Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 30;66(Pt 10):o2679. doi: 10.1107/S1600536810036354

Guanidinium l-glutamate

Bing Peng a, Qingrong Peng a, Wenfeng Zhou a,*, Zhiqiang Zhou a,
PMCID: PMC2983255  PMID: 21587647

Abstract

In the title compound, CH6N3 +·C5H8NO4 , there are two independent cations and two independent anions in the asymmetric unit. In the crystal structure, cations and anions are linked by inter­molecular N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For an early report of salts formed from amino acids and guanidines, see: Armstrong (1956).graphic file with name e-66-o2679-scheme1.jpg

Experimental

Crystal data

  • CH6N3 +·C5H8NO4

  • M r = 206.21

  • Monoclinic, Inline graphic

  • a = 8.7793 (7) Å

  • b = 10.8729 (10) Å

  • c = 10.0801 (9) Å

  • β = 104.552 (1)°

  • V = 931.34 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.42 × 0.26 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.950, T max = 0.976

  • 5501 measured reflections

  • 2220 independent reflections

  • 2087 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.081

  • S = 1.06

  • 2220 reflections

  • 255 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036354/lh5125sup1.cif

e-66-o2679-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036354/lh5125Isup2.hkl

e-66-o2679-Isup2.hkl (109.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8 0.91 1.89 2.795 (2) 179
N1—H1B⋯O4i 0.91 1.84 2.738 (2) 170
N1—H1C⋯O2i 0.91 2.13 3.017 (2) 165
N2—H2A⋯O2ii 0.91 2.09 2.998 (2) 173
N2—H2B⋯O7iii 0.91 2.16 2.740 (2) 120
N2—H2C⋯O5iii 0.91 1.92 2.817 (3) 170
N3—H3A⋯O2i 0.88 2.08 2.900 (3) 154
N3—H3B⋯O3 0.88 2.08 2.841 (3) 145
N4—H4A⋯O3iv 0.88 1.95 2.826 (2) 173
N4—H4B⋯O1i 0.88 2.22 3.095 (2) 170
N5—H5A⋯O4iv 0.88 1.96 2.831 (2) 172
N5—H5B⋯O6 0.88 2.35 3.092 (3) 142
N6—H6A⋯O6 0.88 2.04 2.897 (2) 165
N6—H6B⋯O8v 0.88 1.97 2.824 (2) 164
N7—H7A⋯O5 0.88 2.00 2.851 (2) 163
N7—H7B⋯O8vi 0.88 2.02 2.775 (3) 143
N8—H8A⋯O7v 0.88 2.08 2.954 (3) 170
N8—H8B⋯O1vi 0.88 2.23 2.953 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

This work was supported by NSFC (project No. 20772210) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry. The authors acknowledge Dr Deng Xuebin for collecting the data at the Testing Center, College of Chemistry, Beijing Normal University.

supplementary crystallographic information

Comment

To better understand the formation of complex salts between a guanidine compounds and amino acids we carried out the crystal structure determination of the title compound. The asymmetric unit of the title compound is shown in Fig. 1. There are two independent cations and two indpendent anions in the asymmetric unit. In the crystal structure, cations and anions are linked by intramolecular N—H···O hydrogen bonds into a three-dimensional network (see Fig. 2).

Experimental

L-Glutamic acid (1.47 g.) and guanidine carbonate (0.90 g) were suspended in 10 ml of water. When the evolution of CO2 had ceased the solution was diluted with 20 ml of acetone, and evaporated to a clear syrup. The syrup was dissolved in 30 ml of absolute methanol to yield a clear solution, and was allowed to stand overnight at room temperature. This solution was then placed in a fume hood for another day, whereupon the crystals of the title compound were collected and dried.

Refinement

In the absence of significant anomalous dispersion effects Friedel pairs were merged. The absolute configuation is known from the starting material. H atoms were placed in calculated positions (C—H = 0.99 or 1.00 Å, N—H = 0.88 or 0.91 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C,N) or 1.5eq(N) for –NH3 groups.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines.

Crystal data

CH6N3+·C5H8NO4 F(000) = 440
Mr = 206.21 Dx = 1.471 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 2748 reflections
a = 8.7793 (7) Å θ = 2.4–27.5°
b = 10.8729 (10) Å µ = 0.12 mm1
c = 10.0801 (9) Å T = 150 K
β = 104.552 (1)° Prism, colourless
V = 931.34 (14) Å3 0.42 × 0.26 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 2220 independent reflections
Radiation source: fine-focus sealed tube 2087 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→10
Tmin = 0.950, Tmax = 0.976 k = −14→9
5501 measured reflections l = −8→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.044P)2 + 0.2149P] where P = (Fo2 + 2Fc2)/3
2220 reflections (Δ/σ)max < 0.001
255 parameters Δρmax = 0.30 e Å3
1 restraint Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3633 (2) 0.4498 (2) −0.1328 (2) 0.0157 (4)
C2 0.4808 (2) 0.5516 (2) −0.06507 (19) 0.0152 (4)
H2 0.5234 0.5892 −0.1389 0.018*
C3 0.6207 (2) 0.5030 (2) 0.0442 (2) 0.0175 (4)
H3C 0.6924 0.5723 0.0803 0.021*
H3D 0.6793 0.4434 0.0016 0.021*
C4 0.5727 (2) 0.4405 (2) 0.1632 (2) 0.0185 (4)
H4C 0.4937 0.3761 0.1264 0.022*
H4D 0.5227 0.5020 0.2111 0.022*
C5 0.7121 (2) 0.3823 (2) 0.2661 (2) 0.0161 (4)
C6 0.6284 (3) 0.5883 (2) 0.6253 (2) 0.0170 (4)
C7 0.5001 (2) 0.5088 (2) 0.5315 (2) 0.0142 (4)
H7 0.5153 0.5159 0.4368 0.017*
C8 0.3304 (2) 0.5466 (2) 0.52340 (19) 0.0164 (4)
H8C 0.3259 0.6367 0.5357 0.020*
H8D 0.2954 0.5067 0.5990 0.020*
C9 0.2181 (2) 0.5106 (2) 0.3863 (2) 0.0171 (4)
H9A 0.2379 0.4240 0.3655 0.020*
H9B 0.1083 0.5165 0.3946 0.020*
C10 0.2368 (2) 0.5920 (2) 0.2679 (2) 0.0156 (4)
C11 0.9131 (2) 0.7443 (2) 0.4492 (2) 0.0176 (4)
C12 0.9193 (3) 0.7368 (2) 0.9641 (2) 0.0179 (4)
N1 0.3944 (2) 0.65067 (18) −0.01100 (17) 0.0155 (4)
H1A 0.3351 0.6164 0.0415 0.023*
H1B 0.3307 0.6918 −0.0823 0.023*
H1C 0.4648 0.7040 0.0407 0.023*
N2 0.5301 (2) 0.37747 (18) 0.57395 (19) 0.0183 (4)
H2A 0.4960 0.3633 0.6507 0.027*
H2B 0.6351 0.3617 0.5918 0.027*
H2C 0.4774 0.3275 0.5052 0.027*
N3 0.7857 (2) 0.6972 (2) 0.3634 (2) 0.0240 (4)
H3A 0.7411 0.7361 0.2870 0.029*
H3B 0.7461 0.6272 0.3832 0.029*
N4 0.9733 (2) 0.84922 (19) 0.42024 (19) 0.0204 (4)
H4A 1.0578 0.8797 0.4770 0.024*
H4B 0.9288 0.8887 0.3441 0.024*
N5 0.9797 (2) 0.68433 (19) 0.5639 (2) 0.0215 (4)
H5A 1.0643 0.7145 0.6209 0.026*
H5B 0.9394 0.6144 0.5829 0.026*
N6 0.9603 (2) 0.62410 (19) 0.9389 (2) 0.0242 (4)
H6A 0.9036 0.5832 0.8682 0.029*
H6B 1.0442 0.5899 0.9926 0.029*
N7 0.7924 (2) 0.78798 (19) 0.88260 (19) 0.0222 (4)
H7A 0.7361 0.7467 0.8121 0.027*
H7B 0.7648 0.8631 0.8991 0.027*
N8 1.0012 (2) 0.8000 (2) 1.0716 (2) 0.0248 (5)
H8A 1.0844 0.7668 1.1274 0.030*
H8B 0.9721 0.8751 1.0868 0.030*
O1 0.22034 (18) 0.47085 (14) −0.15334 (15) 0.0197 (3)
O2 0.42560 (19) 0.35290 (15) −0.16612 (15) 0.0206 (3)
O3 0.76473 (19) 0.43703 (16) 0.37806 (16) 0.0221 (4)
O4 0.76678 (19) 0.28334 (16) 0.23297 (16) 0.0236 (4)
O5 0.6030 (2) 0.70163 (15) 0.62702 (17) 0.0234 (4)
O6 0.75073 (18) 0.53379 (16) 0.68837 (16) 0.0225 (4)
O7 0.2657 (2) 0.70271 (16) 0.28796 (17) 0.0277 (4)
O8 0.21550 (17) 0.54149 (15) 0.15054 (14) 0.0184 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0218 (10) 0.0148 (10) 0.0098 (9) −0.0013 (8) 0.0027 (8) 0.0026 (8)
C2 0.0177 (9) 0.0146 (10) 0.0126 (8) −0.0017 (8) 0.0025 (7) −0.0002 (8)
C3 0.0153 (9) 0.0193 (10) 0.0165 (10) 0.0003 (9) 0.0013 (8) −0.0003 (8)
C4 0.0159 (10) 0.0222 (12) 0.0161 (10) 0.0029 (9) 0.0017 (8) −0.0005 (9)
C5 0.0153 (9) 0.0163 (10) 0.0158 (10) 0.0001 (8) 0.0024 (8) 0.0010 (8)
C6 0.0180 (10) 0.0187 (11) 0.0135 (9) −0.0030 (9) 0.0024 (8) 0.0002 (8)
C7 0.0177 (9) 0.0134 (10) 0.0110 (9) 0.0014 (8) 0.0023 (7) 0.0009 (8)
C8 0.0167 (9) 0.0203 (10) 0.0115 (9) 0.0013 (8) 0.0024 (7) 0.0006 (8)
C9 0.0166 (9) 0.0184 (10) 0.0151 (9) −0.0024 (8) 0.0021 (7) 0.0000 (8)
C10 0.0126 (9) 0.0167 (10) 0.0155 (10) 0.0014 (8) −0.0005 (7) 0.0014 (8)
C11 0.0169 (10) 0.0180 (11) 0.0182 (10) 0.0029 (8) 0.0048 (8) −0.0029 (8)
C12 0.0186 (10) 0.0176 (11) 0.0169 (10) 0.0009 (8) 0.0035 (8) 0.0015 (8)
N1 0.0186 (8) 0.0142 (8) 0.0122 (8) −0.0007 (7) 0.0008 (6) 0.0010 (7)
N2 0.0202 (9) 0.0136 (9) 0.0184 (9) 0.0008 (7) −0.0003 (7) −0.0010 (7)
N3 0.0246 (10) 0.0203 (10) 0.0214 (9) −0.0026 (8) −0.0052 (8) 0.0023 (8)
N4 0.0205 (9) 0.0211 (10) 0.0172 (9) −0.0025 (8) 0.0001 (7) 0.0001 (8)
N5 0.0189 (9) 0.0211 (10) 0.0206 (9) −0.0030 (8) −0.0024 (7) 0.0020 (8)
N6 0.0237 (10) 0.0209 (11) 0.0233 (10) 0.0065 (8) −0.0028 (8) −0.0031 (8)
N7 0.0240 (10) 0.0171 (9) 0.0209 (9) 0.0043 (8) −0.0032 (8) −0.0035 (8)
N8 0.0284 (10) 0.0203 (11) 0.0195 (9) 0.0056 (8) −0.0057 (8) −0.0024 (8)
O1 0.0183 (7) 0.0212 (9) 0.0175 (7) −0.0006 (6) 0.0010 (6) −0.0013 (6)
O2 0.0253 (8) 0.0183 (8) 0.0167 (8) 0.0026 (7) 0.0024 (6) −0.0035 (6)
O3 0.0235 (8) 0.0218 (9) 0.0171 (8) 0.0053 (7) −0.0020 (6) −0.0046 (7)
O4 0.0253 (8) 0.0208 (8) 0.0199 (8) 0.0068 (7) −0.0032 (6) −0.0048 (7)
O5 0.0280 (9) 0.0137 (8) 0.0232 (8) −0.0024 (7) −0.0033 (7) 0.0003 (6)
O6 0.0191 (8) 0.0201 (9) 0.0234 (8) 0.0000 (7) −0.0035 (6) −0.0009 (7)
O7 0.0405 (10) 0.0178 (8) 0.0195 (8) −0.0069 (8) −0.0025 (7) 0.0026 (7)
O8 0.0220 (7) 0.0185 (8) 0.0143 (7) 0.0015 (6) 0.0039 (6) 0.0016 (6)

Geometric parameters (Å, °)

C1—O1 1.241 (3) C10—O7 1.237 (3)
C1—O2 1.271 (3) C10—O8 1.275 (3)
C1—C2 1.549 (3) C11—N4 1.321 (3)
C2—N1 1.497 (3) C11—N5 1.328 (3)
C2—C3 1.524 (3) C11—N3 1.332 (3)
C2—H2 1.0000 C12—N6 1.319 (3)
C3—C4 1.527 (3) C12—N7 1.329 (3)
C3—H3C 0.9900 C12—N8 1.331 (3)
C3—H3D 0.9900 N1—H1A 0.9100
C4—C5 1.529 (3) N1—H1B 0.9100
C4—H4C 0.9900 N1—H1C 0.9100
C4—H4D 0.9900 N2—H2A 0.9100
C5—O4 1.257 (3) N2—H2B 0.9100
C5—O3 1.257 (3) N2—H2C 0.9100
C6—O6 1.251 (3) N3—H3A 0.8800
C6—O5 1.253 (3) N3—H3B 0.8800
C6—C7 1.541 (3) N4—H4A 0.8800
C7—N2 1.495 (3) N4—H4B 0.8800
C7—C8 1.528 (3) N5—H5A 0.8800
C7—H7 1.0000 N5—H5B 0.8800
C8—C9 1.533 (3) N6—H6A 0.8800
C8—H8C 0.9900 N6—H6B 0.8800
C8—H8D 0.9900 N7—H7A 0.8800
C9—C10 1.527 (3) N7—H7B 0.8800
C9—H9A 0.9900 N8—H8A 0.8800
C9—H9B 0.9900 N8—H8B 0.8800
O1—C1—O2 126.4 (2) C10—C9—H9B 109.1
O1—C1—C2 118.4 (2) C8—C9—H9B 109.1
O2—C1—C2 115.21 (18) H9A—C9—H9B 107.8
N1—C2—C3 112.11 (16) O7—C10—O8 123.2 (2)
N1—C2—C1 109.42 (16) O7—C10—C9 119.6 (2)
C3—C2—C1 113.44 (18) O8—C10—C9 117.14 (19)
N1—C2—H2 107.2 N4—C11—N5 120.2 (2)
C3—C2—H2 107.2 N4—C11—N3 120.4 (2)
C1—C2—H2 107.2 N5—C11—N3 119.4 (2)
C2—C3—C4 112.99 (17) N6—C12—N7 119.7 (2)
C2—C3—H3C 109.0 N6—C12—N8 121.3 (2)
C4—C3—H3C 109.0 N7—C12—N8 119.0 (2)
C2—C3—H3D 109.0 C2—N1—H1A 109.5
C4—C3—H3D 109.0 C2—N1—H1B 109.5
H3C—C3—H3D 107.8 H1A—N1—H1B 109.5
C3—C4—C5 112.67 (17) C2—N1—H1C 109.5
C3—C4—H4C 109.1 H1A—N1—H1C 109.5
C5—C4—H4C 109.1 H1B—N1—H1C 109.5
C3—C4—H4D 109.1 C7—N2—H2A 109.5
C5—C4—H4D 109.1 C7—N2—H2B 109.5
H4C—C4—H4D 107.8 H2A—N2—H2B 109.5
O4—C5—O3 124.40 (19) C7—N2—H2C 109.5
O4—C5—C4 117.95 (18) H2A—N2—H2C 109.5
O3—C5—C4 117.6 (2) H2B—N2—H2C 109.5
O6—C6—O5 126.2 (2) C11—N3—H3A 120.0
O6—C6—C7 116.6 (2) C11—N3—H3B 120.0
O5—C6—C7 117.06 (19) H3A—N3—H3B 120.0
N2—C7—C8 111.79 (18) C11—N4—H4A 120.0
N2—C7—C6 108.12 (16) C11—N4—H4B 120.0
C8—C7—C6 115.78 (18) H4A—N4—H4B 120.0
N2—C7—H7 106.9 C11—N5—H5A 120.0
C8—C7—H7 106.9 C11—N5—H5B 120.0
C6—C7—H7 106.9 H5A—N5—H5B 120.0
C7—C8—C9 112.17 (17) C12—N6—H6A 120.0
C7—C8—H8C 109.2 C12—N6—H6B 120.0
C9—C8—H8C 109.2 H6A—N6—H6B 120.0
C7—C8—H8D 109.2 C12—N7—H7A 120.0
C9—C8—H8D 109.2 C12—N7—H7B 120.0
H8C—C8—H8D 107.9 H7A—N7—H7B 120.0
C10—C9—C8 112.69 (17) C12—N8—H8A 120.0
C10—C9—H9A 109.1 C12—N8—H8B 120.0
C8—C9—H9A 109.1 H8A—N8—H8B 120.0
O1—C1—C2—N1 11.3 (3) O6—C6—C7—N2 18.9 (3)
O2—C1—C2—N1 −170.89 (17) O5—C6—C7—N2 −163.9 (2)
O1—C1—C2—C3 137.29 (19) O6—C6—C7—C8 145.18 (19)
O2—C1—C2—C3 −44.9 (2) O5—C6—C7—C8 −37.6 (3)
N1—C2—C3—C4 63.7 (2) N2—C7—C8—C9 −83.4 (2)
C1—C2—C3—C4 −60.8 (2) C6—C7—C8—C9 152.21 (18)
C2—C3—C4—C5 174.99 (19) C7—C8—C9—C10 −73.5 (2)
C3—C4—C5—O4 −75.2 (3) C8—C9—C10—O7 −36.4 (3)
C3—C4—C5—O3 104.4 (2) C8—C9—C10—O8 146.12 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O8 0.91 1.89 2.795 (2) 179
N1—H1B···O4i 0.91 1.84 2.738 (2) 170
N1—H1C···O2i 0.91 2.13 3.017 (2) 165
N2—H2A···O2ii 0.91 2.09 2.998 (2) 173
N2—H2B···O7iii 0.91 2.16 2.740 (2) 120
N2—H2C···O5iii 0.91 1.92 2.817 (3) 170
N3—H3A···O2i 0.88 2.08 2.900 (3) 154
N3—H3B···O3 0.88 2.08 2.841 (3) 145
N4—H4A···O3iv 0.88 1.95 2.826 (2) 173
N4—H4B···O1i 0.88 2.22 3.095 (2) 170
N5—H5A···O4iv 0.88 1.96 2.831 (2) 172
N5—H5B···O6 0.88 2.35 3.092 (3) 142
N6—H6A···O6 0.88 2.04 2.897 (2) 165
N6—H6B···O8v 0.88 1.97 2.824 (2) 164
N7—H7A···O5 0.88 2.00 2.851 (2) 163
N7—H7B···O8vi 0.88 2.02 2.775 (3) 143
N8—H8A···O7v 0.88 2.08 2.954 (3) 170
N8—H8B···O1vi 0.88 2.23 2.953 (3) 140

Symmetry codes: (i) −x+1, y+1/2, −z; (ii) x, y, z+1; (iii) −x+1, y−1/2, −z+1; (iv) −x+2, y+1/2, −z+1; (v) x+1, y, z+1; (vi) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5125).

References

  1. Armstrong, M. D. (1956). J. Org. Chem.21, 503–505.
  2. Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036354/lh5125sup1.cif

e-66-o2679-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036354/lh5125Isup2.hkl

e-66-o2679-Isup2.hkl (109.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES