Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 30;66(Pt 10):m1338. doi: 10.1107/S1600536810033702

μ-Actetato-1:2κ2 O:O′-tribromido-2κ3 Br-(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-1,7-diene-1κ4 N)dizinc(II)

HuaFeng Li a, FeiFei Shi a,*, Rong Rong b
PMCID: PMC2983256  PMID: 21587467

Abstract

In the title compound, [Zn2Br3(CH3COO)(C16H32N4)], one ZnII atom has a distorted square-planar coordination formed by the four macrocyclic N atoms with an acetate O atom in the apical position and the other ZnII atom has a tetra­hedral coordination environment formed by three Br atoms and one O acetate atom. The two ZnII atoms are linked by an acetate bridge. In the crystal, mol­ecules are linked into centrosymmetric dimers with graph-set motifs R 2 2(16) by an N—H⋯Br inter­action. The mol­ecular configuration is stabilized by an intra­molecular N—H⋯Br hydrogen bond.

Related literature

For related macrocyclic complexes, see: Whimp et al. (1970); Yang (2005); Tebbe et al. (1985). The unsubstituted parent compound exists in the zwitterionic form, see: Spirlet et al. (1991); Maurya et al. (1991). For the preparation of the precursor complex C16H32N4·2HBr·2H2O, see: Hay et al. (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-66-m1338-scheme1.jpg

Experimental

Crystal data

  • [Zn2Br3(C2H3O2)(C16H32N4)]

  • M r = 709.97

  • Monoclinic, Inline graphic

  • a = 10.2964 (8) Å

  • b = 13.6985 (13) Å

  • c = 18.5235 (18) Å

  • β = 92.280 (1)°

  • V = 2610.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.45 mm−1

  • T = 298 K

  • 0.43 × 0.42 × 0.22 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.240, T max = 0.428

  • 13032 measured reflections

  • 4608 independent reflections

  • 2923 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.067

  • S = 0.88

  • 4608 reflections

  • 269 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810033702/bx2283sup1.cif

e-66-m1338-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033702/bx2283Isup2.hkl

e-66-m1338-Isup2.hkl (225.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Br2i 0.91 2.80 3.549 (3) 140
N1—H1⋯Br1 0.91 2.74 3.641 (3) 171

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The structures of several related macrocyclic complexes have been reported (Whimp et al., 1970; Yang, 2005; Tebbe et al., 1985). The unsubstituted parent compound exists in the zwitterionic form (Maurya et al., 1991; Spirlet et al., 1991). The zinc teraazamacrocyclic complex cation, [Zn(C16H32N4)] 2+, can combine with different anions to form many kinds of structures.

We herein report the crystal structure of a new compound synthesized by reaction of Zn(CH3COO)2.2H2O and the complex C18H32N4.2HBr.2H2O, Fig.1. The structural analysis reveals that the title complex is formed by a discrete neutral dinuclear C18H35N4O2Br3Zn2 molecule consisting of two Zn atoms bridged by an acetate with the distance of 6.512 (1) Å between the them. Zn(1) is five-coordinated by the four macrocyclic N atoms with acetate O atom as an apical ligand while that the other Zn atom is in a tetrahedron coordinate environment formed by three bromine atoms and one O acetate atom. The average Zn—N(amine) bond distance of 2.1546 (5)Å and Zn—N(imine) bond distance of 2.0582 (5) Å). The average Zn—Br bond distance of 2.4070 (6) Å, the Zn(1)—O(1) bond distance of` 2.0030 (1) Å and the Zn(2)—O(2) bond distance of` 1.9967 (1) Å). In the crystal the molecules are linked into centrosymmetric dimers with graph-set notation R22(16) motifs by a N—H···Br interaction, centred at [1/2,1/2,0] (Bernstein et al., 1995), Fig. 2. The molecular conformation is stabilized by one intramolecular N—H···Br hydrogen bond. Table 1.

Experimental

All chemicals were of reagent grade and were used as received without further purification. The precursor complex C18H32N4.2HBr.2H2O was prepared by the literature method (Hay et al.,1975). To a 10 ml me thanol solution of Zn(CH3COO)2.2H2O(0.2 mmol,0.039 g), a 5 ml methanol solution of C18H32N4.2HBr.2H2O (0.2 mmol,0.0957 g) was added dropwise with stirring. The resulting solution was continuously stirred for about 30 min. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement

All H atoms were refined as riding on their parent atoms, with distances of 0.91 (NH), 0.97 (CH2) and 0.96 (CH3) Å from the parent C and N atoms, with Uiso(H) = 1.2Ueq(CH2, N) or 1.5Ueq(CH3).

Figures

Fig. 1.

Fig. 1.

The asymmetric structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Zn2Br3(C2H3O2)(C16H32N4)] F(000) = 1408
Mr = 709.97 Dx = 1.806 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3476 reflections
a = 10.2964 (8) Å θ = 2.3–27.5°
b = 13.6985 (13) Å µ = 6.45 mm1
c = 18.5235 (18) Å T = 298 K
β = 92.280 (1)° Prism, purple
V = 2610.6 (4) Å3 0.43 × 0.42 × 0.22 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 4608 independent reflections
Radiation source: fine-focus sealed tube 2923 reflections with I > 2σ(I)
graphite Rint = 0.038
Detector resolution: 13.6612 pixels mm-1 θmax = 25.0°, θmin = 1.9°
thin–slice ω scans h = −12→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −16→14
Tmin = 0.240, Tmax = 0.428 l = −22→17
13032 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067 H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0294P)2] where P = (Fo2 + 2Fc2)/3
4608 reflections (Δ/σ)max = 0.001
269 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.41999 (5) 0.72812 (3) 0.14536 (3) 0.03733 (14)
Zn2 0.62870 (5) 0.70274 (3) −0.07545 (3) 0.04247 (15)
Br1 0.76873 (5) 0.82052 (4) −0.01332 (3) 0.05506 (16)
Br2 0.72235 (6) 0.62875 (4) −0.18003 (3) 0.06807 (19)
Br3 0.43184 (6) 0.78165 (4) −0.11309 (3) 0.07402 (19)
N1 0.5700 (3) 0.8386 (2) 0.14436 (19) 0.0423 (9)
H1 0.6128 0.8291 0.1029 0.051*
N2 0.4572 (4) 0.6965 (3) 0.25310 (19) 0.0469 (10)
N3 0.2615 (3) 0.6280 (2) 0.15567 (17) 0.0368 (9)
H3 0.2904 0.5687 0.1411 0.044*
N4 0.3048 (4) 0.8384 (2) 0.10354 (19) 0.0432 (10)
O1 0.5078 (3) 0.6609 (2) 0.06459 (16) 0.0492 (8)
O2 0.6337 (3) 0.58620 (19) −0.01065 (15) 0.0505 (9)
C1 0.6712 (5) 0.8346 (4) 0.2045 (3) 0.0527 (13)
C2 0.6081 (5) 0.8285 (4) 0.2784 (2) 0.0676 (16)
H2A 0.6758 0.8394 0.3154 0.081*
H2B 0.5472 0.8823 0.2811 0.081*
C3 0.5369 (5) 0.7362 (4) 0.2978 (3) 0.0594 (14)
C4 0.5646 (5) 0.6981 (5) 0.3728 (3) 0.096 (2)
H4A 0.4887 0.7057 0.4008 0.144*
H4B 0.6355 0.7341 0.3951 0.144*
H4C 0.5873 0.6303 0.3705 0.144*
C5 0.7534 (5) 0.7430 (4) 0.1919 (3) 0.0635 (15)
H5A 0.6994 0.6861 0.1941 0.095*
H5B 0.8218 0.7389 0.2285 0.095*
H5C 0.7904 0.7468 0.1452 0.095*
C6 0.7621 (5) 0.9236 (4) 0.2029 (3) 0.0804 (18)
H6A 0.7923 0.9320 0.1550 0.121*
H6B 0.8351 0.9134 0.2360 0.121*
H6C 0.7157 0.9809 0.2168 0.121*
C7 0.3741 (5) 0.6141 (3) 0.2740 (2) 0.0548 (14)
H7A 0.3624 0.6157 0.3257 0.066*
H7B 0.4157 0.5528 0.2624 0.066*
C8 0.2441 (5) 0.6206 (3) 0.2345 (2) 0.0477 (12)
H8A 0.1930 0.5631 0.2448 0.057*
H8B 0.1976 0.6775 0.2510 0.057*
C9 0.1416 (4) 0.6503 (3) 0.1099 (3) 0.0465 (12)
C10 0.0989 (4) 0.7575 (3) 0.1209 (3) 0.0515 (13)
H10A 0.0130 0.7649 0.0981 0.062*
H10B 0.0899 0.7674 0.1723 0.062*
C11 0.1824 (5) 0.8391 (3) 0.0939 (2) 0.0453 (12)
C12 0.1073 (5) 0.9219 (3) 0.0586 (3) 0.0803 (19)
H12A 0.1603 0.9795 0.0590 0.121*
H12B 0.0302 0.9342 0.0847 0.121*
H12C 0.0834 0.9047 0.0096 0.121*
C13 0.1742 (5) 0.6312 (3) 0.0316 (2) 0.0619 (15)
H13A 0.2465 0.6711 0.0191 0.093*
H13B 0.1003 0.6467 0.0005 0.093*
H13C 0.1963 0.5636 0.0259 0.093*
C14 0.0265 (5) 0.5847 (3) 0.1298 (3) 0.0669 (15)
H14A 0.0518 0.5174 0.1268 0.100*
H14B −0.0460 0.5967 0.0969 0.100*
H14C 0.0023 0.5991 0.1782 0.100*
C15 0.3888 (5) 0.9187 (3) 0.0800 (3) 0.0567 (14)
H15A 0.3389 0.9786 0.0756 0.068*
H15B 0.4227 0.9036 0.0332 0.068*
C16 0.4994 (5) 0.9317 (3) 0.1349 (3) 0.0626 (15)
H16A 0.5581 0.9818 0.1188 0.075*
H16B 0.4657 0.9522 0.1807 0.075*
C17 0.5813 (5) 0.5924 (3) 0.0502 (2) 0.0380 (11)
C18 0.6139 (5) 0.5127 (3) 0.1038 (2) 0.0585 (14)
H18A 0.5482 0.5100 0.1391 0.088*
H18B 0.6966 0.5262 0.1274 0.088*
H18C 0.6177 0.4513 0.0790 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0313 (3) 0.0354 (3) 0.0452 (3) 0.0023 (2) 0.0018 (2) −0.0006 (2)
Zn2 0.0463 (4) 0.0369 (3) 0.0442 (3) −0.0020 (3) 0.0017 (3) 0.0035 (2)
Br1 0.0495 (4) 0.0584 (3) 0.0572 (3) −0.0164 (3) 0.0010 (2) −0.0022 (3)
Br2 0.1039 (5) 0.0423 (3) 0.0601 (3) 0.0021 (3) 0.0300 (3) 0.0018 (3)
Br3 0.0596 (4) 0.0683 (4) 0.0919 (4) 0.0104 (3) −0.0254 (3) 0.0014 (3)
N1 0.032 (2) 0.045 (2) 0.050 (2) −0.0014 (18) 0.0042 (19) −0.0088 (18)
N2 0.043 (3) 0.055 (3) 0.042 (2) 0.000 (2) 0.001 (2) −0.006 (2)
N3 0.038 (2) 0.0321 (19) 0.040 (2) 0.0040 (17) 0.0038 (18) −0.0003 (17)
N4 0.033 (3) 0.036 (2) 0.060 (3) 0.0012 (18) 0.004 (2) 0.0044 (18)
O1 0.043 (2) 0.0449 (19) 0.060 (2) 0.0045 (16) 0.0063 (16) −0.0063 (16)
O2 0.067 (3) 0.0379 (18) 0.048 (2) 0.0049 (16) 0.0190 (18) 0.0034 (15)
C1 0.032 (3) 0.067 (3) 0.058 (3) −0.012 (3) 0.001 (3) −0.020 (3)
C2 0.054 (4) 0.093 (4) 0.056 (3) −0.008 (3) −0.001 (3) −0.029 (3)
C3 0.039 (3) 0.092 (4) 0.048 (3) 0.003 (3) 0.009 (3) −0.022 (3)
C4 0.069 (5) 0.181 (7) 0.038 (3) −0.027 (4) −0.007 (3) 0.004 (4)
C5 0.040 (3) 0.094 (4) 0.056 (3) 0.012 (3) −0.005 (3) −0.007 (3)
C6 0.052 (4) 0.099 (4) 0.089 (4) −0.032 (3) 0.000 (3) −0.024 (4)
C7 0.067 (4) 0.055 (3) 0.043 (3) −0.003 (3) 0.002 (3) 0.000 (2)
C8 0.051 (4) 0.045 (3) 0.048 (3) −0.003 (2) 0.016 (3) −0.003 (2)
C9 0.033 (3) 0.036 (3) 0.071 (4) −0.002 (2) 0.000 (3) 0.003 (2)
C10 0.032 (3) 0.044 (3) 0.079 (4) 0.009 (2) 0.002 (3) 0.006 (2)
C11 0.040 (3) 0.036 (3) 0.060 (3) 0.001 (2) −0.001 (3) −0.004 (2)
C12 0.056 (4) 0.043 (3) 0.139 (5) 0.003 (3) −0.042 (4) 0.017 (3)
C13 0.069 (4) 0.055 (3) 0.061 (4) 0.002 (3) −0.016 (3) −0.004 (3)
C14 0.042 (4) 0.052 (3) 0.107 (4) −0.010 (3) −0.001 (3) 0.008 (3)
C15 0.045 (4) 0.037 (3) 0.088 (4) 0.000 (2) 0.002 (3) 0.016 (3)
C16 0.049 (4) 0.039 (3) 0.100 (4) −0.006 (3) 0.009 (3) −0.004 (3)
C17 0.042 (3) 0.033 (3) 0.039 (3) −0.011 (2) 0.000 (2) −0.001 (2)
C18 0.079 (4) 0.046 (3) 0.051 (3) 0.000 (3) 0.004 (3) 0.008 (2)

Geometric parameters (Å, °)

Zn1—O1 2.003 (3) C6—H6A 0.9600
Zn1—N4 2.053 (3) C6—H6B 0.9600
Zn1—N2 2.063 (4) C6—H6C 0.9600
Zn1—N3 2.146 (3) C7—C8 1.502 (6)
Zn1—N1 2.163 (3) C7—H7A 0.9700
Zn2—O2 1.997 (3) C7—H7B 0.9700
Zn2—Br3 2.3772 (8) C8—H8A 0.9700
Zn2—Br2 2.4204 (7) C8—H8B 0.9700
Zn2—Br1 2.4236 (7) C9—C13 1.524 (6)
N1—C16 1.474 (5) C9—C14 1.543 (6)
N1—C1 1.497 (5) C9—C10 1.548 (6)
N1—H1 0.9100 C10—C11 1.508 (6)
N2—C3 1.264 (6) C10—H10A 0.9700
N2—C7 1.479 (5) C10—H10B 0.9700
N3—C8 1.482 (5) C11—C12 1.508 (6)
N3—C9 1.501 (5) C12—H12A 0.9600
N3—H3 0.9100 C12—H12B 0.9600
N4—C11 1.266 (5) C12—H12C 0.9600
N4—C15 1.476 (5) C13—H13A 0.9600
O1—C17 1.241 (5) C13—H13B 0.9600
O2—C17 1.272 (5) C13—H13C 0.9600
C1—C5 1.537 (6) C14—H14A 0.9600
C1—C6 1.538 (6) C14—H14B 0.9600
C1—C2 1.539 (6) C14—H14C 0.9600
C2—C3 1.512 (7) C15—C16 1.507 (6)
C2—H2A 0.9700 C15—H15A 0.9700
C2—H2B 0.9700 C15—H15B 0.9700
C3—C4 1.501 (7) C16—H16A 0.9700
C4—H4A 0.9600 C16—H16B 0.9700
C4—H4B 0.9600 C17—C18 1.504 (5)
C4—H4C 0.9600 C18—H18A 0.9600
C5—H5A 0.9600 C18—H18B 0.9600
C5—H5B 0.9600 C18—H18C 0.9600
C5—H5C 0.9600
O1—Zn1—N4 109.13 (13) H6B—C6—H6C 109.5
O1—Zn1—N2 123.65 (13) N2—C7—C8 109.9 (4)
N4—Zn1—N2 126.98 (14) N2—C7—H7A 109.7
O1—Zn1—N3 98.04 (12) C8—C7—H7A 109.7
N4—Zn1—N3 94.26 (14) N2—C7—H7B 109.7
N2—Zn1—N3 83.84 (14) C8—C7—H7B 109.7
O1—Zn1—N1 88.39 (12) H7A—C7—H7B 108.2
N4—Zn1—N1 83.31 (14) N3—C8—C7 110.1 (4)
N2—Zn1—N1 92.85 (14) N3—C8—H8A 109.6
N3—Zn1—N1 173.56 (13) C7—C8—H8A 109.6
O2—Zn2—Br3 122.76 (10) N3—C8—H8B 109.6
O2—Zn2—Br2 98.32 (8) C7—C8—H8B 109.6
Br3—Zn2—Br2 108.54 (3) H8A—C8—H8B 108.2
O2—Zn2—Br1 104.25 (9) N3—C9—C13 107.2 (4)
Br3—Zn2—Br1 108.71 (3) N3—C9—C14 111.6 (4)
Br2—Zn2—Br1 114.23 (3) C13—C9—C14 109.1 (4)
C16—N1—C1 116.5 (4) N3—C9—C10 110.5 (4)
C16—N1—Zn1 104.9 (3) C13—C9—C10 111.3 (4)
C1—N1—Zn1 116.4 (3) C14—C9—C10 107.2 (4)
C16—N1—H1 106.1 C11—C10—C9 119.4 (4)
C1—N1—H1 106.1 C11—C10—H10A 107.5
Zn1—N1—H1 106.1 C9—C10—H10A 107.5
C3—N2—C7 121.6 (4) C11—C10—H10B 107.5
C3—N2—Zn1 129.4 (4) C9—C10—H10B 107.5
C7—N2—Zn1 109.1 (3) H10A—C10—H10B 107.0
C8—N3—C9 116.2 (4) N4—C11—C10 121.7 (4)
C8—N3—Zn1 104.7 (2) N4—C11—C12 123.9 (4)
C9—N3—Zn1 115.5 (2) C10—C11—C12 114.3 (4)
C8—N3—H3 106.6 C11—C12—H12A 109.5
C9—N3—H3 106.6 C11—C12—H12B 109.5
Zn1—N3—H3 106.6 H12A—C12—H12B 109.5
C11—N4—C15 123.0 (4) C11—C12—H12C 109.5
C11—N4—Zn1 127.9 (3) H12A—C12—H12C 109.5
C15—N4—Zn1 108.9 (3) H12B—C12—H12C 109.5
C17—O1—Zn1 143.7 (3) C9—C13—H13A 109.5
C17—O2—Zn2 118.5 (3) C9—C13—H13B 109.5
N1—C1—C5 106.7 (3) H13A—C13—H13B 109.5
N1—C1—C6 111.3 (4) C9—C13—H13C 109.5
C5—C1—C6 107.8 (4) H13A—C13—H13C 109.5
N1—C1—C2 110.9 (4) H13B—C13—H13C 109.5
C5—C1—C2 110.2 (4) C9—C14—H14A 109.5
C6—C1—C2 109.8 (4) C9—C14—H14B 109.5
C3—C2—C1 118.8 (4) H14A—C14—H14B 109.5
C3—C2—H2A 107.6 C9—C14—H14C 109.5
C1—C2—H2A 107.6 H14A—C14—H14C 109.5
C3—C2—H2B 107.6 H14B—C14—H14C 109.5
C1—C2—H2B 107.6 N4—C15—C16 108.9 (4)
H2A—C2—H2B 107.0 N4—C15—H15A 109.9
N2—C3—C4 123.5 (5) C16—C15—H15A 109.9
N2—C3—C2 120.8 (5) N4—C15—H15B 109.9
C4—C3—C2 115.7 (4) C16—C15—H15B 109.9
C3—C4—H4A 109.5 H15A—C15—H15B 108.3
C3—C4—H4B 109.5 N1—C16—C15 109.5 (4)
H4A—C4—H4B 109.5 N1—C16—H16A 109.8
C3—C4—H4C 109.5 C15—C16—H16A 109.8
H4A—C4—H4C 109.5 N1—C16—H16B 109.8
H4B—C4—H4C 109.5 C15—C16—H16B 109.8
C1—C5—H5A 109.5 H16A—C16—H16B 108.2
C1—C5—H5B 109.5 O1—C17—O2 121.7 (4)
H5A—C5—H5B 109.5 O1—C17—C18 121.9 (4)
C1—C5—H5C 109.5 O2—C17—C18 116.4 (4)
H5A—C5—H5C 109.5 C17—C18—H18A 109.5
H5B—C5—H5C 109.5 C17—C18—H18B 109.5
C1—C6—H6A 109.5 H18A—C18—H18B 109.5
C1—C6—H6B 109.5 C17—C18—H18C 109.5
H6A—C6—H6B 109.5 H18A—C18—H18C 109.5
C1—C6—H6C 109.5 H18B—C18—H18C 109.5
H6A—C6—H6C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···Br2i 0.91 2.80 3.549 (3) 140
N1—H1···Br1 0.91 2.74 3.641 (3) 171

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2283).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573
  2. Hay, R. W., Lawrance, A. G. & Curtis, N. F. (1975). J. Chem. Soc. Perkin Trans. pp. 591–593.
  3. Maurya, M. R., Zaluzec, E. J. & Pavkovic, S. F. (1991). Inorg. Chem.30, 3657–3662.
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spirlet, M. R., Rebizant, J. & Barthelemy, P. P. (1991). J. Chem. Soc. Dalton Trans. pp. 2477–2481.
  7. Tebbe, K.-F., Heinlein, T. & Fehér, M. (1985). Z. Kristallogr.172 89–95.
  8. Whimp, P. O., Bailey, M. F. & Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956–1963.
  9. Yang, Y.-M. (2005). Acta Cryst. E61, m1618–m1619.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810033702/bx2283sup1.cif

e-66-m1338-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033702/bx2283Isup2.hkl

e-66-m1338-Isup2.hkl (225.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES