Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):o2602. doi: 10.1107/S1600536810037165

2,2′-(Disulfanedi­yl)dibenzoic acid–2,9-dimethyl­phenanthroline–tetra­hydro­furan (1/2/1)

Hadi D Arman a, Trupta Kaulgud a, Edward R T Tiekink b,*
PMCID: PMC2983249  PMID: 21587579

Abstract

The asymmetric unit of the title co-crystal solvate, C14H10O4S2·2C14H12N2·C4H8O, comprises a 2,2′-(disulfanedi­yl)dibenzoic acid mol­ecule, two mol­ecules of 2,9-dimethyl­phenanthroline and a tetra­hydro­furan (THF) solvent mol­ecule. Each end of the twisted diacid [dihedral angle between the benzene rings = 74.33 (17)°] forms a strong O—H⋯N hydrogen bond with a 2,9-dimethyl­phenanthroline mol­ecule, forming a trimeric aggregate. The crystal structure comprises layers of acid and THF mol­ecules, and layers of 2,9-dimethyl­phenanthroline mol­ecules that alternate along the a axis, the main connections between them being of the type C—H⋯O.

Related literature

For related studies on co-crystal formation involving 2-[(2-carb­oxy­phen­yl)disulfan­yl]benzoic acid, see: Broker & Tiekink (2007, 2010); Broker et al. (2008). For a co-crystal involving 2,9-dimethyl­phenanthroline, see: Arman et al. (2010).graphic file with name e-66-o2602-scheme1.jpg

Experimental

Crystal data

  • C14H10O4S2·2C14H12N2·C4H8O

  • M r = 794.96

  • Monoclinic, Inline graphic

  • a = 14.011 (4) Å

  • b = 8.516 (3) Å

  • c = 17.403 (5) Å

  • β = 109.637 (6)°

  • V = 1955.7 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 98 K

  • 0.26 × 0.21 × 0.10 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer

  • 13023 measured reflections

  • 8637 independent reflections

  • 7988 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.169

  • S = 1.05

  • 8637 reflections

  • 499 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.85 e Å−3

  • Absolute structure: Flack (1983), 3550 Friedel pairs

  • Flack parameter: 0.01 (9)

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037165/su2213sup1.cif

e-66-o2602-sup1.cif (32.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037165/su2213Isup2.hkl

e-66-o2602-Isup2.hkl (413.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯N1i 0.85 (4) 1.91 (4) 2.734 (4) 163 (4)
O2—H2o⋯N2i 0.85 (4) 2.46 (4) 2.982 (5) 121 (4)
O4—H4o⋯N4ii 0.84 (4) 1.86 (3) 2.691 (4) 170 (4)
C19—H19⋯O1iii 0.95 2.59 3.448 (5) 150
C22—H22⋯O5 0.95 2.52 3.383 (7) 150
C23—H23⋯O3 0.95 2.56 3.345 (5) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

As a continuation of studies into the phenomenon of co-crystallization of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Broker & Tiekink, 2007; Broker et al., 2008; Broker & Tiekink, 2010; Arman et al., 2010), the co-crystallization of this dithiodibenzoic acid and 2,9-dimethylphenanthroline was investigated. This lead to the isolation of the title co-crystal Tetrahydrofuran (thf) solvate.

The crystallographic asymmetric unit of the title compound comprises one molecule of dithiodibenzoic acid (Fig. 1), two molecules of 2,9-dimethylphenanthroline (Figs. 2 and 3), and a solvent thf molecule. The acid adopts the expected conformation (Broker & Tiekink, 2007), stabilized in part by two close S···O(carbonyl) interactions, i.e. S1···O1 = 2.713 (3) Å and S2···O3 = 2.711 (3) Å; the dihedral angle formed between the benzene rings = 74.33 (17) °. Each carboxylic acid-H forms a close hydrogen bond to a phenanthroline-N (Table 1), and in the case of the N1-phenanthroline molecule, a weaker O2—H···N2 interaction is noted; the equivalent O4—H···N4 contact is longer than 2.66 Å. These interactions result in the formation of a trimeric aggregate, Fig. 4.

In the crystal packing the dithiodibenzoic acid and tetrahydrofuran molecules assemble into layers in the bc plane interspersed by layers of 2,9-dimethylphenanthroline molecules, with the most prominent interactions between them being of the type C—H···O (see Fig. 5 and Table 1).

Experimental

Gold coloured crystals of the title compound were obtained by the co-crystallization of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Fluka, 0.02 mmol) and 2,9-dimethylphenanthroline (ACROS, 0.02 mmol) in tetrahydrofuran. Crystals were obtained by slow evaporation.

Refinement

The O-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of O–H 0.84 (1) Å, and with Uiso(H) = 1.5Ueq(O). C-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation: C–H 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and 1.2 for all other H-atoms. High thermal motion was associated with the tetrahydrofuran molecule but an alternate conformation could not be resolved. The constituent atoms were refined isotropically with O—C and C—C distance restraints of 1.43 (1) and 1.50 (1) Å, respectively. In the final refinement a low angle reflection evidently effected by the beam stop was omitted, i.e. (101).

Figures

Fig. 1.

Fig. 1.

Molecular structure of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid found in the title co-crystal solvate, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular structure of first independent molecule of 2,9-dimethylphenanthroline found in the title co-crystal solvate, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 3.

Fig. 3.

Molecular structure of second independent molecule of 2,9-dimethylphenanthroline found in the title co-crystal solvate, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 4.

Fig. 4.

The trimeric aggregate, comprising a molecule of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid and the two independent molecules of 2,9-dimethylphenanthroline, sustained by O—H···N hydrogen bonds (dashed lines) in the structure of the title co-crystal solvate [see Table 1 for details].

Fig. 5.

Fig. 5.

Stacking of alternating layers along the a axis in the title co-crystal solvate. The O—H···N hydrogen bonding and C—H···O interactions are shown as orange and blue dashed lines, respectively [see Table 1 for details. Hydrogen atoms not involved in intermolecular interactions have been removed for reasons of clarity].

Crystal data

C14H10O4S2·2C14H12N2·C4H8O F(000) = 836
Mr = 794.96 Dx = 1.350 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 8113 reflections
a = 14.011 (4) Å θ = 2.3–40.2°
b = 8.516 (3) Å µ = 0.19 mm1
c = 17.403 (5) Å T = 98 K
β = 109.637 (6)° Block, gold
V = 1955.7 (10) Å3 0.26 × 0.21 × 0.10 mm
Z = 2

Data collection

Rigaku AFC12K/SATURN724 diffractometer 7988 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.048
graphite θmax = 27.5°, θmin = 2.3°
ω scans h = −15→18
13023 measured reflections k = −10→11
8637 independent reflections l = −22→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0751P)2 + 1.2802P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
8637 reflections Δρmax = 0.83 e Å3
499 parameters Δρmin = −0.85 e Å3
8 restraints Absolute structure: Flack (1983), 3550 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (9)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.42365 (6) 0.42502 (11) 0.23785 (5) 0.02513 (19)
S2 0.57129 (6) 0.34896 (10) 0.26918 (6) 0.02557 (19)
O1 0.24189 (19) 0.5734 (3) 0.19397 (16) 0.0292 (6)
O2 0.2027 (2) 0.7481 (3) 0.27555 (17) 0.0333 (6)
H2o 0.154 (3) 0.776 (6) 0.234 (2) 0.050*
O3 0.76279 (19) 0.2507 (3) 0.29142 (16) 0.0289 (6)
O4 0.80075 (19) 0.0087 (3) 0.25967 (17) 0.0283 (6)
H4o 0.855 (2) 0.053 (5) 0.261 (3) 0.042*
C1 0.4064 (2) 0.4616 (4) 0.3339 (2) 0.0239 (7)
C2 0.3269 (2) 0.5589 (4) 0.3380 (2) 0.0230 (7)
C3 0.3127 (3) 0.5853 (5) 0.4125 (2) 0.0279 (8)
H3 0.2585 0.6502 0.4146 0.034*
C4 0.3771 (3) 0.5176 (5) 0.4835 (2) 0.0314 (8)
H4 0.3673 0.5359 0.5342 0.038*
C5 0.4560 (3) 0.4227 (5) 0.4797 (2) 0.0294 (8)
H5 0.4998 0.3750 0.5280 0.035*
C6 0.4715 (2) 0.3967 (4) 0.4064 (2) 0.0242 (7)
H6 0.5271 0.3340 0.4052 0.029*
C7 0.2529 (2) 0.6278 (4) 0.2614 (2) 0.0233 (7)
C8 0.5633 (3) 0.1399 (4) 0.2802 (2) 0.0243 (7)
C9 0.6461 (3) 0.0442 (4) 0.2825 (2) 0.0228 (7)
C10 0.6392 (3) −0.1175 (4) 0.2914 (2) 0.0273 (8)
H10 0.6940 −0.1827 0.2909 0.033*
C11 0.5540 (3) −0.1847 (5) 0.3008 (2) 0.0323 (8)
H11 0.5516 −0.2946 0.3094 0.039*
C12 0.4721 (3) −0.0905 (5) 0.2977 (2) 0.0308 (8)
H12 0.4127 −0.1363 0.3028 0.037*
C13 0.4766 (3) 0.0702 (4) 0.2872 (2) 0.0272 (8)
H13 0.4199 0.1337 0.2847 0.033*
C14 0.7423 (3) 0.1115 (4) 0.2779 (2) 0.0236 (7)
N1 1.0745 (2) 0.8741 (3) 0.13399 (18) 0.0244 (6)
N2 0.9787 (3) 0.7029 (4) 0.21862 (19) 0.0282 (7)
C15 1.1222 (3) 0.9556 (4) 0.0924 (2) 0.0276 (8)
C16 1.0706 (3) 1.0298 (4) 0.0182 (2) 0.0280 (7)
H16 1.1070 1.0878 −0.0095 0.034*
C17 0.9668 (3) 1.0182 (4) −0.0142 (2) 0.0289 (8)
H17 0.9311 1.0682 −0.0644 0.035*
C18 0.9138 (3) 0.9315 (4) 0.0276 (2) 0.0260 (7)
C19 0.8062 (3) 0.9126 (5) −0.0028 (2) 0.0313 (8)
H19 0.7678 0.9592 −0.0533 0.038*
C20 0.7588 (3) 0.8293 (5) 0.0396 (2) 0.0323 (8)
H20 0.6873 0.8180 0.0182 0.039*
C21 0.8140 (3) 0.7573 (5) 0.1164 (2) 0.0311 (8)
C22 0.7672 (3) 0.6662 (5) 0.1615 (3) 0.0338 (9)
H22 0.6958 0.6518 0.1424 0.041*
C23 0.8265 (3) 0.5986 (5) 0.2336 (3) 0.0360 (9)
H23 0.7962 0.5384 0.2653 0.043*
C24 0.9327 (3) 0.6194 (4) 0.2602 (2) 0.0309 (8)
C25 0.9211 (3) 0.7715 (4) 0.1483 (2) 0.0239 (7)
C26 0.9722 (3) 0.8614 (4) 0.1026 (2) 0.0242 (7)
C27 1.2360 (3) 0.9665 (5) 0.1295 (3) 0.0362 (9)
H27A 1.2548 0.9921 0.1876 0.054*
H27B 1.2610 1.0488 0.1017 0.054*
H27C 1.2663 0.8656 0.1233 0.054*
C28 0.9995 (4) 0.5427 (5) 0.3367 (3) 0.0404 (10)
H28A 1.0702 0.5712 0.3459 0.061*
H28B 0.9919 0.4284 0.3313 0.061*
H28C 0.9801 0.5781 0.3829 0.061*
N3 1.0152 (2) 0.4436 (4) 0.59852 (18) 0.0247 (6)
N4 1.0154 (2) 0.6163 (4) 0.73176 (19) 0.0246 (6)
C29 1.0161 (3) 0.3580 (5) 0.5358 (2) 0.0269 (7)
C30 0.9254 (3) 0.3064 (4) 0.4751 (2) 0.0274 (7)
H30 0.9281 0.2410 0.4316 0.033*
C31 0.8345 (3) 0.3520 (5) 0.4802 (2) 0.0284 (7)
H31 0.7734 0.3204 0.4393 0.034*
C32 0.8309 (3) 0.4456 (4) 0.5455 (2) 0.0266 (7)
C33 0.7390 (3) 0.5060 (5) 0.5519 (3) 0.0345 (9)
H33 0.6766 0.4803 0.5109 0.041*
C34 0.7386 (3) 0.5989 (5) 0.6146 (2) 0.0306 (8)
H34 0.6761 0.6389 0.6166 0.037*
C35 0.8316 (3) 0.6379 (4) 0.6785 (2) 0.0256 (7)
C36 0.8348 (3) 0.7342 (4) 0.7439 (2) 0.0304 (8)
H36 0.7739 0.7763 0.7481 0.036*
C37 0.9266 (3) 0.7683 (5) 0.8025 (2) 0.0309 (8)
H37 0.9294 0.8323 0.8479 0.037*
C38 1.0165 (3) 0.7075 (4) 0.7948 (2) 0.0263 (7)
C39 0.9249 (3) 0.5806 (4) 0.6737 (2) 0.0234 (7)
C40 0.9247 (3) 0.4860 (4) 0.6051 (2) 0.0229 (7)
C41 1.1178 (3) 0.3183 (5) 0.5301 (3) 0.0333 (9)
H41A 1.1660 0.4023 0.5552 0.050*
H41B 1.1119 0.3074 0.4726 0.050*
H41C 1.1420 0.2192 0.5587 0.050*
C42 1.1181 (3) 0.7423 (5) 0.8571 (2) 0.0313 (8)
H42A 1.1562 0.6443 0.8734 0.047*
H42B 1.1088 0.7915 0.9050 0.047*
H42C 1.1557 0.8138 0.8336 0.047*
O5 0.5266 (4) 0.6646 (6) 0.0293 (3) 0.0881 (15)*
C43 0.4873 (6) 0.6959 (12) −0.0568 (5) 0.106 (3)*
H43A 0.5205 0.7896 −0.0701 0.127*
H43B 0.4994 0.6053 −0.0879 0.127*
C44 0.3809 (5) 0.7227 (10) −0.0764 (4) 0.089 (2)*
H44A 0.3429 0.6232 −0.0927 0.106*
H44B 0.3563 0.7982 −0.1221 0.106*
C45 0.3658 (5) 0.7886 (8) −0.0006 (4) 0.0757 (18)*
H45A 0.3626 0.9047 −0.0023 0.091*
H45B 0.3034 0.7468 0.0064 0.091*
C46 0.4594 (5) 0.7317 (10) 0.0663 (4) 0.086 (2)*
H46A 0.4928 0.8205 0.1018 0.103*
H46B 0.4406 0.6521 0.1001 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0238 (4) 0.0282 (4) 0.0225 (4) 0.0022 (3) 0.0066 (3) 0.0010 (3)
S2 0.0232 (4) 0.0245 (4) 0.0300 (5) 0.0000 (3) 0.0103 (3) 0.0003 (3)
O1 0.0279 (13) 0.0325 (14) 0.0231 (13) 0.0051 (11) 0.0031 (10) 0.0004 (11)
O2 0.0331 (14) 0.0318 (14) 0.0282 (14) 0.0131 (12) 0.0013 (10) −0.0029 (12)
O3 0.0247 (13) 0.0295 (13) 0.0332 (14) −0.0019 (11) 0.0105 (10) −0.0017 (11)
O4 0.0208 (12) 0.0308 (14) 0.0338 (15) 0.0012 (10) 0.0100 (11) −0.0037 (11)
C1 0.0205 (15) 0.0267 (17) 0.0247 (18) 0.0008 (13) 0.0078 (13) −0.0005 (13)
C2 0.0181 (15) 0.0241 (17) 0.0249 (17) 0.0001 (12) 0.0049 (12) −0.0004 (13)
C3 0.0241 (17) 0.0323 (19) 0.0251 (18) 0.0027 (15) 0.0053 (13) −0.0032 (15)
C4 0.0263 (18) 0.044 (2) 0.0239 (19) 0.0037 (16) 0.0084 (14) −0.0019 (16)
C5 0.0250 (17) 0.0366 (19) 0.0228 (17) −0.0004 (15) 0.0029 (13) 0.0014 (16)
C6 0.0162 (14) 0.0308 (19) 0.0239 (17) 0.0011 (12) 0.0043 (12) 0.0010 (13)
C7 0.0193 (15) 0.0226 (16) 0.0272 (18) −0.0007 (13) 0.0068 (13) −0.0005 (14)
C8 0.0256 (17) 0.0248 (17) 0.0214 (17) −0.0037 (13) 0.0063 (13) −0.0030 (13)
C9 0.0228 (16) 0.0272 (17) 0.0168 (16) −0.0022 (13) 0.0045 (12) −0.0016 (13)
C10 0.0261 (17) 0.0273 (19) 0.0257 (18) 0.0025 (13) 0.0048 (13) 0.0003 (13)
C11 0.0299 (19) 0.0268 (19) 0.035 (2) −0.0048 (14) 0.0034 (15) −0.0009 (15)
C12 0.0277 (17) 0.0354 (19) 0.0283 (18) −0.0086 (15) 0.0083 (14) −0.0029 (16)
C13 0.0217 (16) 0.0313 (19) 0.0252 (18) −0.0025 (14) 0.0035 (13) 0.0005 (14)
C14 0.0224 (16) 0.0287 (18) 0.0191 (16) 0.0014 (13) 0.0062 (12) 0.0014 (13)
N1 0.0277 (14) 0.0212 (14) 0.0230 (15) 0.0033 (11) 0.0067 (11) −0.0009 (11)
N2 0.0391 (18) 0.0235 (15) 0.0240 (16) 0.0011 (13) 0.0134 (13) 0.0011 (12)
C15 0.0317 (19) 0.0226 (17) 0.0290 (19) 0.0001 (14) 0.0109 (14) −0.0020 (14)
C16 0.0353 (19) 0.0247 (17) 0.0277 (18) 0.0009 (14) 0.0154 (15) 0.0027 (14)
C17 0.038 (2) 0.0249 (18) 0.0220 (18) 0.0016 (15) 0.0077 (15) 0.0010 (14)
C18 0.0264 (17) 0.0234 (17) 0.0243 (17) 0.0017 (14) 0.0035 (13) −0.0030 (14)
C19 0.0314 (19) 0.0303 (18) 0.0266 (18) 0.0046 (16) 0.0026 (14) −0.0062 (16)
C20 0.0268 (18) 0.033 (2) 0.033 (2) 0.0011 (15) 0.0049 (14) −0.0031 (16)
C21 0.035 (2) 0.0244 (17) 0.036 (2) 0.0039 (15) 0.0147 (15) −0.0015 (15)
C22 0.030 (2) 0.0266 (19) 0.048 (2) −0.0044 (15) 0.0171 (17) −0.0074 (17)
C23 0.050 (2) 0.029 (2) 0.039 (2) −0.0038 (18) 0.0269 (19) −0.0044 (17)
C24 0.044 (2) 0.0213 (17) 0.031 (2) 0.0006 (15) 0.0175 (16) −0.0005 (15)
C25 0.0318 (18) 0.0192 (16) 0.0221 (17) 0.0008 (13) 0.0108 (13) −0.0007 (13)
C26 0.0314 (17) 0.0207 (15) 0.0204 (16) 0.0041 (14) 0.0086 (13) −0.0019 (13)
C27 0.0285 (19) 0.039 (2) 0.040 (2) 0.0000 (16) 0.0105 (16) 0.0030 (17)
C28 0.062 (3) 0.035 (2) 0.026 (2) 0.001 (2) 0.0163 (19) 0.0050 (17)
N3 0.0235 (14) 0.0261 (15) 0.0256 (15) 0.0019 (12) 0.0099 (11) −0.0006 (12)
N4 0.0258 (14) 0.0224 (14) 0.0271 (15) 0.0008 (11) 0.0111 (11) 0.0022 (12)
C29 0.0271 (17) 0.0280 (17) 0.0263 (18) 0.0003 (15) 0.0097 (13) 0.0024 (15)
C30 0.0296 (18) 0.0293 (18) 0.0236 (18) −0.0045 (14) 0.0092 (14) −0.0013 (14)
C31 0.0284 (17) 0.0299 (17) 0.0253 (18) −0.0022 (15) 0.0068 (13) −0.0008 (15)
C32 0.0244 (16) 0.0262 (18) 0.0286 (18) −0.0032 (14) 0.0081 (13) 0.0023 (14)
C33 0.0212 (18) 0.044 (2) 0.036 (2) −0.0018 (16) 0.0069 (15) 0.0039 (18)
C34 0.0222 (17) 0.0341 (19) 0.035 (2) −0.0004 (15) 0.0086 (14) 0.0037 (16)
C35 0.0261 (17) 0.0228 (16) 0.0296 (19) 0.0042 (13) 0.0118 (14) 0.0078 (14)
C36 0.0304 (19) 0.0273 (18) 0.036 (2) 0.0088 (15) 0.0144 (15) 0.0049 (16)
C37 0.037 (2) 0.0285 (19) 0.031 (2) 0.0044 (16) 0.0167 (15) 0.0021 (15)
C38 0.0301 (18) 0.0248 (17) 0.0248 (18) −0.0017 (14) 0.0103 (14) 0.0029 (14)
C39 0.0242 (16) 0.0200 (16) 0.0285 (18) 0.0017 (13) 0.0120 (13) 0.0038 (13)
C40 0.0234 (16) 0.0211 (16) 0.0257 (18) −0.0009 (13) 0.0101 (13) 0.0020 (13)
C41 0.0319 (19) 0.037 (2) 0.032 (2) 0.0035 (16) 0.0118 (15) −0.0070 (16)
C42 0.034 (2) 0.0302 (18) 0.029 (2) −0.0022 (16) 0.0102 (15) −0.0015 (16)

Geometric parameters (Å, °)

S1—C1 1.795 (4) C23—H23 0.9500
S1—S2 2.0586 (13) C24—C28 1.496 (6)
S2—C8 1.798 (4) C25—C26 1.455 (5)
O1—C7 1.222 (4) C27—H27A 0.9800
O2—C7 1.312 (4) C27—H27B 0.9800
O2—H2o 0.85 (4) C27—H27C 0.9800
O3—C14 1.224 (5) C28—H28A 0.9800
O4—C14 1.309 (4) C28—H28B 0.9800
O4—H4o 0.84 (4) C28—H28C 0.9800
C1—C6 1.398 (5) N3—C29 1.316 (5)
C1—C2 1.409 (5) N3—C40 1.360 (4)
C2—C3 1.395 (5) N4—C38 1.340 (5)
C2—C7 1.506 (5) N4—C39 1.365 (4)
C3—C4 1.387 (5) C29—C30 1.423 (5)
C3—H3 0.9500 C29—C41 1.500 (5)
C4—C5 1.389 (5) C30—C31 1.362 (5)
C4—H4 0.9500 C30—H30 0.9500
C5—C6 1.382 (5) C31—C32 1.404 (5)
C5—H5 0.9500 C31—H31 0.9500
C6—H6 0.9500 C32—C40 1.417 (5)
C8—C13 1.393 (5) C32—C33 1.424 (5)
C8—C9 1.408 (5) C33—C34 1.351 (6)
C9—C10 1.392 (5) C33—H33 0.9500
C9—C14 1.490 (5) C34—C35 1.439 (5)
C10—C11 1.383 (5) C34—H34 0.9500
C10—H10 0.9500 C35—C36 1.391 (5)
C11—C12 1.386 (6) C35—C39 1.425 (5)
C11—H11 0.9500 C36—C37 1.378 (6)
C12—C13 1.385 (6) C36—H36 0.9500
C12—H12 0.9500 C37—C38 1.409 (5)
C13—H13 0.9500 C37—H37 0.9500
N1—C15 1.333 (5) C38—C42 1.502 (5)
N1—C26 1.357 (4) C39—C40 1.439 (5)
N2—C24 1.326 (5) C41—H41A 0.9800
N2—C25 1.351 (5) C41—H41B 0.9800
C15—C16 1.401 (5) C41—H41C 0.9800
C15—C27 1.509 (5) C42—H42A 0.9800
C16—C17 1.375 (5) C42—H42B 0.9800
C16—H16 0.9500 C42—H42C 0.9800
C17—C18 1.411 (5) O5—C46 1.426 (7)
C17—H17 0.9500 O5—C43 1.436 (7)
C18—C26 1.417 (5) C43—C44 1.432 (7)
C18—C19 1.429 (5) C43—H43A 0.9900
C19—C20 1.348 (6) C43—H43B 0.9900
C19—H19 0.9500 C44—C45 1.512 (7)
C20—C21 1.437 (5) C44—H44A 0.9900
C20—H20 0.9500 C44—H44B 0.9900
C21—C22 1.413 (6) C45—C46 1.511 (7)
C21—C25 1.419 (5) C45—H45A 0.9900
C22—C23 1.377 (6) C45—H45B 0.9900
C22—H22 0.9500 C46—H46A 0.9900
C23—C24 1.413 (6) C46—H46B 0.9900
C1—S1—S2 104.22 (12) H27A—C27—H27B 109.5
C8—S2—S1 104.28 (13) C15—C27—H27C 109.5
C7—O2—H2O 113 (4) H27A—C27—H27C 109.5
C14—O4—H4O 109 (3) H27B—C27—H27C 109.5
C6—C1—C2 118.3 (3) C24—C28—H28A 109.5
C6—C1—S1 121.3 (3) C24—C28—H28B 109.5
C2—C1—S1 120.3 (3) H28A—C28—H28B 109.5
C3—C2—C1 120.3 (3) C24—C28—H28C 109.5
C3—C2—C7 119.3 (3) H28A—C28—H28C 109.5
C1—C2—C7 120.4 (3) H28B—C28—H28C 109.5
C4—C3—C2 120.5 (3) C29—N3—C40 119.1 (3)
C4—C3—H3 119.7 C38—N4—C39 119.2 (3)
C2—C3—H3 119.7 N3—C29—C30 122.1 (3)
C3—C4—C5 119.3 (4) N3—C29—C41 117.0 (3)
C3—C4—H4 120.4 C30—C29—C41 120.8 (3)
C5—C4—H4 120.4 C31—C30—C29 119.0 (4)
C6—C5—C4 120.8 (3) C31—C30—H30 120.5
C6—C5—H5 119.6 C29—C30—H30 120.5
C4—C5—H5 119.6 C30—C31—C32 120.3 (3)
C5—C6—C1 120.8 (3) C30—C31—H31 119.9
C5—C6—H6 119.6 C32—C31—H31 119.9
C1—C6—H6 119.6 C31—C32—C40 116.9 (3)
O1—C7—O2 125.0 (3) C31—C32—C33 123.2 (3)
O1—C7—C2 122.0 (3) C40—C32—C33 119.8 (4)
O2—C7—C2 113.0 (3) C34—C33—C32 121.6 (4)
C13—C8—C9 119.1 (3) C34—C33—H33 119.2
C13—C8—S2 121.2 (3) C32—C33—H33 119.2
C9—C8—S2 119.7 (3) C33—C34—C35 120.7 (4)
C10—C9—C8 119.2 (3) C33—C34—H34 119.6
C10—C9—C14 118.9 (3) C35—C34—H34 119.6
C8—C9—C14 121.9 (3) C36—C35—C39 118.2 (3)
C11—C10—C9 121.2 (3) C36—C35—C34 122.7 (3)
C11—C10—H10 119.4 C39—C35—C34 119.0 (4)
C9—C10—H10 119.4 C37—C36—C35 119.7 (4)
C10—C11—C12 119.5 (4) C37—C36—H36 120.2
C10—C11—H11 120.3 C35—C36—H36 120.2
C12—C11—H11 120.3 C36—C37—C38 119.6 (4)
C13—C12—C11 120.2 (4) C36—C37—H37 120.2
C13—C12—H12 119.9 C38—C37—H37 120.2
C11—C12—H12 119.9 N4—C38—C37 121.8 (3)
C12—C13—C8 120.8 (3) N4—C38—C42 116.9 (3)
C12—C13—H13 119.6 C37—C38—C42 121.3 (4)
C8—C13—H13 119.6 N4—C39—C35 121.5 (3)
O3—C14—O4 124.6 (3) N4—C39—C40 118.8 (3)
O3—C14—C9 121.3 (3) C35—C39—C40 119.7 (3)
O4—C14—C9 114.0 (3) N3—C40—C32 122.4 (3)
C15—N1—C26 118.5 (3) N3—C40—C39 118.5 (3)
C24—N2—C25 118.3 (3) C32—C40—C39 119.0 (3)
N1—C15—C16 122.5 (3) C29—C41—H41A 109.5
N1—C15—C27 116.8 (3) C29—C41—H41B 109.5
C16—C15—C27 120.8 (4) H41A—C41—H41B 109.5
C17—C16—C15 119.6 (4) C29—C41—H41C 109.5
C17—C16—H16 120.2 H41A—C41—H41C 109.5
C15—C16—H16 120.2 H41B—C41—H41C 109.5
C16—C17—C18 119.6 (3) C38—C42—H42A 109.5
C16—C17—H17 120.2 C38—C42—H42B 109.5
C18—C17—H17 120.2 H42A—C42—H42B 109.5
C17—C18—C26 117.0 (3) C38—C42—H42C 109.5
C17—C18—C19 122.7 (3) H42A—C42—H42C 109.5
C26—C18—C19 120.3 (3) H42B—C42—H42C 109.5
C20—C19—C18 120.6 (4) C46—O5—C43 108.4 (6)
C20—C19—H19 119.7 C44—C43—O5 106.4 (6)
C18—C19—H19 119.7 C44—C43—H43A 110.5
C19—C20—C21 121.5 (4) O5—C43—H43A 110.5
C19—C20—H20 119.2 C44—C43—H43B 110.5
C21—C20—H20 119.2 O5—C43—H43B 110.5
C22—C21—C25 117.1 (4) H43A—C43—H43B 108.6
C22—C21—C20 123.1 (4) C43—C44—C45 106.8 (6)
C25—C21—C20 119.7 (4) C43—C44—H44A 110.4
C23—C22—C21 119.1 (4) C45—C44—H44A 110.4
C23—C22—H22 120.5 C43—C44—H44B 110.4
C21—C22—H22 120.5 C45—C44—H44B 110.4
C22—C23—C24 119.4 (4) H44A—C44—H44B 108.6
C22—C23—H23 120.3 C46—C45—C44 102.4 (6)
C24—C23—H23 120.3 C46—C45—H45A 111.3
N2—C24—C23 122.7 (4) C44—C45—H45A 111.3
N2—C24—C28 116.5 (4) C46—C45—H45B 111.3
C23—C24—C28 120.7 (4) C44—C45—H45B 111.3
N2—C25—C21 123.4 (3) H45A—C45—H45B 109.2
N2—C25—C26 118.0 (3) O5—C46—C45 108.3 (6)
C21—C25—C26 118.7 (3) O5—C46—H46A 110.0
N1—C26—C18 122.8 (3) C45—C46—H46A 110.0
N1—C26—C25 118.0 (3) O5—C46—H46B 110.0
C18—C26—C25 119.2 (3) C45—C46—H46B 110.0
C15—C27—H27A 109.5 H46A—C46—H46B 108.4
C15—C27—H27B 109.5
C1—S1—S2—C8 88.74 (17) C24—N2—C25—C26 −179.3 (3)
S2—S1—C1—C6 −18.7 (3) C22—C21—C25—N2 −0.1 (5)
S2—S1—C1—C2 160.5 (2) C20—C21—C25—N2 −177.7 (3)
C6—C1—C2—C3 −1.8 (5) C22—C21—C25—C26 178.6 (3)
S1—C1—C2—C3 179.0 (3) C20—C21—C25—C26 1.0 (5)
C6—C1—C2—C7 −178.2 (3) C15—N1—C26—C18 −0.2 (5)
S1—C1—C2—C7 2.6 (4) C15—N1—C26—C25 179.7 (3)
C1—C2—C3—C4 0.7 (6) C17—C18—C26—N1 −0.5 (5)
C7—C2—C3—C4 177.1 (3) C19—C18—C26—N1 179.3 (3)
C2—C3—C4—C5 −0.1 (6) C17—C18—C26—C25 179.7 (3)
C3—C4—C5—C6 0.7 (6) C19—C18—C26—C25 −0.5 (5)
C4—C5—C6—C1 −1.9 (6) N2—C25—C26—N1 −1.4 (5)
C2—C1—C6—C5 2.4 (5) C21—C25—C26—N1 179.9 (3)
S1—C1—C6—C5 −178.4 (3) N2—C25—C26—C18 178.5 (3)
C3—C2—C7—O1 −157.5 (4) C21—C25—C26—C18 −0.2 (5)
C1—C2—C7—O1 19.0 (5) C40—N3—C29—C30 −0.9 (5)
C3—C2—C7—O2 21.9 (5) C40—N3—C29—C41 178.2 (3)
C1—C2—C7—O2 −161.7 (3) N3—C29—C30—C31 2.7 (6)
S1—S2—C8—C13 −15.5 (3) C41—C29—C30—C31 −176.5 (4)
S1—S2—C8—C9 165.0 (2) C29—C30—C31—C32 −1.5 (6)
C13—C8—C9—C10 0.2 (5) C30—C31—C32—C40 −1.1 (5)
S2—C8—C9—C10 179.7 (3) C30—C31—C32—C33 175.7 (4)
C13—C8—C9—C14 −178.0 (3) C31—C32—C33—C34 −178.3 (4)
S2—C8—C9—C14 1.4 (4) C40—C32—C33—C34 −1.5 (6)
C8—C9—C10—C11 −2.3 (5) C32—C33—C34—C35 −1.1 (6)
C14—C9—C10—C11 176.0 (3) C33—C34—C35—C36 179.4 (4)
C9—C10—C11—C12 2.9 (6) C33—C34—C35—C39 1.6 (6)
C10—C11—C12—C13 −1.6 (6) C39—C35—C36—C37 −1.5 (5)
C11—C12—C13—C8 −0.5 (6) C34—C35—C36—C37 −179.3 (4)
C9—C8—C13—C12 1.1 (5) C35—C36—C37—C38 1.2 (6)
S2—C8—C13—C12 −178.4 (3) C39—N4—C38—C37 −0.4 (5)
C10—C9—C14—O3 −160.7 (3) C39—N4—C38—C42 179.7 (3)
C8—C9—C14—O3 17.6 (5) C36—C37—C38—N4 −0.2 (6)
C10—C9—C14—O4 18.5 (5) C36—C37—C38—C42 179.7 (4)
C8—C9—C14—O4 −163.2 (3) C38—N4—C39—C35 0.0 (5)
C26—N1—C15—C16 0.7 (5) C38—N4—C39—C40 178.4 (3)
C26—N1—C15—C27 −179.9 (3) C36—C35—C39—N4 0.9 (5)
N1—C15—C16—C17 −0.6 (6) C34—C35—C39—N4 178.8 (3)
C27—C15—C16—C17 −179.9 (4) C36—C35—C39—C40 −177.4 (3)
C15—C16—C17—C18 −0.1 (5) C34—C35—C39—C40 0.4 (5)
C16—C17—C18—C26 0.6 (5) C29—N3—C40—C32 −1.9 (5)
C16—C17—C18—C19 −179.2 (4) C29—N3—C40—C39 −179.5 (3)
C17—C18—C19—C20 −179.6 (4) C31—C32—C40—N3 3.0 (5)
C26—C18—C19—C20 0.6 (6) C33—C32—C40—N3 −174.0 (3)
C18—C19—C20—C21 0.2 (6) C31—C32—C40—C39 −179.4 (3)
C19—C20—C21—C22 −178.5 (4) C33—C32—C40—C39 3.6 (5)
C19—C20—C21—C25 −1.0 (6) N4—C39—C40—N3 −3.7 (5)
C25—C21—C22—C23 0.9 (6) C35—C39—C40—N3 174.7 (3)
C20—C21—C22—C23 178.5 (4) N4—C39—C40—C32 178.6 (3)
C21—C22—C23—C24 −1.1 (6) C35—C39—C40—C32 −3.0 (5)
C25—N2—C24—C23 0.4 (5) C46—O5—C43—C44 −23.0 (9)
C25—N2—C24—C28 178.7 (3) O5—C43—C44—C45 28.7 (9)
C22—C23—C24—N2 0.4 (6) C43—C44—C45—C46 −22.9 (9)
C22—C23—C24—C28 −177.8 (4) C43—O5—C46—C45 8.1 (9)
C24—N2—C25—C21 −0.6 (5) C44—C45—C46—O5 8.9 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2o···N1i 0.85 (4) 1.91 (4) 2.734 (4) 163 (4)
O2—H2o···N2i 0.85 (4) 2.46 (4) 2.982 (5) 121 (4)
O4—H4o···N4ii 0.84 (4) 1.86 (3) 2.691 (4) 170 (4)
C19—H19···O1iii 0.95 2.59 3.448 (5) 150
C22—H22···O5 0.95 2.52 3.383 (7) 150
C23—H23···O3 0.95 2.56 3.345 (5) 140

Symmetry codes: (i) x−1, y, z; (ii) −x+2, y−1/2, −z+1; (iii) −x+1, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2213).

References

  1. Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117. [DOI] [PMC free article] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  4. Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
  5. Broker, G. A. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o705. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037165/su2213sup1.cif

e-66-o2602-sup1.cif (32.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037165/su2213Isup2.hkl

e-66-o2602-Isup2.hkl (413.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES