Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 8;66(Pt 10):o2512–o2513. doi: 10.1107/S1600536810034926

1-{1-[2,8-Bis(trifluoro­meth­yl)-4-quin­olyl]-5-methyl-1H-1,2,3-triazol-4-yl}ethanone

H C Devarajegowda a,*, S Jeyaseelan a, V Sumangala b, Bojapoojary c, Suresh P Nayak c
PMCID: PMC2983247  PMID: 21587507

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C16H10F6N4O. The triazole ring is not coplanar with the quinoline ring system; the dihedral angle between the two planes being 74.47 (12) and 63.97 (13)° in the two mol­ecules. The crystal structure is characterized by inter­molecular C—H⋯F, C—H⋯N and C—H⋯O hydrogen bonding. Weak intra­molecular C—H⋯F inter­actions are observed. Disorder is observed in two F atoms of one of the trifluoro­methyl groups of one independent mol­ecule [occupancy ratios 0.77 (3):0.23 (3) and 0.77 (4):0.23 (4)] and in all three F atoms of one of the trifluoro­methyl groups of the second independent mol­ecule [occupancy ratios 0.520 (14):0.480 (14), 0.615 (17):0.385 (17) and 0.783 (11):0.217 (11)]. The O atom is also disordered over two positions with occupancies of 0.60 (13) and 0.40 (13) in the first mol­ecule.

Related literature

For general background to triazoles and their benzo derivatives, see: Sanghvi et al. (1990); Bohm & Karow (1981); Holla et al. (2005); Biagi et al. (2004); Karimkulov et al. (1991); Sherement et al. (2004); Savini et al. (1994); Banu et al. (1999); Julino & Stevens (1998); Diana & Nitz (1993); Manfredini et al. (2000); Rene et al. (1986); Passannanti et al. (1998); Deng et al. (2008); Sector & Bardeleben (1971); Barnard et al. (1993). For a related structure, see: Al-eryani et al. (2010).graphic file with name e-66-o2512-scheme1.jpg

Experimental

Crystal data

  • C16H10F6N4O

  • M r = 388.28

  • Monoclinic, Inline graphic

  • a = 14.064 (2) Å

  • b = 8.7275 (13) Å

  • c = 27.468 (4) Å

  • β = 94.172 (2)°

  • V = 3362.6 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Bruker, 2001) T min = 0.972, T max = 0.979

  • 23473 measured reflections

  • 5923 independent reflections

  • 4754 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.139

  • S = 1.05

  • 5923 reflections

  • 547 parameters

  • 63 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034926/ds2049sup1.cif

e-66-o2512-sup1.cif (31.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034926/ds2049Isup2.hkl

e-66-o2512-Isup2.hkl (284.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F12 0.93 2.51 3.178 (3) 129
C9—H9⋯N7i 0.93 2.47 3.312 (4) 151
C16—H16A⋯O2ii 0.96 2.49 3.359 (4) 150
C32—H32B⋯F5Aiii 0.96 2.41 3.324 (14) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Professor T. N. Guru Row and Mr Ravish Sankolli, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

supplementary crystallographic information

Comment

1,2,3-Triazoles and their benzoderivatives have attracted considerable attention because of their theoretical interest and synthetic value. They also find numerous applications in industry and agriculture due to their extensive biological activitiesand successful application as fluorescent whiteners, light stabilizers and optical brightening agents (Sanghvi et al., 1990).Functionalized 1, 2,3-triazoles constitute one of the common fragments present in biologically active compounds (Bohm et al.,1981).This has resulted in a wealth of synthetic methodology for their preparation and incorporation in more complex structures.The accentuated interest in these compounds continues to be expressed in the pharmaceutical community and biological properties of these agents have been the subject of ongoing investigations (Holla et al., 2005). The triazole scaffold has a wide range of therapeutic uses as it is ubiquitously found in drugs. The derivatives of 1, 2, 3-triazoles constitute an important family of heterocyclic compounds due to their chemotherapeutical values (Sanghvi et al., 1990). Some 1,2,3-triazoles are used as DNA cleaving agents and potassium channels activators (Biagi et al., 2004). Since many of them have remarkable antimicrobial(Karimkulov et al., 1991; Sherement et al., 2004), analgesic & anti-inflammatory (Savini et al. ,1994), local anesthetic (Banu et al. , 1999), antimalarial (Julino et al. , 1998), antiviral (Diana et al. ,1993), anti-proliferatine (Manfredini et al. ,2000), anticonvulsant (Rene et al. ,1986), antineoplastic(Passannanti et al. , 1998) and anticancer activity (Deng et al. ,2008), their synthesis and transformations have been received particular interest for a long time.

Fluorine incorporated compounds exhibit dramatically improved potency compared to their non-fluorinated analogues (Sector et al. ,1971) since its incorporation alters the electronic, lipophilic and steric parameters and can critically increase the intrinsic activity,chemical and metabolic stability.In particular, introduction of CF3 group in organic molecules immensely increased the pharmacological activity as well as lipophilicity (Barnard et al. ,1993).

The structure of 1-{1-[2,8-bis(trifluoromethyl) quinolin-4-yl]-5- methyl-1H-1,2,3-triazol-4-yl}ethanone contains two independent molecules in the asymmetric unit. The triazole ring is not coplanar with the quinoline ring system; the dihedral angle between the two planes is 74.21 (08)°. The structure of the molecules is stabilized by intermolecular C5–H5···F12 & C9–H9···N7, C16–H16A···O2 & C32–H32B···F5A and weak intramolecular C3–H3···F3 & C25–H25···F12 hydrogen bonding (Table 1) and shows two fluorine atoms disordered in one of the trifluoromethyl group and oxygen atom.

Experimental

A solution of 4-Azido-2,8 bis trifluoro methyl quinoline (2.5 g,0.08 mol) in 25 mL me thanol was treated with acetyl acetone (0.9 g, 0.008 mol) and the mixture was cooled to 0°C. Sodium methoxide (0.008 mol) was added in lots under nitrogen over a period of 30 minutes. It was then stirred for 30 minutes. The progress of the reaction was monitored by TLC using ethyl acetate: hexane (1: 4, v/v) as mobile phase. The reaction mass is quenched to ice water. The title compound is isolated by filtration as a yellow solid. The recrystallization of the compound in methanol gave 76% of pure compound. Melting point: 427 K. Mol.Wt: 388.27 IR (KBr, γ/cm-1): 3025 (Ar—H), 1715 (C=O), 1005(C—F). 1H NMR (300 MHz, CDCl3): δ, 2.52(s, CH3, 3H), 2.83(s, 3H, COCH3), 7.26(s, Ar—H,1H), 7.65–7.68(d, 1H, Ar—H, J =8.4 Hz),8.32–8.34 (d, 1H, Ar—H, J =7.2 Hz), 7.83–7. 86 (t, IH, Ar—H, J =7.8 Hz). MS (m/z, %):388 (M+). Anal. calcd for C16 H10F6N4O (in %): C-49.47, H-2.61, N-14.44. Found C-49.49, H-2.60, N-14.43.

Refinement

All H atoms were positioned at calculated positions with C—H = 0.93Å for aromatic H and 0.96Å for methyl H and refined using a riding model with Uiso(H) =1.5Ueq(C)for methyl H and 1.2Ueq(C) for other and also refined two fluorine atoms of the trifluoromethyl group is disordered with two orientations.

variation in Ueq for C1, C11, C17 and C24 as compared to Neighbors

C1, C11, C17 and C24 are free terminal trifluoromethyl carbon attached to benzene ring of quinoline part of the structure. The high electron dense fluorine atoms, freely movable in this case, increase the thermal factor of the C1, C11, C17 and C24. Thus giving variation in Ueq as Compared to Neighbors

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius and showing intramolecular hydrogen bonds as dashed lines.

Fig. 2.

Fig. 2.

Packing of the molecules showing hydrogen bonds as dashed lines.

Crystal data

C16H10F6N4O F(000) = 1568
Mr = 388.28 Dx = 1.534 Mg m3
Monoclinic, P21/n Melting point: 427 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 14.064 (2) Å Cell parameters from 5923 reflections
b = 8.7275 (13) Å θ = 1.5–25.0°
c = 27.468 (4) Å µ = 0.14 mm1
β = 94.172 (2)° T = 293 K
V = 3362.6 (9) Å3 Plate, colourless
Z = 8 0.20 × 0.20 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer 5923 independent reflections
Radiation source: fine-focus sealed tube 4754 reflections with I > 2σ(I)
graphite Rint = 0.028
ω and φ scans θmax = 25.0°, θmin = 1.5°
Absorption correction: ψ scan (SADABS; Bruker, 2001) h = −16→16
Tmin = 0.972, Tmax = 0.979 k = −10→10
23473 measured reflections l = −32→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.069P)2 + 1.1626P] where P = (Fo2 + 2Fc2)/3
5923 reflections (Δ/σ)max < 0.001
547 parameters Δρmax = 0.26 e Å3
63 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
F1 0.62603 (13) −0.2838 (2) 0.18151 (6) 0.0844 (5)
F2 0.75645 (12) −0.3765 (2) 0.16020 (6) 0.0801 (5)
F3 0.62542 (16) −0.4783 (2) 0.13491 (7) 0.1023 (7)
F4B 0.8238 (11) 0.0406 (9) 0.23119 (18) 0.128 (3) 0.77 (3)
F4A 0.7910 (14) 0.083 (3) 0.2312 (5) 0.078 (5) 0.23 (3)
F5B 0.9284 (8) 0.158 (3) 0.1861 (9) 0.094 (6) 0.23 (4)
F5A 0.9304 (3) 0.101 (2) 0.1948 (5) 0.135 (3) 0.77 (4)
F6 0.82879 (16) 0.2748 (2) 0.20693 (7) 0.0989 (6)
F7B 0.2388 (9) 0.1504 (13) 0.27486 (16) 0.134 (5) 0.520 (14)
F7A 0.1679 (8) 0.0748 (7) 0.2564 (4) 0.121 (4) 0.480 (14)
F8B 0.2743 (9) 0.2284 (13) 0.2066 (6) 0.135 (6) 0.385 (17)
F8A 0.2871 (4) 0.2331 (8) 0.2421 (6) 0.150 (4) 0.615 (17)
F9B 0.1555 (9) 0.0653 (10) 0.2269 (7) 0.096 (6) 0.217 (11)
F9A 0.1964 (4) 0.1177 (6) 0.19132 (18) 0.128 (2) 0.783 (11)
F10 0.06252 (14) 0.3249 (2) 0.37351 (6) 0.0909 (6)
F11 0.17217 (12) 0.4920 (3) 0.37357 (6) 0.0939 (6)
F12 0.04672 (15) 0.5362 (3) 0.41025 (6) 0.1034 (7)
O1B 0.8131 (8) 0.499 (5) −0.0850 (17) 0.094 (6) 0.40 (13)
O1A 0.8059 (15) 0.466 (5) −0.0966 (16) 0.088 (6) 0.60 (13)
O2 −0.05430 (19) 0.9546 (3) 0.05710 (9) 0.0934 (7)
N1 0.75116 (13) −0.0489 (2) 0.14556 (6) 0.0459 (4)
N2 0.70539 (13) 0.2637 (2) 0.02946 (7) 0.0448 (4)
N3 0.61525 (14) 0.3219 (2) 0.02063 (8) 0.0568 (5)
N4 0.61674 (15) 0.4042 (2) −0.01854 (8) 0.0576 (5)
N5 0.11417 (13) 0.3718 (2) 0.27600 (7) 0.0504 (5)
N6 −0.00853 (13) 0.5686 (2) 0.14652 (6) 0.0466 (4)
N7 −0.06553 (16) 0.4771 (2) 0.11648 (7) 0.0602 (6)
N8 −0.09389 (16) 0.5602 (3) 0.07907 (8) 0.0648 (6)
C1 0.6679 (2) −0.3437 (3) 0.14425 (10) 0.0590 (7)
C2 0.66029 (16) −0.2409 (3) 0.10050 (8) 0.0456 (5)
C3 0.61058 (17) −0.2867 (3) 0.05863 (9) 0.0518 (6)
H3 0.5842 −0.3844 0.0568 0.062*
C4 0.59872 (17) −0.1888 (3) 0.01827 (8) 0.0527 (6)
H4 0.5662 −0.2234 −0.0103 0.063*
C5 0.63381 (16) −0.0448 (3) 0.02028 (8) 0.0469 (5)
H5 0.6243 0.0197 −0.0066 0.056*
C6 0.68504 (14) 0.0080 (2) 0.06324 (7) 0.0405 (5)
C7 0.70045 (14) −0.0920 (2) 0.10371 (7) 0.0401 (5)
C8 0.72286 (15) 0.1571 (2) 0.06873 (8) 0.0422 (5)
C9 0.77317 (16) 0.1999 (3) 0.11060 (8) 0.0493 (5)
H9 0.7988 0.2978 0.1144 0.059*
C10 0.78488 (16) 0.0901 (3) 0.14781 (8) 0.0480 (5)
C11 0.8398 (2) 0.1312 (3) 0.19515 (10) 0.0672 (8)
C12 0.76358 (16) 0.3096 (3) −0.00439 (8) 0.0488 (5)
C13 0.70503 (18) 0.4002 (3) −0.03525 (9) 0.0523 (6)
C14 0.7286 (3) 0.4792 (3) −0.07976 (10) 0.0699 (8)
C15 0.6496 (3) 0.5594 (5) −0.10873 (13) 0.1034 (12)
H15A 0.6740 0.6064 −0.1369 0.155*
H15B 0.6230 0.6367 −0.0889 0.155*
H15C 0.6010 0.4867 −0.1191 0.155*
C16 0.86421 (19) 0.2661 (4) −0.00449 (11) 0.0729 (8)
H16A 0.8809 0.2009 0.0230 0.109*
H16B 0.9031 0.3566 −0.0023 0.109*
H16C 0.8745 0.2124 −0.0341 0.109*
C17 0.2014 (2) 0.1926 (3) 0.23226 (11) 0.0745 (8)
C18 0.13305 (17) 0.3238 (3) 0.23277 (9) 0.0523 (6)
C19 0.09522 (17) 0.3874 (3) 0.18863 (9) 0.0514 (6)
H19 0.1123 0.3498 0.1588 0.062*
C20 0.03335 (15) 0.5047 (2) 0.19089 (8) 0.0431 (5)
C21 0.00741 (15) 0.5608 (3) 0.23647 (8) 0.0443 (5)
C22 0.05239 (15) 0.4897 (3) 0.27825 (8) 0.0442 (5)
C23 0.03100 (17) 0.5448 (3) 0.32524 (8) 0.0526 (6)
C24 0.0786 (2) 0.4748 (4) 0.36993 (10) 0.0670 (7)
C25 −0.03136 (19) 0.6618 (3) 0.32868 (10) 0.0636 (7)
H25 −0.0440 0.6983 0.3593 0.076*
C26 −0.07694 (19) 0.7285 (3) 0.28722 (10) 0.0645 (7)
H26 −0.1201 0.8078 0.2906 0.077*
C27 −0.05890 (17) 0.6790 (3) 0.24192 (9) 0.0537 (6)
H27 −0.0904 0.7233 0.2145 0.064*
C28 −0.00056 (16) 0.7101 (3) 0.12737 (8) 0.0483 (5)
C29 −0.05686 (17) 0.7031 (3) 0.08470 (8) 0.0521 (6)
C30 −0.07782 (19) 0.8242 (4) 0.04788 (10) 0.0658 (7)
C31 −0.1272 (2) 0.7785 (5) 0.00060 (11) 0.0913 (11)
H31A −0.1367 0.8671 −0.0199 0.137*
H31B −0.1879 0.7340 0.0062 0.137*
H31C −0.0891 0.7049 −0.0152 0.137*
C32 0.0637 (2) 0.8291 (3) 0.14926 (11) 0.0700 (8)
H32A 0.0917 0.7937 0.1801 0.105*
H32B 0.0280 0.9210 0.1540 0.105*
H32C 0.1131 0.8500 0.1279 0.105*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0980 (12) 0.1025 (13) 0.0544 (10) 0.0095 (10) 0.0171 (9) 0.0280 (9)
F2 0.0782 (11) 0.0789 (11) 0.0806 (11) 0.0107 (8) −0.0127 (9) 0.0266 (9)
F3 0.1420 (17) 0.0650 (11) 0.0946 (13) −0.0417 (11) −0.0284 (12) 0.0313 (10)
F4B 0.233 (7) 0.082 (3) 0.058 (2) −0.045 (4) −0.070 (3) 0.0165 (17)
F4A 0.094 (8) 0.112 (9) 0.028 (5) −0.024 (6) 0.007 (5) 0.003 (5)
F5B 0.073 (8) 0.099 (9) 0.101 (8) −0.024 (8) −0.042 (6) 0.003 (7)
F5A 0.086 (3) 0.183 (8) 0.127 (5) 0.044 (3) −0.058 (2) −0.064 (5)
F6 0.1453 (18) 0.0743 (12) 0.0709 (11) −0.0031 (11) −0.0348 (11) −0.0232 (9)
F7B 0.169 (8) 0.152 (7) 0.076 (3) 0.113 (7) −0.026 (4) 0.003 (3)
F7A 0.180 (8) 0.074 (4) 0.110 (6) 0.047 (4) 0.015 (6) 0.025 (4)
F8B 0.132 (8) 0.138 (7) 0.144 (9) 0.073 (6) 0.068 (6) 0.044 (6)
F8A 0.083 (3) 0.130 (4) 0.227 (9) 0.047 (3) −0.063 (4) −0.063 (5)
F9B 0.115 (8) 0.050 (5) 0.117 (11) 0.010 (5) −0.042 (7) −0.037 (6)
F9A 0.142 (4) 0.115 (3) 0.121 (3) 0.067 (3) −0.026 (3) −0.054 (3)
F10 0.1089 (14) 0.0942 (13) 0.0684 (11) −0.0121 (11) −0.0012 (10) 0.0312 (10)
F11 0.0689 (11) 0.1451 (17) 0.0648 (11) −0.0185 (11) −0.0156 (8) 0.0198 (11)
F12 0.1265 (16) 0.1486 (18) 0.0351 (9) 0.0113 (13) 0.0062 (9) −0.0014 (10)
O1B 0.129 (13) 0.106 (10) 0.047 (10) −0.015 (10) 0.021 (5) 0.023 (7)
O1A 0.094 (6) 0.114 (9) 0.059 (9) 0.024 (4) 0.031 (4) 0.029 (7)
O2 0.1241 (19) 0.0700 (14) 0.0847 (15) 0.0196 (13) −0.0017 (13) 0.0242 (12)
N1 0.0517 (11) 0.0504 (11) 0.0349 (10) −0.0014 (9) −0.0021 (8) 0.0016 (8)
N2 0.0466 (10) 0.0431 (10) 0.0442 (10) −0.0013 (8) 0.0004 (8) 0.0059 (8)
N3 0.0491 (11) 0.0599 (12) 0.0609 (13) 0.0026 (9) 0.0012 (9) 0.0120 (10)
N4 0.0615 (13) 0.0535 (12) 0.0567 (13) 0.0052 (10) −0.0027 (10) 0.0111 (10)
N5 0.0528 (11) 0.0510 (11) 0.0465 (11) −0.0011 (9) −0.0011 (9) 0.0046 (9)
N6 0.0521 (11) 0.0486 (11) 0.0383 (10) −0.0030 (8) −0.0022 (8) −0.0018 (8)
N7 0.0709 (14) 0.0609 (13) 0.0465 (12) −0.0131 (10) −0.0121 (10) 0.0015 (10)
N8 0.0671 (14) 0.0775 (16) 0.0476 (12) −0.0073 (12) −0.0113 (10) 0.0034 (11)
C1 0.0687 (17) 0.0540 (15) 0.0529 (15) −0.0091 (12) −0.0049 (13) 0.0107 (12)
C2 0.0496 (12) 0.0448 (12) 0.0420 (12) −0.0032 (10) 0.0009 (10) 0.0040 (9)
C3 0.0579 (14) 0.0452 (13) 0.0515 (14) −0.0080 (11) −0.0014 (11) −0.0018 (11)
C4 0.0576 (14) 0.0581 (14) 0.0411 (13) −0.0067 (11) −0.0049 (10) −0.0056 (11)
C5 0.0536 (13) 0.0528 (13) 0.0336 (11) −0.0031 (11) −0.0013 (9) 0.0021 (10)
C6 0.0409 (11) 0.0458 (12) 0.0348 (11) −0.0006 (9) 0.0035 (9) 0.0015 (9)
C7 0.0426 (11) 0.0447 (12) 0.0328 (11) −0.0013 (9) 0.0008 (9) −0.0003 (9)
C8 0.0421 (11) 0.0460 (12) 0.0386 (12) −0.0017 (9) 0.0034 (9) 0.0040 (9)
C9 0.0533 (13) 0.0459 (12) 0.0480 (13) −0.0092 (10) −0.0018 (10) −0.0011 (10)
C10 0.0498 (13) 0.0514 (13) 0.0418 (12) −0.0037 (10) −0.0035 (10) −0.0032 (10)
C11 0.084 (2) 0.0591 (17) 0.0552 (17) −0.0057 (15) −0.0206 (15) −0.0056 (13)
C12 0.0575 (13) 0.0462 (12) 0.0434 (12) 0.0015 (10) 0.0076 (10) 0.0065 (10)
C13 0.0639 (15) 0.0460 (13) 0.0470 (13) 0.0038 (11) 0.0038 (11) 0.0051 (10)
C14 0.093 (2) 0.0618 (17) 0.0549 (17) 0.0063 (16) 0.0078 (16) 0.0152 (13)
C15 0.127 (3) 0.106 (3) 0.077 (2) 0.024 (2) 0.003 (2) 0.044 (2)
C16 0.0649 (16) 0.084 (2) 0.0722 (19) 0.0182 (15) 0.0223 (14) 0.0243 (15)
C17 0.088 (2) 0.0654 (19) 0.070 (2) 0.0224 (17) −0.0001 (18) 0.0005 (16)
C18 0.0547 (13) 0.0499 (13) 0.0519 (15) 0.0016 (11) 0.0009 (11) 0.0016 (11)
C19 0.0601 (14) 0.0510 (13) 0.0430 (13) 0.0010 (11) 0.0031 (11) −0.0045 (10)
C20 0.0472 (12) 0.0442 (12) 0.0372 (12) −0.0039 (9) −0.0008 (9) 0.0015 (9)
C21 0.0423 (11) 0.0468 (12) 0.0435 (12) −0.0046 (9) 0.0014 (9) −0.0021 (10)
C22 0.0438 (12) 0.0480 (13) 0.0404 (12) −0.0067 (10) −0.0003 (9) 0.0018 (9)
C23 0.0535 (13) 0.0636 (15) 0.0406 (13) −0.0104 (12) 0.0033 (10) −0.0008 (11)
C24 0.0702 (18) 0.086 (2) 0.0445 (15) −0.0115 (15) 0.0008 (12) 0.0076 (13)
C25 0.0677 (16) 0.0779 (18) 0.0465 (14) −0.0004 (14) 0.0120 (12) −0.0108 (13)
C26 0.0644 (16) 0.0702 (17) 0.0599 (17) 0.0123 (13) 0.0110 (13) −0.0067 (13)
C27 0.0518 (13) 0.0611 (15) 0.0476 (14) 0.0039 (11) −0.0004 (11) 0.0021 (11)
C28 0.0529 (13) 0.0479 (13) 0.0441 (13) 0.0045 (10) 0.0033 (10) 0.0014 (10)
C29 0.0505 (13) 0.0604 (15) 0.0455 (13) 0.0068 (11) 0.0031 (10) 0.0055 (11)
C30 0.0598 (15) 0.081 (2) 0.0567 (16) 0.0181 (14) 0.0061 (12) 0.0182 (15)
C31 0.086 (2) 0.122 (3) 0.0627 (19) 0.021 (2) −0.0116 (16) 0.0249 (19)
C32 0.087 (2) 0.0544 (15) 0.0669 (18) −0.0120 (14) −0.0050 (15) 0.0025 (13)

Geometric parameters (Å, °)

F1—C1 1.325 (3) C5—H5 0.9300
F2—C1 1.321 (3) C6—C8 1.410 (3)
F3—C1 1.334 (3) C6—C7 1.418 (3)
F4B—C11 1.300 (4) C8—C9 1.358 (3)
F4A—C11 1.313 (7) C9—C10 1.402 (3)
F5B—C11 1.309 (8) C9—H9 0.9300
F5A—C11 1.301 (5) C10—C11 1.507 (3)
F6—C11 1.306 (3) C12—C13 1.386 (3)
F7B—C17 1.301 (5) C12—C16 1.465 (3)
F7A—C17 1.328 (5) C13—C14 1.462 (4)
F8B—C17 1.324 (6) C14—C15 1.493 (4)
F8A—C17 1.267 (5) C15—H15A 0.9600
F9B—C17 1.288 (7) C15—H15B 0.9600
F9A—C17 1.298 (4) C15—H15C 0.9600
F10—C24 1.333 (3) C16—H16A 0.9600
F11—C24 1.321 (3) C16—H16B 0.9600
F12—C24 1.337 (3) C16—H16C 0.9600
O1B—C14 1.220 (9) C17—C18 1.496 (4)
O1A—C14 1.217 (7) C18—C19 1.402 (3)
O2—C30 1.207 (4) C19—C20 1.348 (3)
N1—C10 1.303 (3) C19—H19 0.9300
N1—C7 1.361 (3) C20—C21 1.417 (3)
N2—C12 1.344 (3) C21—C27 1.406 (3)
N2—N3 1.371 (3) C21—C22 1.413 (3)
N2—C8 1.432 (3) C22—C23 1.429 (3)
N3—N4 1.295 (3) C23—C25 1.354 (4)
N4—C13 1.355 (3) C23—C24 1.486 (4)
N5—C18 1.304 (3) C25—C26 1.393 (4)
N5—C22 1.352 (3) C25—H25 0.9300
N6—C28 1.350 (3) C26—C27 1.358 (3)
N6—N7 1.366 (3) C26—H26 0.9300
N6—C20 1.428 (3) C27—H27 0.9300
N7—N8 1.297 (3) C28—C29 1.367 (3)
N8—C29 1.356 (3) C28—C32 1.475 (4)
C1—C2 1.497 (3) C29—C30 1.478 (4)
C2—C3 1.362 (3) C30—C31 1.482 (4)
C2—C7 1.417 (3) C31—H31A 0.9600
C3—C4 1.400 (3) C31—H31B 0.9600
C3—H3 0.9300 C31—H31C 0.9600
C4—C5 1.350 (3) C32—H32A 0.9600
C4—H4 0.9300 C32—H32B 0.9600
C5—C6 1.414 (3) C32—H32C 0.9600
C10—N1—C7 117.63 (19) H16A—C16—H16B 109.5
C12—N2—N3 111.66 (18) C12—C16—H16C 109.5
C12—N2—C8 129.43 (18) H16A—C16—H16C 109.5
N3—N2—C8 118.67 (17) H16B—C16—H16C 109.5
N4—N3—N2 106.37 (18) F8A—C17—F9B 136.6 (7)
N3—N4—C13 109.73 (19) F8A—C17—F9A 108.5 (6)
C18—N5—C22 117.40 (19) F9B—C17—F9A 58.2 (8)
C28—N6—N7 111.18 (18) F8A—C17—F7B 64.5 (8)
C28—N6—C20 130.48 (19) F9B—C17—F7B 91.4 (8)
N7—N6—C20 118.33 (18) F9A—C17—F7B 129.0 (4)
N8—N7—N6 106.56 (19) F8A—C17—F8B 44.4 (5)
N7—N8—C29 109.3 (2) F9B—C17—F8B 123.0 (11)
F2—C1—F1 106.9 (2) F9A—C17—F8B 69.7 (9)
F2—C1—F3 105.7 (2) F7B—C17—F8B 105.5 (9)
F1—C1—F3 106.1 (2) F8A—C17—F7A 118.4 (8)
F2—C1—C2 114.0 (2) F9B—C17—F7A 36.5 (8)
F1—C1—C2 111.9 (2) F9A—C17—F7A 92.6 (6)
F3—C1—C2 111.6 (2) F7B—C17—F7A 57.8 (5)
C3—C2—C7 120.0 (2) F8B—C17—F7A 139.9 (5)
C3—C2—C1 120.3 (2) F8A—C17—C18 112.7 (3)
C7—C2—C1 119.6 (2) F9B—C17—C18 110.2 (6)
C2—C3—C4 120.9 (2) F9A—C17—C18 113.5 (3)
C2—C3—H3 119.6 F7B—C17—C18 115.2 (3)
C4—C3—H3 119.6 F8B—C17—C18 110.4 (4)
C5—C4—C3 120.9 (2) F7A—C17—C18 109.7 (4)
C5—C4—H4 119.5 N5—C18—C19 124.8 (2)
C3—C4—H4 119.5 N5—C18—C17 115.3 (2)
C4—C5—C6 120.0 (2) C19—C18—C17 119.9 (2)
C4—C5—H5 120.0 C20—C19—C18 117.8 (2)
C6—C5—H5 120.0 C20—C19—H19 121.1
C8—C6—C5 123.73 (19) C18—C19—H19 121.1
C8—C6—C7 116.70 (18) C19—C20—C21 120.8 (2)
C5—C6—C7 119.57 (19) C19—C20—N6 119.0 (2)
N1—C7—C2 119.19 (19) C21—C20—N6 120.17 (19)
N1—C7—C6 122.24 (19) C27—C21—C22 119.8 (2)
C2—C7—C6 118.56 (19) C27—C21—C20 124.3 (2)
C9—C8—C6 120.9 (2) C22—C21—C20 115.9 (2)
C9—C8—N2 120.6 (2) N5—C22—C21 123.3 (2)
C6—C8—N2 118.44 (18) N5—C22—C23 118.4 (2)
C8—C9—C10 117.1 (2) C21—C22—C23 118.3 (2)
C8—C9—H9 121.4 C25—C23—C22 119.8 (2)
C10—C9—H9 121.4 C25—C23—C24 120.5 (2)
N1—C10—C9 125.4 (2) C22—C23—C24 119.7 (2)
N1—C10—C11 115.1 (2) F11—C24—F10 106.2 (3)
C9—C10—C11 119.5 (2) F11—C24—F12 106.5 (2)
F4B—C11—F5A 96.2 (11) F10—C24—F12 105.3 (2)
F4B—C11—F6 111.4 (5) F11—C24—C23 113.7 (2)
F5A—C11—F6 109.1 (8) F10—C24—C23 113.3 (2)
F4B—C11—F5B 118.2 (13) F12—C24—C23 111.2 (3)
F5A—C11—F5B 24.2 (9) C23—C25—C26 121.3 (2)
F6—C11—F5B 90.5 (12) C23—C25—H25 119.3
F4B—C11—F4A 26.3 (8) C26—C25—H25 119.3
F5A—C11—F4A 120.5 (13) C27—C26—C25 120.7 (2)
F6—C11—F4A 92.3 (11) C27—C26—H26 119.7
F5B—C11—F4A 139.1 (14) C25—C26—H26 119.7
F4B—C11—C10 114.0 (4) C26—C27—C21 120.0 (2)
F5A—C11—C10 112.7 (4) C26—C27—H27 120.0
F6—C11—C10 112.3 (2) C21—C27—H27 120.0
F5B—C11—C10 108.3 (11) N6—C28—C29 103.5 (2)
F4A—C11—C10 108.2 (8) N6—C28—C32 123.4 (2)
N2—C12—C13 103.2 (2) C29—C28—C32 132.8 (2)
N2—C12—C16 124.1 (2) N8—C29—C28 109.4 (2)
C13—C12—C16 132.7 (2) N8—C29—C30 121.6 (2)
N4—C13—C12 109.0 (2) C28—C29—C30 129.0 (3)
N4—C13—C14 122.7 (2) O2—C30—C29 119.5 (3)
C12—C13—C14 128.3 (2) O2—C30—C31 122.8 (3)
O1A—C14—O1B 20.3 (18) C29—C30—C31 117.7 (3)
O1A—C14—C13 122.5 (9) C30—C31—H31A 109.5
O1B—C14—C13 116.5 (15) C30—C31—H31B 109.5
O1A—C14—C15 119.4 (12) H31A—C31—H31B 109.5
O1B—C14—C15 124.5 (13) C30—C31—H31C 109.5
C13—C14—C15 117.5 (3) H31A—C31—H31C 109.5
C14—C15—H15A 109.5 H31B—C31—H31C 109.5
C14—C15—H15B 109.5 C28—C32—H32A 109.5
H15A—C15—H15B 109.5 C28—C32—H32B 109.5
C14—C15—H15C 109.5 H32A—C32—H32B 109.5
H15A—C15—H15C 109.5 C28—C32—H32C 109.5
H15B—C15—H15C 109.5 H32A—C32—H32C 109.5
C12—C16—H16A 109.5 H32B—C32—H32C 109.5
C12—C16—H16B 109.5
C12—N2—N3—N4 −0.1 (3) C12—C13—C14—O1B −19 (3)
C8—N2—N3—N4 −174.99 (19) N4—C13—C14—C15 −3.4 (4)
N2—N3—N4—C13 0.2 (3) C12—C13—C14—C15 175.0 (3)
C28—N6—N7—N8 −0.6 (3) C22—N5—C18—C19 1.1 (4)
C20—N6—N7—N8 −179.6 (2) C22—N5—C18—C17 −179.7 (2)
N6—N7—N8—C29 −0.5 (3) F8A—C17—C18—N5 −76.4 (9)
F2—C1—C2—C3 122.6 (3) F9B—C17—C18—N5 96.7 (10)
F1—C1—C2—C3 −115.9 (3) F9A—C17—C18—N5 159.8 (4)
F3—C1—C2—C3 2.9 (4) F7B—C17—C18—N5 −4.9 (9)
F2—C1—C2—C7 −61.0 (3) F8B—C17—C18—N5 −124.3 (10)
F1—C1—C2—C7 60.5 (3) F7A—C17—C18—N5 57.8 (7)
F3—C1—C2—C7 179.3 (2) F8A—C17—C18—C19 102.8 (8)
C7—C2—C3—C4 0.3 (4) F9B—C17—C18—C19 −84.1 (10)
C1—C2—C3—C4 176.7 (2) F9A—C17—C18—C19 −21.0 (5)
C2—C3—C4—C5 −2.0 (4) F7B—C17—C18—C19 174.3 (8)
C3—C4—C5—C6 1.3 (4) F8B—C17—C18—C19 55.0 (11)
C4—C5—C6—C8 −179.0 (2) F7A—C17—C18—C19 −123.0 (7)
C4—C5—C6—C7 1.0 (3) N5—C18—C19—C20 −1.4 (4)
C10—N1—C7—C2 −178.2 (2) C17—C18—C19—C20 179.5 (2)
C10—N1—C7—C6 0.9 (3) C18—C19—C20—C21 −0.3 (3)
C3—C2—C7—N1 −179.0 (2) C18—C19—C20—N6 −178.1 (2)
C1—C2—C7—N1 4.6 (3) C28—N6—C20—C19 −115.8 (3)
C3—C2—C7—C6 1.9 (3) N7—N6—C20—C19 63.0 (3)
C1—C2—C7—C6 −174.5 (2) C28—N6—C20—C21 66.3 (3)
C8—C6—C7—N1 −1.6 (3) N7—N6—C20—C21 −114.9 (2)
C5—C6—C7—N1 178.4 (2) C19—C20—C21—C27 −177.8 (2)
C8—C6—C7—C2 177.44 (19) N6—C20—C21—C27 0.0 (3)
C5—C6—C7—C2 −2.6 (3) C19—C20—C21—C22 1.9 (3)
C5—C6—C8—C9 −178.6 (2) N6—C20—C21—C22 179.73 (18)
C7—C6—C8—C9 1.4 (3) C18—N5—C22—C21 0.7 (3)
C5—C6—C8—N2 2.6 (3) C18—N5—C22—C23 −179.7 (2)
C7—C6—C8—N2 −177.39 (18) C27—C21—C22—N5 177.5 (2)
C12—N2—C8—C9 79.1 (3) C20—C21—C22—N5 −2.2 (3)
N3—N2—C8—C9 −107.1 (2) C27—C21—C22—C23 −2.1 (3)
C12—N2—C8—C6 −102.1 (3) C20—C21—C22—C23 178.20 (19)
N3—N2—C8—C6 71.7 (3) N5—C22—C23—C25 −179.3 (2)
C6—C8—C9—C10 −0.5 (3) C21—C22—C23—C25 0.3 (3)
N2—C8—C9—C10 178.3 (2) N5—C22—C23—C24 1.7 (3)
C7—N1—C10—C9 0.1 (3) C21—C22—C23—C24 −178.7 (2)
C7—N1—C10—C11 179.6 (2) C25—C23—C24—F11 −116.5 (3)
C8—C9—C10—N1 −0.3 (4) C22—C23—C24—F11 62.5 (3)
C8—C9—C10—C11 −179.8 (2) C25—C23—C24—F10 122.1 (3)
N1—C10—C11—F4B −18.2 (8) C22—C23—C24—F10 −59.0 (3)
C9—C10—C11—F4B 161.4 (8) C25—C23—C24—F12 3.8 (4)
N1—C10—C11—F5A 90.1 (11) C22—C23—C24—F12 −177.3 (2)
C9—C10—C11—F5A −90.3 (11) C22—C23—C25—C26 1.2 (4)
N1—C10—C11—F6 −146.1 (2) C24—C23—C25—C26 −179.8 (3)
C9—C10—C11—F6 33.5 (3) C23—C25—C26—C27 −0.9 (4)
N1—C10—C11—F5B 115.6 (12) C25—C26—C27—C21 −1.0 (4)
C9—C10—C11—F5B −64.9 (12) C22—C21—C27—C26 2.4 (4)
N1—C10—C11—F4A −45.7 (13) C20—C21—C27—C26 −177.9 (2)
C9—C10—C11—F4A 133.9 (13) N7—N6—C28—C29 1.3 (3)
N3—N2—C12—C13 0.0 (3) C20—N6—C28—C29 −179.8 (2)
C8—N2—C12—C13 174.1 (2) N7—N6—C28—C32 −173.9 (2)
N3—N2—C12—C16 179.8 (2) C20—N6—C28—C32 4.9 (4)
C8—N2—C12—C16 −6.0 (4) N7—N8—C29—C28 1.3 (3)
N3—N4—C13—C12 −0.3 (3) N7—N8—C29—C30 −179.3 (2)
N3—N4—C13—C14 178.4 (2) N6—C28—C29—N8 −1.6 (3)
N2—C12—C13—N4 0.2 (3) C32—C28—C29—N8 173.0 (3)
C16—C12—C13—N4 −179.7 (3) N6—C28—C29—C30 179.1 (2)
N2—C12—C13—C14 −178.4 (3) C32—C28—C29—C30 −6.3 (5)
C16—C12—C13—C14 1.8 (5) N8—C29—C30—O2 170.1 (3)
N4—C13—C14—O1A −175 (3) C28—C29—C30—O2 −10.6 (4)
C12—C13—C14—O1A 4(3) N8—C29—C30—C31 −10.1 (4)
N4—C13—C14—O1B 163 (3) C28—C29—C30—C31 169.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···F3 0.93 2.33 2.677 (3) 102
C5—H5···F12i 0.93 2.51 3.178 (3) 129
C9—H9···N7ii 0.93 2.47 3.312 (4) 151
C16—H16A···O2iii 0.96 2.49 3.359 (4) 150
C25—H25···F12 0.93 2.31 2.659 (3) 102
C32—H32B···F5Aiv 0.96 2.41 3.324 (14) 158

Symmetry codes: (i) ; (ii) x+1, y, z; (iii) x+1, y−1, z; (iv) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2049).

References

  1. Al-eryani, W. F. A., Kumari, J. S., Arunkashi, H. K., Vepuri, S. B. & Devarajegowda, H. C. (2010). Acta Cryst. E66, o1742. [DOI] [PMC free article] [PubMed]
  2. Banu, K. M., Dinakar, A. & Ananthanarayanan, C. (1999). Indian J. Pharm. Sci.16, 202–205.
  3. Barnard, S., Storr, R. C. & Park, B. K. (1993). J. Pharm. Pharmacol.45, 736–744. [DOI] [PubMed]
  4. Biagi, G., Calderone, V., Giorgi, I., Livi, O., Martinotti, E., Martelli, A. & Naedi, A. (2004). Farmaco, 59, 397–404. [DOI] [PubMed]
  5. Bohm, R. & Karow, C. (1981). Pharmazie, 36, 243–247. [PubMed]
  6. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Deng, L., Yang, B., He, Q. & Hu, Y. (2008). Lett. Drug Des. Discov.5, 225–231.
  8. Diana, G. D. & Nitz, J. J. (1993). Eur. Patent 1,1-38.
  9. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  10. Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Poojary, B., Akberali, P. M. & Kumari, N. S. (2005). Eur. J. Med. Chem.40, 1173–1178. [DOI] [PubMed]
  11. Julino, M. & Stevens, M. F. G. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1677–1684.
  12. Karimkulov, K. M., Dzhuraev, A. D., Makhsumov, A. G. & Amanov, N. (1991). J. Pharm. Chem.25, 399–401.
  13. Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem.8, 2343–2346. [DOI] [PubMed]
  14. Passannanti, A., Diana, P., Barraja, P., Mingoia, F., Lauria, A. & Cirrincione, G. (1998). Heterocycles, 48, 1229–1235.
  15. Rene Meier, Buus. (1986). Switzerland US Patent 4 789-680.
  16. Sanghvi, Y. S., Bhattacharya, B. K., Kini, G. D., Matsumoto, S. S., Larson, S. B., Jolley, W. B., Robins, R. K. & Revankar, G. R. J. (1990). Med. Chem.33, 336–344. [DOI] [PubMed]
  17. Savini, L., Massrelli, P., Chiasserini, L., Pellerano, C. & Bruni, G. (1994). Luisa. Farmaco, 49, 633-639. [PubMed]
  18. Sector, H. V. C. & Bardeleben, J. F. (1971). J. Med. Chem.14, 997–998.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sherement, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitsakaya, V. M. (2004). Russ. J. Org. Chem.40, 594–595.
  21. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034926/ds2049sup1.cif

e-66-o2512-sup1.cif (31.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034926/ds2049Isup2.hkl

e-66-o2512-Isup2.hkl (284.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES