Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):o2603. doi: 10.1107/S1600536810035385

N′-(2,6-Dichloro­benzyl­idene)-2-hy­droxy­benzohydrazide

Yawar Baig a, Hamid Latif Siddiqui a,*, Waseeq Ahmad Siddiqui b, Ghulam Mustafa c, Harald Krautscheid c
PMCID: PMC2983241  PMID: 21587580

Abstract

In the title compound, C14H10Cl2N2O2, the dihedral angle between the two aromatic rings is 17.39 (4)°. An intra­molecular O—H⋯O hydrogen bond forms a six-membered R(6)1 1 ring motif. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen-bonding inter­actions occur.

Related literature

For the biological activity of Schiff bases, see: El-Masry et al. (2000); Samadhiya & Halve (2001). For the synthesis of Schiff bases, see: Siddiqui et al. (2006); Iqbal et al. (2007). For applications of Schiff bases, see: Mookherjee et al. (1989); Kumar et al. (2009). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-66-o2603-scheme1.jpg

Experimental

Crystal data

  • C14H10Cl2N2O2

  • M r = 309.14

  • Monoclinic, Inline graphic

  • a = 7.5029 (6) Å

  • b = 23.8363 (13) Å

  • c = 8.0286 (7) Å

  • β = 109.860 (6)°

  • V = 1350.45 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 180 K

  • 0.34 × 0.26 × 0.18 mm

Data collection

  • Stoe IPDS-2T diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.856, T max = 0.921

  • 21101 measured reflections

  • 2958 independent reflections

  • 2455 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.074

  • S = 1.03

  • 2958 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: X-AREA (Stoe & Cie, 1999); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035385/im2223sup1.cif

e-66-o2603-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035385/im2223Isup2.hkl

e-66-o2603-Isup2.hkl (142.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.85 (2) 2.38 (2) 3.165 (2) 153 (2)
N1—H1⋯O1i 0.85 (2) 2.45 (2) 3.158 (2) 140 (1)
O2—H2A⋯O1 0.90 (2) 1.78 (2) 2.608 (2) 153 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

supplementary crystallographic information

Comment

Schiff base reaction products of alkyl anthranilates and their derivatives have been employed in augmenting the aroma or taste of consumable materials including perfume compositions, colognes, perfumed articles, foodstuffs, chewing gums and beverages (Mookherjee et al., 1989). Related compounds have also shown to exhibit biological activities such as antibacterial, antimicrobial (El-Masry et al., 2000), and were investigated as herbicides (Samadhiya et al., 2001). Further, Schiff bases have also been employed as ligands for complexation of metal ions (Kumar et al., 2009). With this perspective of widespread applications of Schiff bases we embarked on the synthesis, characterization and biological evaluation of this class of compounds (Siddiqui et al., 2006; Iqbal et al., 2007). Herein, we report the synthesis and crystal structure of the title compound.

The title compound is presented in Fig.1. The two aromatic ring systems in the hydrazide are inclined at an angle of 17.39 (0.04) ° with respect to each other. The structure possesses classical inter and intra molecular hydrogen bonding. The intramolecular O–H···O type hydrogen bonding forms six membered ring motif R(6)11 (Bernstein et al., 1995) which inclines at an angle of 9.73 (0.14) ° with respect to aromatic C1–C6. The intermolecular C–H···O and N—H···N type of hydrogen bonding forms nine membered ring motif R(9)22 (Bernstein et al., 1995) where N–H···O type of hydrogen bonding interveins to form a six and a five membered ring system R(6)21 and R(5)12(Bernstein et al., 1995), respectively (Fig. 2, table 1).

Experimental

A mixture of 2-hydroxy-benzoic acid hydrazide (1.5 g, 10.0 mmol) and 2,6-dichlorobenzaldehyde (1.7 g, 10.0 mmol) in absolute ethanol (20 ml) was heated to reflux (2 hrs.), cooled to room temperature and filtered. The off-white precipitates were washed with the same solvent and dried at room temperature to yield 2.8 g of off-white, needle-like crystals of the title compound (9.1 mmol, 90.6%). Suitable crystals were grown from a solution of CH3OH by slow evaporation at room temperature.

Refinement

All aromatic H-atoms were positioned geometrically with C—H = 0.95 Å and refined using riding model with Uiso(H) = 1.2 Ueq(C), while the imine hydrogen was located in difference map and was refined with C—H = 0.95 (2) Å and Uiso(H) = 1.2 Ueq(C8). N–H and O–H H atoms also were located in difference map and were refined with N—H = 0.86 (2) Å and O—H = 0.89 (2) Å and Uiso(H) = 1.2 Ueq(N) and Uiso(H) = 1.5 Ueq(O), respectively.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with thermal ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the crystal structure showing hydrogen bonding as dashed lines.

Crystal data

C14H10Cl2N2O2 F(000) = 632
Mr = 309.14 Dx = 1.520 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 19179 reflections
a = 7.5029 (6) Å θ = 1.7–29.5°
b = 23.8363 (13) Å µ = 0.48 mm1
c = 8.0286 (7) Å T = 180 K
β = 109.860 (6)° Needles, white
V = 1350.45 (18) Å3 0.34 × 0.26 × 0.18 mm
Z = 4

Data collection

Stoe IPDS-2T diffractometer 2958 independent reflections
Radiation source: fine-focus sealed tube 2455 reflections with I > 2σ(I)
graphite Rint = 0.041
ω scans θmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −9→9
Tmin = 0.856, Tmax = 0.921 k = −30→30
21101 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.2354P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2958 reflections Δρmax = 0.24 e Å3
191 parameters Δρmin = −0.39 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0085 (19)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.66364 (6) 0.562338 (15) 0.52580 (5) 0.03982 (12)
Cl2 0.28455 (5) 0.723630 (17) 0.06158 (5) 0.03924 (12)
O1 0.77275 (17) 0.82495 (4) 0.34242 (14) 0.0369 (3)
O2 0.84369 (18) 0.92793 (5) 0.45517 (16) 0.0431 (3)
H2A 0.809 (3) 0.8981 (10) 0.383 (3) 0.065*
N1 0.72285 (16) 0.76179 (5) 0.53258 (15) 0.0239 (2)
H1 0.720 (2) 0.7541 (7) 0.636 (2) 0.029*
N2 0.63961 (16) 0.72631 (5) 0.39193 (15) 0.0233 (2)
C1 0.9163 (2) 0.90454 (6) 0.6187 (2) 0.0308 (3)
C2 1.0154 (2) 0.93943 (7) 0.7591 (2) 0.0383 (4)
H2 1.0262 0.9784 0.7396 0.046*
C3 1.0976 (2) 0.91717 (7) 0.9261 (2) 0.0409 (4)
H3 1.1648 0.9411 1.0215 0.049*
C4 1.0837 (2) 0.86024 (7) 0.9572 (2) 0.0374 (4)
H4 1.1431 0.8452 1.0723 0.045*
C5 0.9828 (2) 0.82576 (6) 0.81912 (18) 0.0281 (3)
H5 0.9726 0.7869 0.8404 0.034*
C6 0.89542 (19) 0.84719 (6) 0.64844 (18) 0.0246 (3)
C7 0.79269 (19) 0.81097 (6) 0.49710 (18) 0.0246 (3)
C8 0.56322 (19) 0.68201 (6) 0.42645 (18) 0.0242 (3)
H8 0.562 (2) 0.6739 (7) 0.542 (2) 0.029*
C9 0.47973 (19) 0.64095 (6) 0.28383 (17) 0.0252 (3)
C10 0.5196 (2) 0.58369 (6) 0.31608 (19) 0.0286 (3)
C11 0.4494 (2) 0.54288 (7) 0.1881 (2) 0.0379 (4)
H11 0.4807 0.5045 0.2145 0.045*
C12 0.3331 (3) 0.55883 (8) 0.0214 (2) 0.0439 (4)
H12 0.2849 0.5313 −0.0681 0.053*
C13 0.2862 (2) 0.61464 (8) −0.0162 (2) 0.0406 (4)
H13 0.2048 0.6254 −0.1307 0.049*
C14 0.3588 (2) 0.65488 (6) 0.11426 (19) 0.0297 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0478 (2) 0.02692 (19) 0.0405 (2) 0.00367 (16) 0.00954 (17) 0.00623 (15)
Cl2 0.03272 (19) 0.0378 (2) 0.0399 (2) −0.00243 (15) 0.00277 (15) 0.01388 (16)
O1 0.0530 (7) 0.0320 (6) 0.0225 (5) −0.0099 (5) 0.0088 (5) 0.0033 (4)
O2 0.0526 (7) 0.0255 (5) 0.0402 (7) −0.0026 (5) 0.0013 (5) 0.0067 (5)
N1 0.0302 (6) 0.0239 (6) 0.0174 (5) −0.0030 (4) 0.0079 (5) −0.0014 (4)
N2 0.0253 (5) 0.0229 (5) 0.0214 (5) 0.0000 (4) 0.0077 (4) −0.0026 (4)
C1 0.0309 (7) 0.0255 (7) 0.0350 (8) 0.0002 (5) 0.0097 (6) 0.0000 (6)
C2 0.0373 (8) 0.0269 (7) 0.0494 (9) −0.0047 (6) 0.0130 (7) −0.0102 (7)
C3 0.0394 (8) 0.0431 (9) 0.0382 (9) −0.0097 (7) 0.0104 (7) −0.0166 (7)
C4 0.0375 (8) 0.0470 (9) 0.0261 (7) −0.0070 (7) 0.0088 (6) −0.0059 (6)
C5 0.0273 (7) 0.0315 (7) 0.0257 (7) −0.0033 (5) 0.0092 (6) −0.0009 (5)
C6 0.0237 (6) 0.0254 (7) 0.0249 (7) −0.0003 (5) 0.0084 (5) −0.0026 (5)
C7 0.0269 (7) 0.0229 (6) 0.0232 (7) 0.0022 (5) 0.0076 (5) 0.0011 (5)
C8 0.0274 (7) 0.0229 (6) 0.0225 (7) 0.0012 (5) 0.0087 (5) 0.0011 (5)
C9 0.0272 (6) 0.0257 (7) 0.0250 (7) −0.0032 (5) 0.0118 (5) −0.0010 (5)
C10 0.0310 (7) 0.0272 (7) 0.0305 (7) −0.0025 (6) 0.0142 (6) −0.0012 (5)
C11 0.0469 (9) 0.0279 (7) 0.0450 (9) −0.0067 (6) 0.0238 (8) −0.0096 (7)
C12 0.0539 (10) 0.0437 (10) 0.0386 (9) −0.0164 (8) 0.0214 (8) −0.0176 (7)
C13 0.0431 (9) 0.0520 (10) 0.0255 (7) −0.0143 (8) 0.0102 (7) −0.0048 (7)
C14 0.0299 (7) 0.0324 (7) 0.0279 (7) −0.0058 (6) 0.0114 (6) 0.0022 (6)

Geometric parameters (Å, °)

Cl1—C10 1.7395 (15) C4—H4 0.9500
Cl2—C14 1.7364 (16) C5—C6 1.399 (2)
O1—C7 1.2448 (17) C5—H5 0.9500
O2—C1 1.3582 (19) C6—C7 1.4763 (18)
O2—H2A 0.90 (2) C8—C9 1.4745 (19)
N1—C7 1.3533 (18) C8—H8 0.954 (17)
N1—N2 1.3788 (15) C9—C14 1.396 (2)
N1—H1 0.854 (18) C9—C10 1.402 (2)
N2—C8 1.2761 (18) C10—C11 1.383 (2)
C1—C2 1.395 (2) C11—C12 1.379 (3)
C1—C6 1.406 (2) C11—H11 0.9500
C2—C3 1.378 (2) C12—C13 1.383 (3)
C2—H2 0.9500 C12—H12 0.9500
C3—C4 1.390 (3) C13—C14 1.388 (2)
C3—H3 0.9500 C13—H13 0.9500
C4—C5 1.381 (2)
C1—O2—H2A 103.3 (15) O1—C7—C6 121.12 (12)
C7—N1—N2 117.32 (11) N1—C7—C6 117.68 (12)
C7—N1—H1 121.9 (11) N2—C8—C9 118.97 (12)
N2—N1—H1 120.5 (11) N2—C8—H8 122.3 (10)
C8—N2—N1 116.20 (11) C9—C8—H8 118.7 (10)
O2—C1—C2 117.72 (14) C14—C9—C10 116.02 (13)
O2—C1—C6 122.16 (13) C14—C9—C8 124.31 (13)
C2—C1—C6 120.12 (14) C10—C9—C8 119.67 (12)
C3—C2—C1 119.77 (15) C11—C10—C9 122.96 (15)
C3—C2—H2 120.1 C11—C10—Cl1 117.91 (12)
C1—C2—H2 120.1 C9—C10—Cl1 119.14 (11)
C2—C3—C4 120.96 (15) C12—C11—C10 118.86 (15)
C2—C3—H3 119.5 C12—C11—H11 120.6
C4—C3—H3 119.5 C10—C11—H11 120.6
C5—C4—C3 119.43 (15) C11—C12—C13 120.47 (15)
C5—C4—H4 120.3 C11—C12—H12 119.8
C3—C4—H4 120.3 C13—C12—H12 119.8
C4—C5—C6 121.02 (14) C12—C13—C14 119.64 (16)
C4—C5—H5 119.5 C12—C13—H13 120.2
C6—C5—H5 119.5 C14—C13—H13 120.2
C5—C6—C1 118.64 (13) C13—C14—C9 122.02 (15)
C5—C6—C7 122.17 (12) C13—C14—Cl2 117.22 (12)
C1—C6—C7 119.07 (12) C9—C14—Cl2 120.70 (11)
O1—C7—N1 121.20 (12)
C7—N1—N2—C8 −175.33 (12) N1—N2—C8—C9 −177.11 (11)
O2—C1—C2—C3 −177.58 (15) N2—C8—C9—C14 −47.26 (19)
C6—C1—C2—C3 1.9 (2) N2—C8—C9—C10 133.40 (14)
C1—C2—C3—C4 0.1 (2) C14—C9—C10—C11 1.8 (2)
C2—C3—C4—C5 −1.3 (2) C8—C9—C10—C11 −178.78 (13)
C3—C4—C5—C6 0.4 (2) C14—C9—C10—Cl1 −178.18 (10)
C4—C5—C6—C1 1.6 (2) C8—C9—C10—Cl1 1.21 (18)
C4—C5—C6—C7 177.71 (13) C9—C10—C11—C12 −0.7 (2)
O2—C1—C6—C5 176.71 (13) Cl1—C10—C11—C12 179.27 (12)
C2—C1—C6—C5 −2.8 (2) C10—C11—C12—C13 −0.6 (2)
O2—C1—C6—C7 0.5 (2) C11—C12—C13—C14 0.8 (2)
C2—C1—C6—C7 −178.98 (13) C12—C13—C14—C9 0.4 (2)
N2—N1—C7—O1 4.02 (19) C12—C13—C14—Cl2 −176.77 (13)
N2—N1—C7—C6 −175.26 (11) C10—C9—C14—C13 −1.6 (2)
C5—C6—C7—O1 −155.05 (14) C8—C9—C14—C13 179.01 (14)
C1—C6—C7—O1 21.0 (2) C10—C9—C14—Cl2 175.41 (10)
C5—C6—C7—N1 24.23 (19) C8—C9—C14—Cl2 −3.95 (19)
C1—C6—C7—N1 −159.71 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.85 (2) 2.38 (2) 3.165 (2) 153 (2)
N1—H1···O1i 0.85 (2) 2.45 (2) 3.158 (2) 140 (1)
O2—H2A···O1 0.90 (2) 1.78 (2) 2.608 (2) 153 (2)

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2223).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Iqbal, A., Siddiqui, H. L., Ashraf, C. M., Ahmad, M. & Weaver, G. W. (2007). Molecules, 12, 245–254. [DOI] [PMC free article] [PubMed]
  7. Kumar, S., Dhar, D. N. & Saxena, P. N. (2009). J. Sci. Ind. Res.68, 181–187.
  8. Mookherjee, B. D., Trenkle, R. W., Calderone, N., Schreck, L. & Sands, K. P. (1989). US Patent 4 839 083 (58 pp.).
  9. Samadhiya, S. & Halve, A. (2001). Orient. J. Chem.17, 119–122.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Siddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, G. W. (2006). Molecules, 11, 206–211. [DOI] [PMC free article] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Stoe & Cie (1999). X-AREA Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035385/im2223sup1.cif

e-66-o2603-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035385/im2223Isup2.hkl

e-66-o2603-Isup2.hkl (142.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES