Abstract
In the title compound, C11H9NO2, the quinoline ring system is essentially planar (r.m.s. deviation = 0.005 Å) and the methoxy and aldehyde groups are almost coplanar with it [N—C—O—C = 6.24 (19) and O—C—C—C = 0.3 (2)°]. In the crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds, forming centrosymmetric R 2 2(10) dimers. The dimers are linked via π–π interactions involving the pyridine and benzene rings [centroid–centroid distance = 3.639 (1) Å].
Related literature
For general background to quinoline derivatives, see: Mali et al. (2010 ▶); Kuethe et al. (2003 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
C11H9NO2
M r = 187.19
Monoclinic,
a = 8.8206 (6) Å
b = 4.8446 (3) Å
c = 21.6828 (14) Å
β = 90.612 (4)°
V = 926.50 (10) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 293 K
0.20 × 0.20 × 0.18 mm
Data collection
Bruker SMART APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008 ▶) T min = 0.981, T max = 0.983
8812 measured reflections
2305 independent reflections
1658 reflections with I > 2σ(I)
R int = 0.030
Refinement
R[F 2 > 2σ(F 2)] = 0.044
wR(F 2) = 0.130
S = 1.05
2305 reflections
128 parameters
H-atom parameters constrained
Δρmax = 0.16 e Å−3
Δρmin = −0.19 e Å−3
Data collection: APEX2 (Bruker, 2008 ▶); cell refinement: SAINT (Bruker, 2008 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034744/ci5162sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034744/ci5162Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C4—H4⋯O2i | 0.93 | 2.56 | 3.4157 (16) | 152 |
Symmetry code: (i)
.
Acknowledgments
The authors thank TBI consultancy, University of Madras, India, for the data collection
supplementary crystallographic information
Comment
Quinolines have gained importance in medicinal and natural product chemistry due to their interesting biological and pharmacological activities. They possess anti-malarial, anti-tuberculosis, anti-inflammatory and anti-cancer properties (Mali et al., 2010). Methoxy substituted quinolines are used as synthetic intermediates in the construction of novel class of KDR kinase inhibitors (Kuethe et al., 2003). Against this background and to ascertain the structure of title compound, the crystallographic studies have been carried out.
In the title molecule (Fig.1), the quinoline ring system (N1/C2–C10) is essentially planar with a maximum deviation of 0.007 (1) Å for atom C3. The methoxy and carbaldehyde groups are almost coplanar with the quinoline ring system, which is evidenced from torsion angles C3—C2—O1—C11 and C2—C3—C12—O2 of 173.6 (1)° and 178.5 (2)°, respectively.
The packing of the molecules in the crystal is stabilized by C—H···O, and π–π types of intermolecular interactions. The molecules at (x, y, z) and (1-x, 1-y, 1-z) are linked by a pair of intermolecular C4—H4···O2 hydrogen bonds to form a centrosymmetric dimer containing R22(10) ring motif (Fig. 2) (Bernstein et al., 1995). The π–π interaction between the pyridine ring (N1/C2-C10) of the quinoline ring system at (x, y, z) and the benzene ring (C5—C10) at (x, y-1, z) further stabilize the structure, with a centroid-centroid distance of 3.639 (1) Å.
Experimental
To a solution of 1 g (17.8 mmol) of KOH in 50 ml of MeOH was added 2.5 g (13.1 mmol) of 2-chloro-3-quinolinecarboxaldehyde. The mixture was heated at 373 K for 2.5 h and then cooled to room temperature, and poured into 200 g of crushed ice. The precipitate thus obtained was recuperated by filtration. The obtained product was a colourless solid. The product was purified by recrystallization from petroleum ether-ethyl acetate mixture.
Refinement
H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.
Figures
Fig. 1.
The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Crystal data
| C11H9NO2 | F(000) = 392 |
| Mr = 187.19 | Dx = 1.342 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 1216 reflections |
| a = 8.8206 (6) Å | θ = 1.9–28.4° |
| b = 4.8446 (3) Å | µ = 0.09 mm−1 |
| c = 21.6828 (14) Å | T = 293 K |
| β = 90.612 (4)° | Block, colourless |
| V = 926.50 (10) Å3 | 0.20 × 0.20 × 0.18 mm |
| Z = 4 |
Data collection
| Bruker SMART APEXII area-detector diffractometer | 2305 independent reflections |
| Radiation source: fine-focus sealed tube | 1658 reflections with I > 2σ(I) |
| graphite | Rint = 0.030 |
| ω and φ scans | θmax = 28.4°, θmin = 1.9° |
| Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −9→11 |
| Tmin = 0.981, Tmax = 0.983 | k = −6→6 |
| 8812 measured reflections | l = −27→28 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.130 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1045P] where P = (Fo2 + 2Fc2)/3 |
| 2305 reflections | (Δ/σ)max = 0.001 |
| 128 parameters | Δρmax = 0.16 e Å−3 |
| 0 restraints | Δρmin = −0.19 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | −0.04660 (11) | 0.2962 (2) | 0.42027 (4) | 0.0664 (3) | |
| O2 | 0.32252 (12) | 0.2311 (3) | 0.52502 (5) | 0.0860 (4) | |
| N1 | 0.05048 (11) | 0.6258 (2) | 0.35559 (5) | 0.0522 (3) | |
| C2 | 0.06704 (13) | 0.4656 (3) | 0.40308 (5) | 0.0498 (3) | |
| C3 | 0.20052 (14) | 0.4490 (3) | 0.44096 (5) | 0.0505 (3) | |
| C4 | 0.31810 (14) | 0.6144 (3) | 0.42593 (6) | 0.0546 (3) | |
| H4 | 0.4064 | 0.6107 | 0.4497 | 0.066* | |
| C5 | 0.30810 (14) | 0.7921 (3) | 0.37465 (6) | 0.0502 (3) | |
| C6 | 0.42741 (16) | 0.9652 (3) | 0.35643 (7) | 0.0639 (4) | |
| H6 | 0.5179 | 0.9658 | 0.3789 | 0.077* | |
| C7 | 0.41177 (18) | 1.1312 (3) | 0.30644 (7) | 0.0682 (4) | |
| H7 | 0.4913 | 1.2450 | 0.2947 | 0.082* | |
| C8 | 0.27587 (18) | 1.1311 (3) | 0.27260 (6) | 0.0656 (4) | |
| H8 | 0.2658 | 1.2462 | 0.2385 | 0.079* | |
| C9 | 0.15831 (16) | 0.9657 (3) | 0.28878 (6) | 0.0594 (3) | |
| H9 | 0.0691 | 0.9678 | 0.2655 | 0.071* | |
| C10 | 0.17083 (14) | 0.7915 (2) | 0.34040 (5) | 0.0476 (3) | |
| C11 | −0.17739 (17) | 0.2814 (4) | 0.38058 (7) | 0.0822 (5) | |
| H11A | −0.2189 | 0.4630 | 0.3750 | 0.123* | |
| H11B | −0.2521 | 0.1638 | 0.3989 | 0.123* | |
| H11C | −0.1487 | 0.2076 | 0.3413 | 0.123* | |
| C12 | 0.21226 (17) | 0.2551 (3) | 0.49311 (6) | 0.0634 (4) | |
| H12 | 0.1288 | 0.1449 | 0.5017 | 0.076* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0566 (5) | 0.0821 (7) | 0.0603 (6) | −0.0219 (5) | −0.0105 (4) | 0.0149 (5) |
| O2 | 0.0747 (7) | 0.1034 (9) | 0.0792 (7) | −0.0159 (6) | −0.0249 (6) | 0.0365 (7) |
| N1 | 0.0530 (6) | 0.0557 (6) | 0.0476 (5) | −0.0036 (5) | −0.0056 (4) | 0.0005 (5) |
| C2 | 0.0503 (7) | 0.0530 (7) | 0.0460 (6) | −0.0067 (5) | −0.0017 (5) | −0.0021 (5) |
| C3 | 0.0527 (7) | 0.0535 (7) | 0.0453 (6) | −0.0035 (5) | −0.0034 (5) | 0.0014 (5) |
| C4 | 0.0504 (7) | 0.0603 (8) | 0.0529 (7) | −0.0056 (6) | −0.0084 (5) | 0.0023 (6) |
| C5 | 0.0532 (7) | 0.0488 (7) | 0.0486 (6) | −0.0042 (5) | 0.0001 (5) | −0.0024 (5) |
| C6 | 0.0608 (8) | 0.0660 (9) | 0.0648 (8) | −0.0129 (7) | −0.0002 (6) | 0.0044 (7) |
| C7 | 0.0759 (9) | 0.0609 (8) | 0.0679 (9) | −0.0156 (7) | 0.0118 (7) | 0.0043 (7) |
| C8 | 0.0894 (10) | 0.0541 (8) | 0.0536 (7) | 0.0015 (7) | 0.0092 (7) | 0.0081 (6) |
| C9 | 0.0694 (8) | 0.0574 (8) | 0.0512 (7) | 0.0043 (6) | −0.0030 (6) | 0.0039 (6) |
| C10 | 0.0555 (7) | 0.0441 (6) | 0.0432 (6) | 0.0010 (5) | 0.0002 (5) | −0.0039 (5) |
| C11 | 0.0647 (9) | 0.1064 (13) | 0.0750 (10) | −0.0338 (9) | −0.0203 (8) | 0.0167 (9) |
| C12 | 0.0607 (8) | 0.0698 (9) | 0.0595 (8) | −0.0115 (7) | −0.0078 (6) | 0.0136 (7) |
Geometric parameters (Å, °)
| O1—C2 | 1.3510 (15) | C6—C7 | 1.356 (2) |
| O1—C11 | 1.4336 (16) | C6—H6 | 0.93 |
| O2—C12 | 1.1932 (16) | C7—C8 | 1.399 (2) |
| N1—C2 | 1.2964 (16) | C7—H7 | 0.93 |
| N1—C10 | 1.3736 (16) | C8—C9 | 1.360 (2) |
| C2—C3 | 1.4307 (16) | C8—H8 | 0.93 |
| C3—C4 | 1.3534 (17) | C9—C10 | 1.4050 (18) |
| C3—C12 | 1.4728 (18) | C9—H9 | 0.93 |
| C4—C5 | 1.4081 (18) | C11—H11A | 0.96 |
| C4—H4 | 0.93 | C11—H11B | 0.96 |
| C5—C6 | 1.4055 (18) | C11—H11C | 0.96 |
| C5—C10 | 1.4136 (17) | C12—H12 | 0.93 |
| C2—O1—C11 | 117.35 (10) | C8—C7—H7 | 120.0 |
| C2—N1—C10 | 117.35 (10) | C9—C8—C7 | 121.09 (13) |
| N1—C2—O1 | 120.34 (10) | C9—C8—H8 | 119.5 |
| N1—C2—C3 | 125.09 (11) | C7—C8—H8 | 119.5 |
| O1—C2—C3 | 114.57 (11) | C8—C9—C10 | 120.39 (13) |
| C4—C3—C2 | 117.15 (11) | C8—C9—H9 | 119.8 |
| C4—C3—C12 | 120.99 (12) | C10—C9—H9 | 119.8 |
| C2—C3—C12 | 121.83 (11) | N1—C10—C9 | 119.18 (12) |
| C3—C4—C5 | 120.70 (11) | N1—C10—C5 | 122.35 (11) |
| C3—C4—H4 | 119.7 | C9—C10—C5 | 118.47 (12) |
| C5—C4—H4 | 119.7 | O1—C11—H11A | 109.5 |
| C6—C5—C4 | 123.08 (12) | O1—C11—H11B | 109.5 |
| C6—C5—C10 | 119.56 (12) | H11A—C11—H11B | 109.5 |
| C4—C5—C10 | 117.36 (11) | O1—C11—H11C | 109.5 |
| C7—C6—C5 | 120.57 (13) | H11A—C11—H11C | 109.5 |
| C7—C6—H6 | 119.7 | H11B—C11—H11C | 109.5 |
| C5—C6—H6 | 119.7 | O2—C12—C3 | 123.89 (13) |
| C6—C7—C8 | 119.91 (13) | O2—C12—H12 | 118.1 |
| C6—C7—H7 | 120.0 | C3—C12—H12 | 118.1 |
| C10—N1—C2—O1 | −179.57 (11) | C5—C6—C7—C8 | 0.1 (2) |
| C10—N1—C2—C3 | 0.28 (19) | C6—C7—C8—C9 | −0.3 (2) |
| C11—O1—C2—N1 | 6.24 (19) | C7—C8—C9—C10 | 0.4 (2) |
| C11—O1—C2—C3 | −173.63 (13) | C2—N1—C10—C9 | 179.19 (11) |
| N1—C2—C3—C4 | 0.2 (2) | C2—N1—C10—C5 | −0.34 (18) |
| O1—C2—C3—C4 | −179.94 (11) | C8—C9—C10—N1 | −179.80 (12) |
| N1—C2—C3—C12 | −178.08 (13) | C8—C9—C10—C5 | −0.25 (19) |
| O1—C2—C3—C12 | 1.78 (18) | C6—C5—C10—N1 | 179.55 (12) |
| C2—C3—C4—C5 | −0.62 (19) | C4—C5—C10—N1 | −0.06 (18) |
| C12—C3—C4—C5 | 177.68 (12) | C6—C5—C10—C9 | 0.02 (18) |
| C3—C4—C5—C6 | −179.05 (13) | C4—C5—C10—C9 | −179.60 (11) |
| C3—C4—C5—C10 | 0.56 (19) | C4—C3—C12—O2 | 0.3 (2) |
| C4—C5—C6—C7 | 179.67 (14) | C2—C3—C12—O2 | 178.47 (15) |
| C10—C5—C6—C7 | 0.1 (2) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C4—H4···O2i | 0.93 | 2.56 | 3.4157 (16) | 152 |
Symmetry codes: (i) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5162).
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Kuethe, J. T., Wong, A. & Davies, I. W. (2003). Org. Lett.5, 3975–3978. [DOI] [PubMed]
- Mali, J. R., Bhosle, M. R., Mahalle, S. R. & Mane, R. A. (2010). Bull. Korean Chem. Soc.31, 1859–1863.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034744/ci5162sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034744/ci5162Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


