Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):o2612. doi: 10.1107/S1600536810034902

2,3-Dihydro-1H-pyrrolizin-1-one

Yousaf Ali a,*, Yu Peng b, Erbing Hua b, Mohammad Aijaz Anwar a, Mehboob Ali Kalhoro a
PMCID: PMC2983252  PMID: 21587587

Abstract

There are two nearly identical mol­ecules in the asymmetric unit of the title compound, C7H7NO. The mol­ecules are nearly planar (r.m.s. deviations of 0.025 and 0.017 Å) and oriented at a dihedral angle of 28.98 (3)°. The two mol­ecules are linked by a C—H⋯O hydrogen bond. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the c axis.

Related literature

For general background to 2,3-dihydro­pyrrolizine derivatives and their biological activity, see: Skvortsov & Astakhova (1992). For the preparation, see: Braunholtz et al. (1962); Clemo & Ramage (1931). For natural sources, see: Meinwald & Meinwald (1965).graphic file with name e-66-o2612-scheme1.jpg

Experimental

Crystal data

  • C7H7NO

  • M r = 121.14

  • Monoclinic, Inline graphic

  • a = 11.301 (1) Å

  • b = 7.1730 (7) Å

  • c = 14.3760 (16) Å

  • β = 90.989 (5)°

  • V = 1165.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.12 × 0.06 × 0.04 mm

Data collection

  • Rigaku Saturn724 CCD camera diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2009) T min = 0.989, T max = 0.996

  • 10183 measured reflections

  • 2284 independent reflections

  • 2003 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.118

  • S = 1.16

  • 2284 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034902/bq2209sup1.cif

e-66-o2612-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034902/bq2209Isup2.hkl

e-66-o2612-Isup2.hkl (112.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.55 3.151 (2) 121
C7—H7⋯O2 0.95 2.55 3.250 (2) 130
C12—H12⋯O2ii 0.95 2.51 3.435 (2) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

YA is grateful to the Pakistan Council of Scientific & Industrial Research, Ministry of Science & Technology, Government of Pakistan, for financial support. PY is grateful to Tianjin University of Science & Technology for research funding (research grant No. 2009 0431).

supplementary crystallographic information

Comment

Derivatives of 2,3-dihydropyrrolizine became known through studies of their synthesis (Clemo et al., 1931) and isolation from natural source (Meinwald et al., 1965). Synthetic dihydropyrrolizines that are of interest as pharmaceuticals have been reported. The most important of these, Ketorolac, is a non steroid analgesic. Depending on their structure, derivatives of 2,3-dihydropyrrolizine have shown merit as analgesics, anti-inflammatory agents, myorelaxants, inhibitors of thrombocyte aggregation, fibrinolytics, temperature-lowering substances and drugs for the treatment of glaucoma and conjunctivitis (Skvortsov et al., 1992).

The ORTEP (Farrugia, 1997) drawing of the molecule is shown in Fig. 1. The sums of the three angles at N1 and C4 are 359.93 and 359.96 respectively, indicating that two rings are almost planer with an r.m.s. deviation of 0.05 Å. Molecules are held together in crystal packing by weak C—H···O hydrogen bonds (Table 1), in the form of zigzag infinite one dimensional polymeric chains (Fig. 2.).

Experimental

The preparation of title compound was carried out as described in the procedure reported in literature (Braunholtz et al., 1962). Purified by Flash Column Chromatography, Petroleum Ether:Ethyl Acetate = 3:1.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95 and 0.99Å for aromatic and methylene respectively. Uiso(H) values were taken to be equal to 1.2 Ueq(C) for all hydrogen atoms.

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot (80% probability level) showing atom numbering scheme.

Fig. 2.

Fig. 2.

The packing showing the zigzg chains. Dashed lines indicate hydrogen bonds

Crystal data

C7H7NO F(000) = 512
Mr = 121.14 Dx = 1.381 Mg m3
Monoclinic, P21/c Melting point: 327(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71075 Å
a = 11.301 (1) Å Cell parameters from 3403 reflections
b = 7.1730 (7) Å θ = 1.8–28.1°
c = 14.3760 (16) Å µ = 0.09 mm1
β = 90.989 (5)° T = 113 K
V = 1165.2 (2) Å3 Prism, colorless
Z = 8 0.12 × 0.06 × 0.04 mm

Data collection

Rigaku Saturn724 CCD camera diffractometer 2284 independent reflections
Radiation source: rotating anode 2003 reflections with I > 2σ(I)
multilayer Rint = 0.051
ω scans θmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2009) h = −13→13
Tmin = 0.989, Tmax = 0.996 k = −8→8
10183 measured reflections l = −17→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.043P)2 + 0.3505P] where P = (Fo2 + 2Fc2)/3
2284 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. Single crystals suitable for X-ray crystallography were grown by slow cooling of a hot saturated solution of Petroleum Ether.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted RSHELXS-97 -factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.84120 (12) 0.0832 (2) 0.57308 (9) 0.0293 (4)
O2 0.49964 (11) 0.0828 (2) 0.17318 (10) 0.0329 (4)
N1 0.72173 (13) 0.1521 (2) 0.35032 (11) 0.0181 (4)
N2 0.20229 (13) 0.1557 (2) 0.11650 (11) 0.0190 (4)
C1 0.78107 (17) 0.0987 (3) 0.50200 (13) 0.0214 (4)
C2 0.64640 (16) 0.0776 (3) 0.49734 (13) 0.0229 (5)
H2A 0.6086 0.1646 0.5413 0.027*
H2B 0.6233 −0.0513 0.5136 0.027*
C3 0.60795 (16) 0.1231 (3) 0.39650 (13) 0.0222 (4)
H3A 0.5634 0.0183 0.3680 0.027*
H3B 0.5586 0.2371 0.3938 0.027*
C4 0.81910 (16) 0.1386 (3) 0.40853 (13) 0.0186 (4)
C5 0.91883 (17) 0.1737 (3) 0.35603 (13) 0.0226 (4)
H5 0.9988 0.1728 0.3775 0.027*
C6 0.87834 (16) 0.2109 (3) 0.26502 (13) 0.0218 (4)
H6 0.9265 0.2405 0.2136 0.026*
C7 0.75535 (16) 0.1968 (3) 0.26317 (13) 0.0209 (4)
H7 0.7046 0.2152 0.2106 0.025*
C8 0.39292 (16) 0.1181 (3) 0.16955 (14) 0.0219 (4)
C9 0.32016 (16) 0.1840 (3) 0.25181 (13) 0.0223 (4)
H9A 0.3490 0.3065 0.2743 0.027*
H9B 0.3260 0.0934 0.3036 0.027*
C10 0.19132 (16) 0.1993 (3) 0.21584 (13) 0.0208 (4)
H10A 0.1395 0.1084 0.2472 0.025*
H10B 0.1596 0.3265 0.2250 0.025*
C11 0.31432 (15) 0.1065 (3) 0.09001 (13) 0.0186 (4)
C12 0.30999 (17) 0.0643 (3) −0.00456 (14) 0.0223 (4)
H12 0.3741 0.0258 −0.0419 0.027*
C13 0.19207 (17) 0.0901 (3) −0.03344 (14) 0.0239 (5)
H13 0.1615 0.0721 −0.0948 0.029*
C14 0.12721 (17) 0.1468 (3) 0.04322 (14) 0.0238 (5)
H14 0.0450 0.1741 0.0435 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0349 (8) 0.0343 (9) 0.0185 (8) 0.0044 (6) −0.0039 (6) −0.0005 (6)
O2 0.0195 (7) 0.0467 (10) 0.0324 (9) 0.0055 (6) −0.0011 (6) −0.0079 (7)
N1 0.0169 (7) 0.0209 (8) 0.0165 (8) 0.0002 (6) 0.0003 (6) −0.0004 (7)
N2 0.0187 (8) 0.0195 (9) 0.0188 (9) 0.0013 (6) 0.0020 (7) −0.0012 (7)
C1 0.0263 (10) 0.0175 (10) 0.0203 (11) 0.0021 (8) −0.0006 (8) −0.0020 (8)
C2 0.0280 (10) 0.0213 (10) 0.0196 (10) −0.0017 (8) 0.0044 (8) 0.0000 (8)
C3 0.0179 (9) 0.0247 (10) 0.0241 (11) −0.0019 (8) 0.0032 (8) 0.0006 (8)
C4 0.0198 (9) 0.0198 (10) 0.0160 (10) 0.0012 (7) −0.0031 (8) −0.0022 (8)
C5 0.0189 (9) 0.0254 (10) 0.0233 (11) −0.0002 (8) −0.0016 (8) −0.0033 (9)
C6 0.0224 (10) 0.0237 (10) 0.0193 (10) −0.0013 (8) 0.0032 (8) −0.0003 (8)
C7 0.0238 (10) 0.0227 (10) 0.0161 (10) 0.0015 (8) −0.0015 (8) 0.0016 (8)
C8 0.0207 (9) 0.0200 (10) 0.0249 (11) −0.0004 (8) 0.0007 (8) 0.0004 (8)
C9 0.0230 (10) 0.0251 (10) 0.0187 (10) −0.0004 (8) 0.0007 (8) −0.0008 (8)
C10 0.0222 (10) 0.0228 (10) 0.0177 (10) 0.0015 (8) 0.0043 (8) −0.0020 (8)
C11 0.0190 (9) 0.0183 (10) 0.0184 (10) 0.0016 (7) 0.0030 (8) 0.0000 (8)
C12 0.0267 (10) 0.0199 (10) 0.0204 (10) 0.0004 (8) 0.0039 (8) −0.0003 (8)
C13 0.0307 (11) 0.0233 (11) 0.0176 (10) 0.0011 (8) −0.0024 (8) 0.0005 (8)
C14 0.0222 (10) 0.0244 (11) 0.0246 (11) 0.0008 (8) −0.0044 (8) 0.0001 (9)

Geometric parameters (Å, °)

O1—C1 1.222 (2) C5—H5 0.9500
O2—C8 1.232 (2) C6—C7 1.393 (2)
N1—C7 1.354 (2) C6—H6 0.9500
N1—C4 1.374 (2) C7—H7 0.9500
N1—C3 1.472 (2) C8—C11 1.438 (3)
N2—C14 1.343 (2) C8—C9 1.527 (3)
N2—C11 1.374 (2) C9—C10 1.541 (3)
N2—C10 1.469 (2) C9—H9A 0.9900
C1—C4 1.446 (3) C9—H9B 0.9900
C1—C2 1.530 (3) C10—H10A 0.9900
C2—C3 1.541 (3) C10—H10B 0.9900
C2—H2A 0.9900 C11—C12 1.393 (3)
C2—H2B 0.9900 C12—C13 1.401 (3)
C3—H3A 0.9900 C12—H12 0.9500
C3—H3B 0.9900 C13—C14 1.395 (3)
C4—C5 1.390 (3) C13—H13 0.9500
C5—C6 1.404 (3) C14—H14 0.9500
C7—N1—C4 110.21 (16) N1—C7—C6 107.17 (17)
C7—N1—C3 135.39 (16) N1—C7—H7 126.4
C4—N1—C3 114.33 (15) C6—C7—H7 126.4
C14—N2—C11 110.07 (16) O2—C8—C11 127.76 (18)
C14—N2—C10 135.23 (16) O2—C8—C9 124.78 (18)
C11—N2—C10 114.68 (15) C11—C8—C9 107.47 (15)
O1—C1—C4 128.66 (18) C8—C9—C10 106.29 (15)
O1—C1—C2 124.46 (18) C8—C9—H9A 110.5
C4—C1—C2 106.88 (16) C10—C9—H9A 110.5
C1—C2—C3 106.52 (15) C8—C9—H9B 110.5
C1—C2—H2A 110.4 C10—C9—H9B 110.5
C3—C2—H2A 110.4 H9A—C9—H9B 108.7
C1—C2—H2B 110.4 N2—C10—C9 102.47 (14)
C3—C2—H2B 110.4 N2—C10—H10A 111.3
H2A—C2—H2B 108.6 C9—C10—H10A 111.3
N1—C3—C2 102.70 (14) N2—C10—H10B 111.3
N1—C3—H3A 111.2 C9—C10—H10B 111.3
C2—C3—H3A 111.2 H10A—C10—H10B 109.2
N1—C3—H3B 111.2 N2—C11—C12 108.01 (16)
C2—C3—H3B 111.2 N2—C11—C8 108.92 (16)
H3A—C3—H3B 109.1 C12—C11—C8 143.08 (18)
N1—C4—C5 107.75 (16) C11—C12—C13 106.13 (17)
N1—C4—C1 109.38 (16) C11—C12—H12 126.9
C5—C4—C1 142.83 (17) C13—C12—H12 126.9
C4—C5—C6 106.62 (16) C14—C13—C12 108.33 (17)
C4—C5—H5 126.7 C14—C13—H13 125.8
C6—C5—H5 126.7 C12—C13—H13 125.8
C7—C6—C5 108.24 (17) N2—C14—C13 107.47 (17)
C7—C6—H6 125.9 N2—C14—H14 126.3
C5—C6—H6 125.9 C13—C14—H14 126.3
O1—C1—C2—C3 175.74 (18) O2—C8—C9—C10 −176.94 (19)
C4—C1—C2—C3 −4.4 (2) C11—C8—C9—C10 3.2 (2)
C7—N1—C3—C2 −179.46 (19) C14—N2—C10—C9 −178.40 (19)
C4—N1—C3—C2 −2.6 (2) C11—N2—C10—C9 3.8 (2)
C1—C2—C3—N1 4.14 (19) C8—C9—C10—N2 −4.05 (19)
C7—N1—C4—C5 −0.8 (2) C14—N2—C11—C12 0.0 (2)
C3—N1—C4—C5 −178.45 (15) C10—N2—C11—C12 178.29 (15)
C7—N1—C4—C1 177.53 (15) C14—N2—C11—C8 179.72 (15)
C3—N1—C4—C1 −0.1 (2) C10—N2—C11—C8 −2.0 (2)
O1—C1—C4—N1 −177.28 (18) O2—C8—C11—N2 179.24 (19)
C2—C1—C4—N1 2.8 (2) C9—C8—C11—N2 −0.9 (2)
O1—C1—C4—C5 0.1 (4) O2—C8—C11—C12 −1.2 (4)
C2—C1—C4—C5 −179.7 (2) C9—C8—C11—C12 178.7 (2)
N1—C4—C5—C6 0.7 (2) N2—C11—C12—C13 0.1 (2)
C1—C4—C5—C6 −176.7 (2) C8—C11—C12—C13 −179.6 (2)
C4—C5—C6—C7 −0.4 (2) C11—C12—C13—C14 −0.1 (2)
C4—N1—C7—C6 0.6 (2) C11—N2—C14—C13 0.0 (2)
C3—N1—C7—C6 177.51 (19) C10—N2—C14—C13 −177.84 (19)
C5—C6—C7—N1 −0.1 (2) C12—C13—C14—N2 0.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O1i 0.95 2.55 3.151 (2) 121
C7—H7···O2 0.95 2.55 3.250 (2) 130
C12—H12···O2ii 0.95 2.51 3.435 (2) 165

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2209).

References

  1. Braunholtz, J. T., Mallion, K. B. & Frederick, G. M. (1962). J. Chem. Soc. pp. 4346–4353.
  2. Clemo, G. R. & Ramage, G. R. (1931). J. Chem. Soc.7, 49–55.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Meinwald, J. & Meinwald, Y. C. (1965). J. Am. Chem. Soc.88, 1305–1310.
  5. Rigaku (2009). CrystalClear-SM Expert Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Skvortsov, I. M. & Astakhova, L. N. (1992). Chem. Heterocycl. Compd, 28, 117–134.
  8. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034902/bq2209sup1.cif

e-66-o2612-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034902/bq2209Isup2.hkl

e-66-o2612-Isup2.hkl (112.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES