328 (4)
H20 0.8080 1.1665 0.1641 0.039*
C21 0.76010 (19) 1.12083 (13) 0.06335 (12) 0.0372 (4)
H21 0.7293 1.1770 0.0455 0.045*
C22 0.7578 (2) 1.04459 (13) 0.01874 (11) 0.0357 (4)
H22 0.7256 1.0493 −0.0296 0.043*
C23 0.20364 (16) 1.08852 (11) 0.33230 (9) 0.0243 (3)
H23A 0.1209 1.0686 0.3513 0.029*
H23B 0.2603 1.0970 0.3747 0.029*
C24 0.18689 (15) 1.17912 (11) 0.29397 (9) 0.0219 (3)
C25 0.12644 (16) 1.26173 (11) 0.18574 (9) 0.0235 (3)
H25 0.2069 1.2964 0.1899 0.028*
C26 0.01960 (16) 1.31895 (11) 0.21642 (9) 0.0235 (3)
C27 0.09994 (16) 1.24235 (12) 0.10448 (9) 0.0262 (4)
H27A 0.0140 1.2172 0.0995 0.031*
H27B 0.1032 1.2999 0.0768 0.031*
C28 0.19323 (18) 1.17667 (12) 0.07203 (9) 0.0275 (4)
C29 0.31774 (19) 1.20072 (14) 0.06228 (10) 0.0341 (4)
H29 0.3443 1.2605 0.0737 0.041*
C30 0.4044 (2) 1.13836 (18) 0.03599 (11) 0.0459 (5)
H30 0.4901 1.1552 0.0303 0.055*
C31 0.3659 (2) 1.05186 (16) 0.01803 (11) 0.0469 (6)
H31 0.4250 1.0094 −0.0006 0.056*
C32 0.2418 (2) 1.02721 (14) 0.02720 (10) 0.0416 (5)
H32 0.2151 0.9677 0.0152 0.050*
C33 0.1566 (2) 1.08942 (13) 0.05394 (9) 0.0328 (4)
H33 0.0711 1.0721 0.0601 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0231 (6) 0.0249 (6) 0.0253 (6) −0.0010 (5) 0.0020 (5) −0.0041 (5)
O2 0.0264 (6) 0.0355 (7) 0.0285 (6) 0.0043 (5) −0.0009 (5) −0.0052 (5)
O3 0.0393 (7) 0.0267 (7) 0.0380 (7) −0.0044 (6) 0.0108 (6) −0.0073 (5)
O4 0.0549 (8) 0.0342 (7) 0.0240 (6) −0.0080 (6) 0.0032 (6) −0.0060 (5)
O5 0.0231 (6) 0.0207 (6) 0.0254 (6) 0.0004 (4) −0.0005 (4) −0.0017 (5)
O6 0.0350 (7) 0.0229 (6) 0.0292 (6) 0.0004 (5) −0.0051 (5) −0.0043 (5)
O7 0.0315 (7) 0.0298 (6) 0.0338 (6) 0.0024 (5) 0.0089 (6) 0.0043 (5)
O8 0.0316 (7) 0.0207 (6) 0.0420 (7) 0.0030 (5) 0.0059 (5) 0.0029 (5)
N1 0.0251 (7) 0.0242 (7) 0.0230 (7) −0.0002 (6) 0.0005 (5) −0.0011 (6)
N2 0.0285 (7) 0.0196 (7) 0.0230 (7) 0.0009 (6) −0.0019 (5) −0.0012 (6)
C1 0.0339 (10) 0.0427 (10) 0.0348 (10) −0.0041 (9) −0.0032 (8) −0.0030 (9)
C2 0.0249 (9) 0.0286 (9) 0.0358 (9) 0.0007 (7) −0.0038 (7) 0.0017 (7)
C3 0.0225 (8) 0.0206 (7) 0.0210 (8) −0.0006 (6) 0.0013 (6) 0.0008 (6)
C4 0.0231 (8) 0.0194 (7) 0.0235 (8) −0.0003 (6) 0.0022 (6) 0.0002 (6)
C5 0.0275 (8) 0.0199 (7) 0.0268 (8) 0.0020 (6) 0.0048 (7) 0.0036 (7)
C6 0.0302 (9) 0.0404 (10) 0.0253 (8) 0.0043 (8) −0.0007 (7) 0.0044 (8)
C7 0.0309 (9) 0.0382 (10) 0.0230 (8) −0.0071 (8) −0.0012 (7) −0.0032 (8)
C8 0.0264 (8) 0.0178 (7) 0.0212 (7) −0.0012 (6) 0.0015 (7) 0.0006 (6)
C9 0.0252 (8) 0.0189 (8) 0.0208 (7) 0.0014 (6) 0.0015 (6) 0.0006 (6)
C10 0.0273 (8) 0.0210 (8) 0.0211 (7) 0.0014 (7) 0.0054 (6) 0.0030 (6)
C11 0.0335 (10) 0.0322 (9) 0.0286 (9) 0.0016 (8) −0.0060 (7) 0.0049 (7)
C12 0.0273 (9) 0.0207 (8) 0.0288 (9) 0.0000 (7) 0.0031 (7) −0.0011 (7)
C13 0.0260 (8) 0.0183 (7) 0.0266 (8) −0.0006 (7) 0.0011 (7) −0.0045 (6)
C14 0.0277 (9) 0.0260 (8) 0.0236 (8) −0.0016 (7) 0.0016 (7) −0.0015 (7)
C15 0.0262 (9) 0.0264 (9) 0.0303 (9) −0.0012 (7) 0.0051 (7) −0.0040 (7)
C16 0.0276 (9) 0.0297 (9) 0.0294 (9) −0.0013 (7) 0.0024 (7) −0.0010 (7)
C17 0.0239 (8) 0.0258 (8) 0.0297 (8) −0.0047 (7) 0.0052 (7) 0.0008 (7)
C18 0.0270 (9) 0.0276 (9) 0.0354 (9) −0.0016 (7) 0.0005 (7) 0.0052 (8)
C19 0.0298 (9) 0.0365 (10) 0.0306 (9) −0.0045 (8) −0.0027 (8) −0.0002 (8)
C20 0.0282 (9) 0.0268 (9) 0.0436 (10) −0.0066 (7) 0.0046 (8) −0.0066 (8)
C21 0.0360 (10) 0.0244 (9) 0.0512 (12) −0.0021 (8) −0.0058 (9) 0.0059 (8)
C22 0.0405 (11) 0.0323 (10) 0.0343 (9) −0.0064 (8) −0.0089 (8) 0.0053 (8)
C23 0.0278 (8) 0.0246 (8) 0.0204 (7) 0.0030 (7) 0.0012 (7) 0.0004 (7)
C24 0.0197 (7) 0.0233 (8) 0.0228 (7) 0.0033 (6) 0.0025 (6) −0.0026 (7)
C25 0.0245 (8) 0.0210 (8) 0.0249 (8) 0.0003 (6) −0.0002 (7) 0.0010 (7)
C26 0.0265 (8) 0.0237 (8) 0.0202 (7) 0.0001 (7) −0.0021 (6) 0.0010 (6)
C27 0.0274 (8) 0.0288 (8) 0.0225 (8) 0.0015 (7) −0.0007 (7) 0.0032 (7)
C28 0.0344 (9) 0.0306 (9) 0.0177 (7) 0.0047 (8) 0.0015 (6) 0.0044 (7)
C29 0.0338 (10) 0.0417 (11) 0.0268 (9) −0.0012 (8) 0.0027 (7) 0.0031 (8)
C30 0.0336 (10) 0.0732 (16) 0.0308 (10) 0.0105 (11) 0.0078 (8) 0.0135 (10)
C31 0.0612 (15) 0.0535 (13) 0.0259 (9) 0.0258 (11) 0.0061 (9) 0.0050 (9)
C32 0.0649 (14) 0.0374 (11) 0.0225 (8) 0.0111 (10) −0.0015 (9) −0.0019 (8)
C33 0.0441 (11) 0.0332 (10) 0.0210 (8) 0.0015 (8) −0.0001 (7) 0.0007 (7)

Geometric parameters (Å, °)

O1—C4 1.434 (2) C10—H10 1.0000
O1—H1O 0.961 (10) C11—H11 1.0000
O2—C13 1.239 (2) C12—C13 1.514 (2)
O3—C15 1.202 (2) C12—H12A 0.9900
O4—C15 1.333 (2) C12—H12B 0.9900
O4—H4O 0.961 (10) C14—C15 1.526 (2)
O5—C9 1.436 (2) C14—C16 1.539 (2)
O5—H5O 0.949 (10) C14—H14 1.0000
O6—C24 1.230 (2) C16—C17 1.514 (2)
O7—C26 1.202 (2) C16—H16A 0.9900
O8—C26 1.316 (2) C16—H16B 0.9900
O8—H8O 0.968 (10) C17—C22 1.384 (3)
N1—C13 1.332 (2) C17—C18 1.390 (3)
N1—C14 1.447 (2) C18—C19 1.388 (3)
N1—H1N 0.950 (10) C18—H18 0.9500
N2—C24 1.337 (2) C19—C20 1.378 (3)
N2—C25 1.447 (2) C19—H19 0.9500
N2—H2N 0.956 (10) C20—C21 1.377 (3)
C1—C7 1.499 (3) C20—H20 0.9500
C1—C2 1.511 (3) C21—C22 1.391 (3)
C1—H1A 0.9900 C21—H21 0.9500
C1—H1B 0.9900 C22—H22 0.9500
C2—C6 1.541 (3) C23—C24 1.522 (2)
C2—C3 1.542 (2) C23—H23A 0.9900
C2—H2 1.0000 C23—H23B 0.9900
C3—C4 1.541 (2) C25—C26 1.522 (2)
C3—C8 1.589 (2) C25—C27 1.539 (2)
C3—H3 1.0000 C25—H25 1.0000
C4—C5 1.529 (2) C27—C28 1.509 (2)
C4—C12 1.538 (2) C27—H27A 0.9900
C5—C6 1.561 (3) C27—H27B 0.9900
C5—C10 1.579 (2) C28—C29 1.381 (3)
C5—H5 1.0000 C28—C33 1.387 (3)
C6—C11 1.616 (3) C29—C30 1.388 (3)
C6—H6 1.0000 C29—H29 0.9500
C7—C11 1.537 (3) C30—C31 1.381 (4)
C7—C8 1.549 (2) C30—H30 0.9500
C7—H7 1.0000 C31—C32 1.378 (4)
C8—C9 1.553 (2) C31—H31 0.9500
C8—H8 1.0000 C32—C33 1.380 (3)
C9—C10 1.533 (2) C32—H32 0.9500
C9—C23 1.541 (2) C33—H33 0.9500
C10—C11 1.555 (3)
C4—O1—H1O 100.1 (15) C4—C12—H12B 109.6
C15—O4—H4O 108.7 (16) H12A—C12—H12B 108.1
C9—O5—H5O 109.6 (17) O2—C13—N1 122.52 (16)
C26—O8—H8O 108.7 (18) O2—C13—C12 120.59 (15)
C13—N1—C14 120.67 (14) N1—C13—C12 116.83 (15)
C13—N1—H1N 120.4 (15) N1—C14—C15 111.29 (14)
C14—N1—H1N 118.9 (15) N1—C14—C16 110.04 (14)
C24—N2—C25 120.00 (14) C15—C14—C16 112.97 (14)
C24—N2—H2N 117.4 (15) N1—C14—H14 107.4
C25—N2—H2N 122.3 (15) C15—C14—H14 107.4
C7—C1—C2 93.63 (15) C16—C14—H14 107.4
C7—C1—H1A 113.0 O3—C15—O4 125.04 (17)
C2—C1—H1A 113.0 O3—C15—C14 125.29 (16)
C7—C1—H1B 113.0 O4—C15—C14 109.65 (14)
C2—C1—H1B 113.0 C17—C16—C14 110.13 (14)
H1A—C1—H1B 110.4 C17—C16—H16A 109.6
C1—C2—C6 106.67 (16) C14—C16—H16A 109.6
C1—C2—C3 105.01 (15) C17—C16—H16B 109.6
C6—C2—C3 100.90 (14) C14—C16—H16B 109.6
C1—C2—H2 114.3 H16A—C16—H16B 108.1
C6—C2—H2 114.3 C22—C17—C18 118.22 (17)
C3—C2—H2 114.3 C22—C17—C16 120.73 (16)
C4—C3—C2 101.98 (13) C18—C17—C16 120.96 (16)
C4—C3—C8 114.03 (13) C19—C18—C17 120.83 (17)
C2—C3—C8 101.45 (13) C19—C18—H18 119.6
C4—C3—H3 112.8 C17—C18—H18 119.6
C2—C3—H3 112.8 C20—C19—C18 120.12 (17)
C8—C3—H3 112.8 C20—C19—H19 119.9
O1—C4—C5 113.61 (13) C18—C19—H19 119.9
O1—C4—C12 105.98 (13) C21—C20—C19 119.85 (18)
C5—C4—C12 110.02 (13) C21—C20—H20 120.1
O1—C4—C3 114.11 (13) C19—C20—H20 120.1
C5—C4—C3 100.11 (13) C20—C21—C22 119.90 (18)
C12—C4—C3 113.13 (13) C20—C21—H21 120.1
C4—C5—C6 102.18 (13) C22—C21—H21 120.1
C4—C5—C10 116.27 (13) C17—C22—C21 121.07 (17)
C6—C5—C10 90.56 (13) C17—C22—H22 119.5
C4—C5—H5 114.9 C21—C22—H22 119.5
C6—C5—H5 114.9 C24—C23—C9 114.38 (13)
C10—C5—H5 114.9 C24—C23—H23A 108.7
C2—C6—C5 108.05 (14) C9—C23—H23A 108.7
C2—C6—C11 100.85 (15) C24—C23—H23B 108.7
C5—C6—C11 89.21 (13) C9—C23—H23B 108.7
C2—C6—H6 118.0 H23A—C23—H23B 107.6
C5—C6—H6 118.0 O6—C24—N2 120.59 (15)
C11—C6—H6 118.0 O6—C24—C23 121.95 (14)
C1—C7—C11 106.77 (16) N2—C24—C23 117.47 (14)
C1—C7—C8 105.12 (15) N2—C25—C26 110.36 (13)
C11—C7—C8 101.62 (14) N2—C25—C27 110.76 (13)
C1—C7—H7 114.1 C26—C25—C27 108.83 (13)
C11—C7—H7 114.1 N2—C25—H25 109.0
C8—C7—H7 114.1 C26—C25—H25 109.0
C7—C8—C9 100.84 (13) C27—C25—H25 109.0
C7—C8—C3 101.14 (13) O7—C26—O8 124.36 (16)
C9—C8—C3 115.70 (13) O7—C26—C25 123.14 (15)
C7—C8—H8 112.6 O8—C26—C25 112.42 (14)
C9—C8—H8 112.6 C28—C27—C25 112.28 (14)
C3—C8—H8 112.6 C28—C27—H27A 109.1
O5—C9—C10 114.79 (13) C25—C27—H27A 109.1
O5—C9—C23 103.32 (13) C28—C27—H27B 109.1
C10—C9—C23 110.87 (13) C25—C27—H27B 109.1
O5—C9—C8 116.65 (13) H27A—C27—H27B 107.9
C10—C9—C8 99.67 (13) C29—C28—C33 118.50 (18)
C23—C9—C8 111.85 (13) C29—C28—C27 120.95 (17)
C9—C10—C11 103.12 (13) C33—C28—C27 120.50 (17)
C9—C10—C5 114.46 (13) C28—C29—C30 120.6 (2)
C11—C10—C5 90.82 (13) C28—C29—H29 119.7
C9—C10—H10 115.1 C30—C29—H29 119.7
C11—C10—H10 115.1 C31—C30—C29 120.1 (2)
C5—C10—H10 115.1 C31—C30—H30 120.0
C7—C11—C10 107.37 (14) C29—C30—H30 120.0
C7—C11—C6 100.80 (14) C32—C31—C30 119.9 (2)
C10—C11—C6 89.41 (13) C32—C31—H31 120.1
C7—C11—H11 118.2 C30—C31—H31 120.1
C10—C11—H11 118.2 C31—C32—C33 119.7 (2)
C6—C11—H11 118.2 C31—C32—H32 120.2
C13—C12—C4 110.24 (13) C33—C32—H32 120.2
C13—C12—H12A 109.6 C32—C33—C28 121.3 (2)
C4—C12—H12A 109.6 C32—C33—H33 119.3
C13—C12—H12B 109.6 C28—C33—H33 119.3
C7—C1—C2—C6 −52.22 (17) C5—C10—C11—C7 100.82 (14)
C7—C1—C2—C3 54.33 (17) C9—C10—C11—C6 −115.68 (13)
C1—C2—C3—C4 −152.25 (15) C5—C10—C11—C6 −0.31 (12)
C6—C2—C3—C4 −41.51 (16) C2—C6—C11—C7 0.97 (16)
C1—C2—C3—C8 −34.36 (17) C5—C6—C11—C7 −107.27 (14)
C6—C2—C3—C8 76.38 (15) C2—C6—C11—C10 108.55 (14)
C2—C3—C4—O1 174.09 (13) C5—C6—C11—C10 0.31 (12)
C8—C3—C4—O1 65.62 (17) O1—C4—C12—C13 64.48 (16)
C2—C3—C4—C5 52.38 (15) C5—C4—C12—C13 −172.31 (14)
C8—C3—C4—C5 −56.08 (16) C3—C4—C12—C13 −61.28 (18)
C2—C3—C4—C12 −64.64 (17) C14—N1—C13—O2 2.7 (2)
C8—C3—C4—C12 −173.11 (13) C14—N1—C13—C12 −174.58 (14)
O1—C4—C5—C6 −162.75 (13) C4—C12—C13—O2 −51.7 (2)
C12—C4—C5—C6 78.63 (16) C4—C12—C13—N1 125.61 (16)
C3—C4—C5—C6 −40.69 (15) C13—N1—C14—C15 −79.26 (19)
O1—C4—C5—C10 −65.99 (18) C13—N1—C14—C16 154.73 (15)
C12—C4—C5—C10 175.39 (14) N1—C14—C15—O3 −10.9 (3)
C3—C4—C5—C10 56.07 (17) C16—C14—C15—O3 113.5 (2)
C1—C2—C6—C5 125.34 (16) N1—C14—C15—O4 167.77 (15)
C3—C2—C6—C5 15.89 (18) C16—C14—C15—O4 −67.9 (2)
C1—C2—C6—C11 32.60 (17) N1—C14—C16—C17 −64.59 (18)
C3—C2—C6—C11 −76.85 (16) C15—C14—C16—C17 170.36 (14)
C4—C5—C6—C2 15.59 (17) C14—C16—C17—C22 −74.1 (2)
C10—C5—C6—C2 −101.47 (15) C14—C16—C17—C18 102.51 (18)
C4—C5—C6—C11 116.75 (13) C22—C17—C18—C19 1.8 (3)
C10—C5—C6—C11 −0.31 (12) C16—C17—C18—C19 −174.88 (17)
C2—C1—C7—C11 53.08 (17) C17—C18—C19—C20 −1.0 (3)
C2—C1—C7—C8 −54.34 (17) C18—C19—C20—C21 −0.3 (3)
C1—C7—C8—C9 153.91 (15) C19—C20—C21—C22 0.6 (3)
C11—C7—C8—C9 42.77 (16) C18—C17—C22—C21 −1.5 (3)
C1—C7—C8—C3 34.72 (17) C16—C17—C22—C21 175.23 (17)
C11—C7—C8—C3 −76.42 (15) C20—C21—C22—C17 0.3 (3)
C4—C3—C8—C7 108.78 (15) O5—C9—C23—C24 −71.60 (17)
C2—C3—C8—C7 −0.01 (15) C10—C9—C23—C24 164.95 (13)
C4—C3—C8—C9 0.87 (19) C8—C9—C23—C24 54.67 (18)
C2—C3—C8—C9 −107.93 (15) C25—N2—C24—O6 3.3 (2)
C7—C8—C9—O5 −176.46 (13) C25—N2—C24—C23 −176.58 (14)
C3—C8—C9—O5 −68.37 (18) C9—C23—C24—O6 −136.58 (16)
C7—C8—C9—C10 −52.31 (15) C9—C23—C24—N2 43.3 (2)
C3—C8—C9—C10 55.78 (16) C24—N2—C25—C26 −73.50 (18)
C7—C8—C9—C23 64.93 (16) C24—N2—C25—C27 165.92 (14)
C3—C8—C9—C23 173.02 (13) N2—C25—C26—O7 −25.6 (2)
O5—C9—C10—C11 165.98 (13) C27—C25—C26—O7 96.15 (19)
C23—C9—C10—C11 −77.43 (16) N2—C25—C26—O8 157.55 (14)
C8—C9—C10—C11 40.54 (14) C27—C25—C26—O8 −80.72 (17)
O5—C9—C10—C5 68.97 (18) N2—C25—C27—C28 −51.65 (19)
C23—C9—C10—C5 −174.44 (14) C26—C25—C27—C28 −173.14 (14)
C8—C9—C10—C5 −56.47 (16) C25—C27—C28—C29 −68.3 (2)
C4—C5—C10—C9 1.2 (2) C25—C27—C28—C33 109.20 (18)
C6—C5—C10—C9 105.14 (15) C33—C28—C29—C30 −0.9 (3)
C4—C5—C10—C11 −103.58 (15) C27—C28—C29—C30 176.60 (16)
C6—C5—C10—C11 0.32 (13) C28—C29—C30—C31 1.2 (3)
C1—C7—C11—C10 −127.46 (15) C29—C30—C31—C32 −0.9 (3)
C8—C7—C11—C10 −17.57 (18) C30—C31—C32—C33 0.3 (3)
C1—C7—C11—C6 −34.67 (17) C31—C32—C33—C28 −0.1 (3)
C8—C7—C11—C6 75.21 (16) C29—C28—C33—C32 0.4 (3)
C9—C10—C11—C7 −14.54 (17) C27—C28—C33—C32 −177.14 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O6i 0.95 (1) 1.90 (1) 2.8399 (18) 172 (2)
N2—H2N···O5 0.96 (1) 2.01 (2) 2.7579 (18) 134 (2)
O1—H1O···O2 0.96 (1) 1.79 (2) 2.6649 (16) 150 (2)
O5—H5O···O1 0.95 (1) 1.58 (1) 2.4886 (16) 158 (3)
O4—H4O···O7ii 0.96 (1) 1.84 (2) 2.7425 (18) 154 (2)
O8—H8O···O5iii 0.97 (1) 1.68 (1) 2.6501 (17) 177 (3)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1/2, −y+2, z−1/2; (iii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2085).

References

  1. Anderson, C. E., Pickrell, A. J., Sperry, S. L., Vasquez, T. E., Custer, T. G., Fierman, M. B., Lazar, D. C., Brown, Z. W., Iskenderian, W. S., Hickstein, D. D. & O’Leary, D. J. (2007). Heterocyles, 72, 469–495.
  2. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  3. Bott, S. G., Marchand, A. P., Alihodzic, S. & Kumar, K. A. (1998). J. Chem. Crystallogr.28, 251–258.
  4. Boyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007a). Acta Cryst. E63, o3977.
  5. Boyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007b). Acta Cryst. E63, o4797.
  6. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Flippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813–817.
  9. Kruger, H. G., Rademeyer, M., Govender, T. & Gokul, V. (2006). Acta Cryst. E62, o42–o44.
  10. Kruger, H. G., Rademeyer, M. & Ramdhani, R. (2005). Acta Cryst. E61, o3968–o3970.
  11. Linden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221–o226. [DOI] [PubMed]
  12. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Vasquez, T. E., Bergset, J. M., Fierman, M. B., Nelson, A., Roth, J., Khan, S. I. & O’Leary, D. J. (2002). J. Am. Chem. Soc.124, 2931–2938. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035956/gw2085sup1.cif

e-66-o2537-sup1.cif (30KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035956/gw2085Isup2.hkl

e-66-o2537-Isup2.hkl (243.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES