Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 4;66(Pt 10):m1208. doi: 10.1107/S1600536810034203

A dimeric zinc(II) complex: bis­[μ-1,2-bis­(1,2,4-triazol-4-yl)ethane-κ2 N 1:N 1′]bis­[dinitritozinc(II)]

Rongxian Zhang a,*, Qiuyun Chen a, Jing Gao b, Xiangyang Wu a
PMCID: PMC2983239  PMID: 21587367

Abstract

The coordination geometry of the ZnII atom in the title complex, [Zn2(NO2)4(C6H8N6)2], is distorted octa­hedral, in which the ZnII atom is coordinated by two N atoms from the triazole rings of two symmetry-related 1,2-bis­(1,2,4-triazol-4-yl)ethane ligands and four O atoms from two nitrite ligands. Two ZnII atoms are bridged by two organic ligands, forming a centrosymmetric dimer. Weak C—H⋯N and C—H⋯O hydrogen bonds play an important role in the inter­molecular packing.

Related literature

For background to 1,2,4-triazole and its derivatives, see: Haasnoot (2000). For a related structure, see: Habit et al. (2009). For hydrogen bonding, see: Mascal (1998).graphic file with name e-66-m1208-scheme1.jpg

Experimental

Crystal data

  • [Zn2(NO2)4(C6H8N6)2]

  • M r = 643.15

  • Monoclinic, Inline graphic

  • a = 20.491 (4) Å

  • b = 6.7087 (13) Å

  • c = 17.289 (4) Å

  • β = 97.125 (5)°

  • V = 2358.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 293 K

  • 0.60 × 0.20 × 0.20 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995, 1997) T min = 0.364, T max = 0.678

  • 10892 measured reflections

  • 2144 independent reflections

  • 1945 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.104

  • S = 1.06

  • 2144 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034203/bv2153sup1.cif

e-66-m1208-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034203/bv2153Isup2.hkl

e-66-m1208-Isup2.hkl (105.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—N4i 2.002 (3)
Zn1—O1 2.031 (3)
Zn1—N1 2.036 (3)
Zn1—O3 2.046 (3)
Zn1—O2 2.477 (3)
Zn1—O4 2.488 (3)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2ii 0.97 2.53 3.396 (5) 149
C2—H2A⋯O1iii 0.97 2.49 3.417 (4) 160
C3—H3A⋯O2ii 0.93 2.66 3.412 (5) 139
C6—H6A⋯N2iv 0.93 2.39 3.314 (4) 176

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

1,2,4-Triazole and its derivatives are very interesting ligands, because they combine the coordination geometry of both pyrazole and imidazole with regard to the arrangement of their three heteroatoms. A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized because of their magnetic properties and novel topologies (Haasnoot, 2000).

In the present work, we report here the preparation and crystal structure of a dimeric zincII complex, namely, [Zn(btre)NO2)2]2 (I) (btre = 1,2-bis(1,2,4-triazol-4-yl)ethane.

In the complex (I), the coordination geometry of the zincII atom in the title complex, [Zn(C6H8N6)(NO2)2]2 or [Zn(btre)(NO2)2]2, where btre is µ-[1,2-bis(1,2,4-triazol-4-yl)ethane], is a distorted octahedron, in which the ZnII atom is coordinated by two N atoms from the triazole rings of two symmetry-related btre ligands and four O atoms from two NO2- ligands. Two ZnII atoms are bridged by two organic ligands to form a dimer. Each NO2- anion acts as a chelating coordination mode.

The crystal structure of (I) is built up from a neutral dimeric metallocycle. The dimer is centrosymmetric. As shown in Fig.1, in each dimer, two zincII centres are connected by two btre ligands resulting in a discrete Zn2(btre)2 18-membered binuclear metallocycle.

Each zincII centre is six-coordinated by two N atoms of btre ligands and four O atoms from two NO2- ligands (Table 1), forming a distorted octahedral geometry. Each btre exhibits a gauche conformation in (I). The N3—C1—C2—N6 torsion angle is 64.9 (4)°. The dihedral angle between the two triazole ring is 40.1 (2)°. The Zn···Zn separation via the bridging btre ligand is 7.809 (2)Å in (I), compared with the corresponding values 7.8750 (2)Å in [Zn(btre)Cl2]2 and 7.7980 (5)Å in [Zn(btre)I2]2 (Habit et al., 2009).

Weak hydrogen bonds play an important role in the formation of the crystal structure. The intermolecular packing is organized by C—H···N and C—H···O hydrogen bonds (Table 2 and Figure 2; Mascal 1998).

Experimental

A 10 ml aqueous solution of Zn(NO2)2 (1 mmol) was added to a tube, and a 10 ml MeOH solution of 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) (1.0 mmol) was carefully added above the aqueous solution. Colourless crystal were obtained after about two weeks. Anal. Calcd. for C12H16N16O8Zn2: C, 22.41; H, 2.51; N, 34.85%. Found: C, 22.36; H, 2.44; N, 34.69%.

Refinement

H atom were placed in idealized positions and refined as riding, with C—H distances of 0.93 (triazole) and 0.97Å (ethane), and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A dimeric structure of (I), with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: A -x + 1/2, -y - 1/2, -z21.]

Fig. 2.

Fig. 2.

The cell packing of (I) along [010] direction.

Crystal data

[Zn2(NO2)4(C6H8N6)2] F(000) = 1296
Mr = 643.15 Dx = 1.811 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -c 2yc Cell parameters from 4261 reflections
a = 20.491 (4) Å θ = 3.2–25.4°
b = 6.7087 (13) Å µ = 2.11 mm1
c = 17.289 (4) Å T = 293 K
β = 97.125 (5)° Block, colorless
V = 2358.3 (8) Å3 0.60 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer 2144 independent reflections
Radiation source: fine-focus sealed tube 1945 reflections with I > 2σ(I)
graphite Rint = 0.036
ω scans θmax = 25.3°, θmin = 3.2°
Absorption correction: multi-scan (Blessing, 1995, 1997) h = −24→24
Tmin = 0.364, Tmax = 0.678 k = −7→8
10892 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0627P)2 + 2.1848P] where P = (Fo2 + 2Fc2)/3
2144 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.377036 (17) 0.06273 (5) 0.900523 (19) 0.03325 (17)
O1 0.42015 (16) 0.3236 (5) 0.8755 (2) 0.0767 (10)
O2 0.3646 (2) 0.3909 (5) 0.96266 (18) 0.0876 (12)
O3 0.40736 (13) −0.1027 (4) 0.81217 (16) 0.0581 (7)
O4 0.48542 (14) −0.1050 (5) 0.90120 (16) 0.0662 (8)
N1 0.28080 (13) 0.0744 (4) 0.85410 (15) 0.0353 (6)
N2 0.26438 (14) 0.0921 (4) 0.77408 (15) 0.0401 (7)
N3 0.17452 (13) 0.0807 (4) 0.83012 (15) 0.0325 (6)
N4 0.12627 (14) −0.4368 (4) 0.99508 (15) 0.0353 (6)
N5 0.17231 (16) −0.4949 (5) 0.94714 (18) 0.0499 (8)
N6 0.10563 (13) −0.2736 (4) 0.88654 (14) 0.0355 (6)
N7 0.4027 (2) 0.4550 (5) 0.9200 (2) 0.0712 (11)
N8 0.46565 (16) −0.1617 (6) 0.83561 (19) 0.0568 (8)
C1 0.10463 (16) 0.0757 (5) 0.8402 (2) 0.0413 (8)
H1A 0.0807 0.1668 0.8034 0.050*
H1B 0.0992 0.1202 0.8924 0.050*
C2 0.07634 (16) −0.1309 (6) 0.82762 (19) 0.0448 (8)
H2A 0.0292 −0.1254 0.8292 0.054*
H2B 0.0837 −0.1775 0.7763 0.054*
C3 0.22636 (17) 0.0689 (5) 0.88560 (19) 0.0360 (7)
H3A 0.2237 0.0584 0.9388 0.043*
C4 0.20115 (17) 0.0957 (5) 0.76274 (18) 0.0392 (8)
H4A 0.1767 0.1072 0.7139 0.047*
C5 0.08740 (15) −0.3056 (5) 0.95728 (17) 0.0330 (7)
H5A 0.0522 −0.2435 0.9766 0.040*
C6 0.15788 (19) −0.3936 (6) 0.8829 (2) 0.0468 (9)
H6A 0.1808 −0.4031 0.8399 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0323 (3) 0.0385 (3) 0.0298 (2) −0.00378 (14) 0.00707 (16) 0.00015 (14)
O1 0.080 (2) 0.0613 (18) 0.098 (2) −0.0275 (16) 0.0486 (19) −0.0208 (18)
O2 0.142 (4) 0.071 (2) 0.0574 (19) −0.033 (2) 0.041 (2) −0.0132 (16)
O3 0.0422 (16) 0.0766 (18) 0.0542 (16) 0.0062 (13) 0.0013 (12) −0.0270 (14)
O4 0.0506 (18) 0.098 (2) 0.0485 (16) −0.0159 (16) 0.0018 (13) −0.0053 (15)
N1 0.0298 (15) 0.0439 (16) 0.0322 (14) −0.0011 (11) 0.0038 (11) 0.0003 (11)
N2 0.0341 (16) 0.0556 (17) 0.0321 (14) 0.0014 (13) 0.0100 (12) 0.0078 (12)
N3 0.0279 (14) 0.0353 (14) 0.0354 (14) 0.0019 (10) 0.0083 (11) 0.0064 (11)
N4 0.0377 (15) 0.0387 (15) 0.0309 (14) −0.0026 (11) 0.0097 (12) −0.0004 (11)
N5 0.052 (2) 0.0539 (17) 0.0480 (18) 0.0126 (15) 0.0243 (15) 0.0090 (15)
N6 0.0336 (14) 0.0440 (15) 0.0293 (13) −0.0075 (12) 0.0056 (11) 0.0035 (11)
N7 0.110 (3) 0.0459 (19) 0.062 (2) −0.022 (2) 0.028 (2) −0.0096 (17)
N8 0.0402 (18) 0.078 (2) 0.0531 (19) 0.0002 (17) 0.0121 (15) −0.0140 (17)
C1 0.0286 (17) 0.056 (2) 0.0415 (18) 0.0098 (14) 0.0106 (14) 0.0181 (15)
C2 0.0274 (17) 0.074 (2) 0.0320 (17) −0.0075 (17) −0.0009 (13) 0.0115 (17)
C3 0.0348 (18) 0.0455 (19) 0.0287 (15) 0.0005 (14) 0.0082 (13) −0.0004 (13)
C4 0.0374 (19) 0.0522 (19) 0.0285 (16) 0.0049 (15) 0.0060 (14) 0.0088 (14)
C5 0.0317 (17) 0.0392 (16) 0.0290 (15) −0.0046 (14) 0.0072 (12) −0.0003 (13)
C6 0.053 (2) 0.053 (2) 0.0378 (18) 0.0008 (17) 0.0219 (16) 0.0017 (16)

Geometric parameters (Å, °)

Zn1—N4i 2.002 (3) N4—C5 1.307 (4)
Zn1—O1 2.031 (3) N4—N5 1.386 (4)
Zn1—N1 2.036 (3) N4—Zn1i 2.002 (3)
Zn1—O3 2.046 (3) N5—C6 1.304 (5)
Zn1—O2 2.477 (3) N6—C5 1.340 (4)
Zn1—O4 2.488 (3) N6—C6 1.347 (5)
O1—N7 1.251 (4) N6—C2 1.471 (4)
O2—N7 1.218 (5) C1—C2 1.508 (5)
O3—N8 1.276 (4) C1—H1A 0.9700
O4—N8 1.217 (4) C1—H1B 0.9700
N1—C3 1.301 (4) C2—H2A 0.9700
N1—N2 1.388 (4) C2—H2B 0.9700
N2—C4 1.286 (4) C3—H3A 0.9300
N3—C3 1.342 (4) C4—H4A 0.9300
N3—C4 1.350 (4) C5—H5A 0.9300
N3—C1 1.464 (4) C6—H6A 0.9300
N4i—Zn1—O1 128.32 (12) C5—N6—C6 105.1 (3)
N4i—Zn1—N1 103.43 (11) C5—N6—C2 126.9 (3)
O1—Zn1—N1 107.96 (13) C6—N6—C2 128.0 (3)
N4i—Zn1—O3 119.46 (12) O2—N7—O1 112.2 (3)
O1—Zn1—O3 97.34 (12) O4—N8—O3 112.9 (3)
N1—Zn1—O3 95.48 (11) N3—C1—C2 111.6 (3)
N4i—Zn1—O2 88.11 (11) N3—C1—H1A 109.3
O1—Zn1—O2 52.96 (11) C2—C1—H1A 109.3
N1—Zn1—O2 89.42 (13) N3—C1—H1B 109.3
O3—Zn1—O2 149.67 (12) C2—C1—H1B 109.3
N4i—Zn1—O4 86.27 (10) H1A—C1—H1B 108.0
O1—Zn1—O4 88.80 (12) N6—C2—C1 112.5 (3)
N1—Zn1—O4 147.07 (10) N6—C2—H2A 109.1
O3—Zn1—O4 53.47 (10) C1—C2—H2A 109.1
O2—Zn1—O4 122.68 (12) N6—C2—H2B 109.1
N7—O1—Zn1 108.1 (2) C1—C2—H2B 109.1
N7—O2—Zn1 86.7 (2) H2A—C2—H2B 107.8
N8—O3—Zn1 106.9 (2) N1—C3—N3 110.1 (3)
N8—O4—Zn1 86.7 (2) N1—C3—H3A 125.0
C3—N1—N2 107.8 (3) N3—C3—H3A 125.0
C3—N1—Zn1 132.3 (2) N2—C4—N3 112.0 (3)
N2—N1—Zn1 120.0 (2) N2—C4—H4A 124.0
C4—N2—N1 105.6 (3) N3—C4—H4A 124.0
C3—N3—C4 104.6 (3) N4—C5—N6 110.0 (3)
C3—N3—C1 127.8 (3) N4—C5—H5A 125.0
C4—N3—C1 127.6 (3) N6—C5—H5A 125.0
C5—N4—N5 107.9 (3) N5—C6—N6 111.6 (3)
C5—N4—Zn1i 130.4 (2) N5—C6—H6A 124.2
N5—N4—Zn1i 121.5 (2) N6—C6—H6A 124.2
C6—N5—N4 105.3 (3)
N4i—Zn1—O1—N7 −48.4 (4) O4—Zn1—N1—N2 −55.0 (3)
N1—Zn1—O1—N7 76.1 (3) C3—N1—N2—C4 −0.1 (4)
O3—Zn1—O1—N7 174.4 (3) Zn1—N1—N2—C4 −180.0 (2)
O2—Zn1—O1—N7 1.1 (3) C5—N4—N5—C6 0.0 (4)
O4—Zn1—O1—N7 −132.7 (3) Zn1i—N4—N5—C6 176.0 (2)
N4i—Zn1—O2—N7 142.3 (3) Zn1—O2—N7—O1 1.5 (4)
O1—Zn1—O2—N7 −1.1 (3) Zn1—O1—N7—O2 −1.9 (5)
N1—Zn1—O2—N7 −114.3 (3) Zn1—O4—N8—O3 −0.1 (3)
O3—Zn1—O2—N7 −14.4 (5) Zn1—O3—N8—O4 0.1 (4)
O4—Zn1—O2—N7 57.9 (3) C3—N3—C1—C2 −96.2 (4)
N4i—Zn1—O3—N8 −59.3 (3) C4—N3—C1—C2 82.9 (4)
O1—Zn1—O3—N8 82.9 (3) C5—N6—C2—C1 84.7 (4)
N1—Zn1—O3—N8 −168.1 (3) C6—N6—C2—C1 −92.2 (4)
O2—Zn1—O3—N8 93.6 (3) N3—C1—C2—N6 64.9 (4)
O4—Zn1—O3—N8 −0.1 (2) N2—N1—C3—N3 0.4 (3)
N4i—Zn1—O4—N8 131.5 (2) Zn1—N1—C3—N3 −179.7 (2)
O1—Zn1—O4—N8 −100.0 (3) C4—N3—C3—N1 −0.6 (3)
N1—Zn1—O4—N8 22.4 (3) C1—N3—C3—N1 178.7 (3)
O3—Zn1—O4—N8 0.1 (2) N1—N2—C4—N3 −0.2 (4)
O2—Zn1—O4—N8 −143.1 (2) C3—N3—C4—N2 0.5 (4)
N4i—Zn1—N1—C3 21.0 (3) C1—N3—C4—N2 −178.7 (3)
O1—Zn1—N1—C3 −117.4 (3) N5—N4—C5—N6 −0.1 (4)
O3—Zn1—N1—C3 143.0 (3) Zn1i—N4—C5—N6 −175.7 (2)
O2—Zn1—N1—C3 −67.0 (3) C6—N6—C5—N4 0.3 (4)
O4—Zn1—N1—C3 125.2 (3) C2—N6—C5—N4 −177.2 (3)
N4i—Zn1—N1—N2 −159.2 (2) N4—N5—C6—N6 0.2 (4)
O1—Zn1—N1—N2 62.4 (2) C5—N6—C6—N5 −0.3 (4)
O3—Zn1—N1—N2 −37.2 (2) C2—N6—C6—N5 177.1 (3)
O2—Zn1—N1—N2 112.8 (2)

Symmetry codes: (i) −x+1/2, −y−1/2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1B···O2ii 0.97 2.53 3.396 (5) 149
C2—H2A···O1iii 0.97 2.49 3.417 (4) 160
C3—H3A···O2ii 0.93 2.66 3.412 (5) 139
C6—H6A···N2iv 0.93 2.39 3.314 (4) 176

Symmetry codes: (ii) −x+1/2, −y+1/2, −z+2; (iii) x−1/2, y−1/2, z; (iv) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2153).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  3. Haasnoot, J. G. (2000). Coord. Chem. Rev.200–202, 131–185.
  4. Habit, H. A., Hoffmann, A., Hoppe, H. A., Steinfeld, G. & Janiak, C. (2009). Inorg. Chem.48, 2166–2180. [DOI] [PubMed]
  5. Mascal, M. (1998). Chem. Commun. pp. 303–304.
  6. Rigaku (2000). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034203/bv2153sup1.cif

e-66-m1208-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034203/bv2153Isup2.hkl

e-66-m1208-Isup2.hkl (105.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES