Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 30;66(Pt 10):o2652. doi: 10.1107/S1600536810037761

Ethyl 2-benzamido-4,5,6,7-tetra­hydro-1-benzothio­phene-3-carboxyl­ate

Asma Mukhtar a, M Nawaz Tahir b,*, Misbahul Ain Khan a, Muhammad Naeem Khan c
PMCID: PMC2983258  PMID: 21587623

Abstract

The mol­ecule of the title compound, C18H19NO3S, adopts an approximately planar conformation: the thio­phene and phenyl rings form a dihedral angle of 8.13 (11)° while the ethyl ester group (r.m.s. deviation = 0.0217 Å) is inclined at 1.25 (14) and 8.61 (13)°, respectively, to the thio­phene and phenyl rings. An intra­molecular N—H⋯O hydrogen bond with an S(6) ring motif occurs as well as an intra­molecular S⋯O hypervalent inter­action [S⋯O = 2.7369 (18) Å]. The cyclo­hexene ring adopts a half-chair conformation and is disordered over two positions with site occupation factors of 0.641 (6) and 0.359 (6). In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R 2 2(10) loops.

Related literature

For background on thio­phene derivatives, see: Dupin et al. (2002); Khan & Rolim (1983); Sabnis et al. (1999). For related structures, see: Harrison et al. (2006); Yathirajan et al. (2007). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-66-o2652-scheme1.jpg

Experimental

Crystal data

  • C18H19NO3S

  • M r = 329.40

  • Monoclinic, Inline graphic

  • a = 8.1061 (2) Å

  • b = 10.6593 (3) Å

  • c = 19.0554 (5) Å

  • β = 92.500 (1)°

  • V = 1644.92 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.953, T max = 0.958

  • 12204 measured reflections

  • 2964 independent reflections

  • 2052 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.117

  • S = 1.01

  • 2964 reflections

  • 210 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks text, I. DOI: 10.1107/S1600536810037761/gk2302sup1.cif

e-66-o2652-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037761/gk2302Isup2.hkl

e-66-o2652-Isup2.hkl (142.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.02 2.664 (2) 131
C6—H6⋯O1i 0.93 2.44 3.242 (3) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

Thiophenes and their condensed derivatives have been described in the literature (Khan & Rolim, 1983). Tetrahydro-1-benzothiophenes are intermediates for many useful products such as dyes and pharmaceuticals (Sabnis et al., 1999) and compounds containing thrombolytic activity (Dupin et al., 2002). The title compound (Fig. 1) has been prepared for the derivatization of other compounds.

The crystal structures of ethyl 2-acetylamino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (Harrison et al., 2006) and i.e. ethyl 2-(propionylamino)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (Yathirajan et al., 2007) have been published which are related to the title compound.

In the title compound, the heterocyclic ring A (S1/C8/C9/C10/C15) and the phenyl ring B (C1—C6) are planar. The dihedral angle between A/B is 8.13 (11)°. The ethyl ester group C (O2/C16/O3/C17/C18) is planar with r. m. s. deviation of 0.0217 Å and is inclined at 1.25 (14) and 8.61 (13)° with the rings A and B, respectively. In the title compound an S(6) ring motif (Bernstein et al., 1995) is formed due to intramolecular H-bonding of N—H···O type (Table 1, Fig. 1). Two methylene groups of the cyclohexene ring in half-chair conformation are disordered over two positions with site occupation factors of 0.641 (6) and 0.359 (6).

Experimental

Ethyl 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (0.3 g, 1.0 mmol) was dissolved in 10 ml of chloroform. To this solution 0.15 ml of benzoyl chloride was added and heated under reflux for 9 h. The solvent was removed and the residue was recrystallized from ethanol to affoard the colorless prism.

Refinement

In the cyclohexene ring two methylene groups are disordered over two positions with site occupation factors of 0.641 (6) and 0.359 (6). The disordered C atoms were refined anisotropically with equal displacement parameters (EADP instruction of SHELXL97).

The H atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. The dotted line shows intramolecular hydrogen bonding.

Crystal data

C18H19NO3S F(000) = 696
Mr = 329.40 Dx = 1.330 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2052 reflections
a = 8.1061 (2) Å θ = 2.5–25.3°
b = 10.6593 (3) Å µ = 0.21 mm1
c = 19.0554 (5) Å T = 296 K
β = 92.500 (1)° Prism, colorless
V = 1644.92 (8) Å3 0.25 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2964 independent reflections
Radiation source: fine-focus sealed tube 2052 reflections with I > 2σ(I)
graphite Rint = 0.037
Detector resolution: 8.10 pixels mm-1 θmax = 25.3°, θmin = 2.5°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −12→12
Tmin = 0.953, Tmax = 0.958 l = −22→22
12204 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.4332P] where P = (Fo2 + 2Fc2)/3
2964 reflections (Δ/σ)max < 0.001
210 parameters Δρmax = 0.16 e Å3
6 restraints Δρmin = −0.19 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.75739 (8) 0.64947 (6) 0.09851 (3) 0.0685 (2)
O1 0.9000 (2) 0.82309 (16) 0.01442 (9) 0.0875 (7)
O2 0.8026 (2) 0.41537 (14) −0.09850 (7) 0.0658 (6)
O3 0.6816 (2) 0.26412 (14) −0.03830 (7) 0.0666 (6)
N1 0.8625 (2) 0.63457 (16) −0.03524 (8) 0.0527 (6)
C1 0.9770 (3) 0.8019 (2) −0.10411 (11) 0.0545 (7)
C2 0.9702 (3) 0.7346 (2) −0.16629 (12) 0.0679 (9)
C3 1.0262 (3) 0.7864 (3) −0.22706 (13) 0.0781 (10)
C4 1.0909 (3) 0.9047 (3) −0.22675 (14) 0.0804 (11)
C5 1.1013 (3) 0.9711 (3) −0.16569 (16) 0.0830 (11)
C6 1.0438 (3) 0.9216 (2) −0.10479 (13) 0.0697 (9)
C7 0.9121 (3) 0.7563 (2) −0.03689 (12) 0.0582 (8)
C8 0.7865 (2) 0.5770 (2) 0.01970 (10) 0.0484 (7)
C9 0.7256 (2) 0.45660 (19) 0.01795 (10) 0.0464 (7)
C10 0.6520 (2) 0.4227 (2) 0.08292 (10) 0.0505 (7)
C11 0.5695 (3) 0.2999 (2) 0.09967 (11) 0.0615 (8)
C12A 0.5302 (8) 0.2864 (5) 0.1768 (3) 0.0771 (13) 0.641 (6)
C13A 0.4684 (7) 0.4071 (4) 0.2069 (3) 0.0771 (13) 0.641 (6)
C14 0.5952 (3) 0.5146 (3) 0.20270 (12) 0.0820 (10)
C15 0.6620 (3) 0.5167 (2) 0.12986 (11) 0.0601 (8)
C16 0.7408 (3) 0.3798 (2) −0.04470 (11) 0.0518 (7)
C17 0.6953 (4) 0.1819 (2) −0.09806 (13) 0.0804 (10)
C18 0.6130 (4) 0.0615 (3) −0.08052 (16) 0.1017 (13)
C12B 0.4639 (11) 0.3191 (11) 0.1642 (4) 0.0771 (13) 0.359 (6)
C13B 0.5564 (13) 0.3883 (8) 0.2231 (4) 0.0771 (13) 0.359 (6)
H1 0.88006 0.58943 −0.07157 0.0632*
H4 1.12771 0.93963 −0.26797 0.0964*
H2 0.92751 0.65362 −0.16705 0.0815*
H3 1.01981 0.74051 −0.26860 0.0936*
H11A 0.64111 0.23142 0.08692 0.0738*
H11B 0.46774 0.29269 0.07120 0.0738*
H12A 0.44709 0.22178 0.18136 0.0926* 0.641 (6)
H12B 0.62887 0.26010 0.20338 0.0926* 0.641 (6)
H13A 0.44302 0.39369 0.25557 0.0926* 0.641 (6)
H13B 0.36703 0.43138 0.18147 0.0926* 0.641 (6)
H14A 0.54276 0.59409 0.21247 0.0985*
H14B 0.68476 0.50168 0.23738 0.0985*
H17A 0.81052 0.16736 −0.10724 0.0962*
H17B 0.64183 0.21915 −0.13955 0.0962*
H18A 0.66559 0.02642 −0.03888 0.1525*
H18B 0.62180 0.00366 −0.11881 0.1525*
H18C 0.49861 0.07682 −0.07259 0.1525*
H5 1.14776 1.05084 −0.16517 0.0996*
H6 1.04969 0.96880 −0.06371 0.0837*
H12C 0.36549 0.36616 0.15021 0.0926* 0.359 (6)
H12D 0.42929 0.23798 0.18130 0.0926* 0.359 (6)
H13C 0.48949 0.39036 0.26402 0.0926* 0.359 (6)
H13D 0.65770 0.34371 0.23564 0.0926* 0.359 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0836 (4) 0.0704 (4) 0.0522 (3) −0.0085 (3) 0.0127 (3) −0.0147 (3)
O1 0.1332 (16) 0.0676 (12) 0.0634 (10) −0.0298 (11) 0.0243 (10) −0.0167 (9)
O2 0.0950 (11) 0.0567 (10) 0.0472 (9) −0.0046 (8) 0.0196 (8) −0.0014 (7)
O3 0.0983 (12) 0.0495 (9) 0.0532 (9) −0.0073 (8) 0.0168 (8) −0.0036 (7)
N1 0.0610 (11) 0.0512 (11) 0.0463 (10) −0.0008 (8) 0.0086 (8) −0.0027 (8)
C1 0.0553 (12) 0.0529 (13) 0.0555 (13) −0.0032 (10) 0.0045 (10) 0.0017 (11)
C2 0.0746 (15) 0.0689 (16) 0.0609 (14) −0.0185 (12) 0.0098 (12) −0.0028 (13)
C3 0.0868 (18) 0.089 (2) 0.0591 (15) −0.0080 (15) 0.0115 (13) −0.0011 (14)
C4 0.0936 (19) 0.0776 (19) 0.0714 (17) 0.0040 (15) 0.0196 (14) 0.0237 (16)
C5 0.101 (2) 0.0565 (16) 0.093 (2) −0.0055 (14) 0.0221 (16) 0.0151 (15)
C6 0.0878 (17) 0.0550 (15) 0.0670 (15) −0.0053 (12) 0.0108 (13) 0.0003 (12)
C7 0.0642 (14) 0.0529 (14) 0.0576 (13) −0.0069 (11) 0.0053 (10) −0.0027 (12)
C8 0.0476 (11) 0.0559 (13) 0.0418 (11) 0.0043 (10) 0.0031 (9) −0.0007 (9)
C9 0.0489 (11) 0.0482 (12) 0.0420 (11) 0.0049 (9) 0.0025 (9) 0.0029 (9)
C10 0.0485 (12) 0.0593 (14) 0.0439 (11) 0.0080 (10) 0.0039 (9) 0.0047 (10)
C11 0.0621 (13) 0.0656 (15) 0.0576 (13) 0.0034 (11) 0.0117 (10) 0.0105 (11)
C12A 0.076 (3) 0.098 (2) 0.0587 (18) 0.004 (2) 0.0198 (18) 0.0171 (15)
C13A 0.076 (3) 0.098 (2) 0.0587 (18) 0.004 (2) 0.0198 (18) 0.0171 (15)
C14 0.0943 (18) 0.105 (2) 0.0479 (13) 0.0045 (16) 0.0172 (12) −0.0045 (14)
C15 0.0626 (14) 0.0730 (16) 0.0452 (12) 0.0009 (11) 0.0096 (10) −0.0011 (11)
C16 0.0594 (13) 0.0505 (13) 0.0456 (12) 0.0025 (10) 0.0044 (10) 0.0043 (10)
C17 0.127 (2) 0.0565 (15) 0.0587 (15) −0.0111 (15) 0.0169 (14) −0.0116 (12)
C18 0.154 (3) 0.0614 (18) 0.090 (2) −0.0203 (18) 0.0097 (19) −0.0084 (16)
C12B 0.076 (3) 0.098 (2) 0.0587 (18) 0.004 (2) 0.0198 (18) 0.0171 (15)
C13B 0.076 (3) 0.098 (2) 0.0587 (18) 0.004 (2) 0.0198 (18) 0.0171 (15)

Geometric parameters (Å, °)

S1—C8 1.714 (2) C13B—C14 1.440 (9)
S1—C15 1.732 (2) C14—C15 1.512 (3)
O1—C7 1.217 (3) C17—C18 1.491 (4)
O2—C16 1.221 (3) C2—H2 0.9300
O3—C16 1.331 (3) C3—H3 0.9300
O3—C17 1.445 (3) C4—H4 0.9300
N1—C7 1.359 (3) C5—H5 0.9300
N1—C8 1.381 (2) C6—H6 0.9300
N1—H1 0.8600 C11—H11A 0.9700
C1—C2 1.384 (3) C11—H11B 0.9700
C1—C6 1.386 (3) C12A—H12A 0.9700
C1—C7 1.488 (3) C12A—H12B 0.9700
C2—C3 1.378 (3) C12B—H12D 0.9700
C3—C4 1.366 (4) C12B—H12C 0.9700
C4—C5 1.361 (4) C13A—H13B 0.9700
C5—C6 1.375 (4) C13A—H13A 0.9700
C8—C9 1.375 (3) C13B—H13C 0.9700
C9—C10 1.444 (3) C13B—H13D 0.9700
C9—C16 1.457 (3) C14—H14A 0.9700
C10—C15 1.343 (3) C14—H14B 0.9700
C10—C11 1.510 (3) C17—H17A 0.9700
C11—C12A 1.524 (6) C17—H17B 0.9700
C11—C12B 1.542 (8) C18—H18B 0.9600
C12A—C13A 1.503 (7) C18—H18C 0.9600
C12B—C13B 1.514 (12) C18—H18A 0.9600
C13A—C14 1.544 (6)
C8—S1—C15 90.83 (10) C1—C6—H6 120.00
C16—O3—C17 116.70 (17) C5—C6—H6 120.00
C7—N1—C8 125.72 (18) C10—C11—H11A 109.00
C7—N1—H1 117.00 C10—C11—H11B 109.00
C8—N1—H1 117.00 C12A—C11—H11A 109.00
C2—C1—C6 118.0 (2) C12A—C11—H11B 109.00
C2—C1—C7 124.4 (2) H11A—C11—H11B 108.00
C6—C1—C7 117.5 (2) C12B—C11—H11A 131.00
C1—C2—C3 120.6 (2) C12B—C11—H11B 88.00
C2—C3—C4 120.5 (2) C11—C12A—H12A 109.00
C3—C4—C5 119.6 (3) C11—C12A—H12B 109.00
C4—C5—C6 120.8 (3) C13A—C12A—H12A 109.00
C1—C6—C5 120.5 (2) C13A—C12A—H12B 109.00
O1—C7—C1 123.0 (2) H12A—C12A—H12B 108.00
O1—C7—N1 120.4 (2) C13B—C12B—H12C 109.00
N1—C7—C1 116.61 (19) C11—C12B—H12C 109.00
S1—C8—C9 112.26 (14) C11—C12B—H12D 109.00
S1—C8—N1 123.14 (16) C13B—C12B—H12D 109.00
N1—C8—C9 124.60 (18) H12C—C12B—H12D 108.00
C8—C9—C16 120.08 (17) C12A—C13A—H13A 109.00
C10—C9—C16 127.95 (18) C14—C13A—H13A 109.00
C8—C9—C10 111.98 (17) C14—C13A—H13B 109.00
C11—C10—C15 121.34 (18) C12A—C13A—H13B 109.00
C9—C10—C11 126.98 (18) H13A—C13A—H13B 108.00
C9—C10—C15 111.67 (19) C14—C13B—H13C 109.00
C10—C11—C12B 108.7 (5) C14—C13B—H13D 109.00
C10—C11—C12A 113.5 (3) C12B—C13B—H13C 109.00
C11—C12A—C13A 112.0 (4) C12B—C13B—H13D 109.00
C11—C12B—C13B 112.4 (7) H13C—C13B—H13D 108.00
C12A—C13A—C14 112.4 (4) C13A—C14—H14A 110.00
C12B—C13B—C14 111.2 (7) C13A—C14—H14B 110.00
C13A—C14—C15 108.9 (3) C15—C14—H14A 110.00
C13B—C14—C15 110.7 (4) C13B—C14—H14A 131.00
S1—C15—C10 113.26 (16) C13B—C14—H14B 81.00
S1—C15—C14 120.80 (18) C15—C14—H14B 110.00
C10—C15—C14 125.9 (2) H14A—C14—H14B 108.00
O2—C16—C9 124.47 (19) C18—C17—H17A 110.00
O3—C16—C9 113.69 (18) O3—C17—H17A 110.00
O2—C16—O3 121.84 (19) O3—C17—H17B 110.00
O3—C17—C18 107.2 (2) H17A—C17—H17B 109.00
C1—C2—H2 120.00 C18—C17—H17B 110.00
C3—C2—H2 120.00 C17—C18—H18C 109.00
C2—C3—H3 120.00 C17—C18—H18B 109.00
C4—C3—H3 120.00 H18B—C18—H18C 109.00
C3—C4—H4 120.00 H18A—C18—H18B 109.00
C5—C4—H4 120.00 H18A—C18—H18C 109.00
C4—C5—H5 120.00 C17—C18—H18A 109.00
C6—C5—H5 120.00
C15—S1—C8—N1 179.88 (17) S1—C8—C9—C10 0.33 (19)
C15—S1—C8—C9 −0.02 (15) S1—C8—C9—C16 −179.36 (15)
C8—S1—C15—C10 −0.32 (18) N1—C8—C9—C10 −179.57 (16)
C8—S1—C15—C14 −178.7 (2) N1—C8—C9—C16 0.8 (3)
C17—O3—C16—O2 0.5 (3) C8—C9—C10—C11 178.53 (18)
C17—O3—C16—C9 −178.9 (2) C8—C9—C10—C15 −0.6 (2)
C16—O3—C17—C18 −176.8 (2) C16—C9—C10—C11 −1.8 (3)
C8—N1—C7—O1 4.4 (3) C16—C9—C10—C15 179.1 (2)
C8—N1—C7—C1 −174.38 (19) C8—C9—C16—O2 −1.6 (3)
C7—N1—C8—S1 −5.3 (3) C8—C9—C16—O3 177.88 (18)
C7—N1—C8—C9 174.55 (19) C10—C9—C16—O2 178.8 (2)
C6—C1—C2—C3 −0.9 (4) C10—C9—C16—O3 −1.8 (3)
C7—C1—C2—C3 176.9 (2) C9—C10—C11—C12A 170.4 (3)
C2—C1—C6—C5 0.0 (4) C15—C10—C11—C12A −10.6 (4)
C7—C1—C6—C5 −178.0 (2) C9—C10—C15—S1 0.6 (2)
C2—C1—C7—O1 −170.1 (2) C9—C10—C15—C14 178.9 (2)
C2—C1—C7—N1 8.6 (3) C11—C10—C15—S1 −178.60 (16)
C6—C1—C7—O1 7.7 (4) C11—C10—C15—C14 −0.3 (3)
C6—C1—C7—N1 −173.6 (2) C10—C11—C12A—C13A 39.9 (5)
C1—C2—C3—C4 0.7 (4) C11—C12A—C13A—C14 −59.8 (6)
C2—C3—C4—C5 0.6 (4) C12A—C13A—C14—C15 46.7 (5)
C3—C4—C5—C6 −1.6 (4) C13A—C14—C15—S1 160.7 (3)
C4—C5—C6—C1 1.3 (4) C13A—C14—C15—C10 −17.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 2.02 2.664 (2) 131
C6—H6···O1i 0.93 2.44 3.242 (3) 145
C11—H11A···O3 0.97 2.45 2.845 (3) 104

Symmetry codes: (i) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2302).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dupin, J. P., Gryglewski, R. J., Gravier, D., Hou, G., Casadebaig, F., Swies, J. & Chlopicki, S. (2002). J. Physiol. Pharmacol.53, 625–634. [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732–o3734.
  8. Khan, M. A. & Rolim, A. C. (1983). J. Heterocycl. Chem.20, 475–476.
  9. Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem.36, 333–345.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2949.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks text, I. DOI: 10.1107/S1600536810037761/gk2302sup1.cif

e-66-o2652-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037761/gk2302Isup2.hkl

e-66-o2652-Isup2.hkl (142.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES