Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):o2634–o2635. doi: 10.1107/S1600536810037724

4,6-Dimeth­oxy­pyrimidin-2-amine–2-(1H-indol-3-yl)acetic acid (1/1)

Samuel Ebenezer a, Packianathan Thomas Muthiah a,*
PMCID: PMC2983259  PMID: 21587607

Abstract

In the title co-crystal C6H9N3O2·C10H9NO2, the 4,6-dimeth­oxy­pyrimidin-2-amine mol­ecule inter­acts with the carboxyl group of the 2-(1H-indol-3-yl)acetic acid mol­ecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen-bonded R 2 2(8) motif, which is further linked by an N—H⋯N hydrogen bond, forming a supra­molecular chain along the c axis. Neighboring chains are inter­linked via C—H⋯O hydrogen bonds, forming a supra­molecular ladder

Related literature

For background to crystal engineering, see: Desiraju (1989). For the role of amino­pyrimidine–carboxyl­ate inter­actions in protein-nuleic acid recognition and protein-drug binding, see: Hunt et al. (1980); Baker & Santi (1965). 2-Amino­pyrimidine forms a wide variety of 1:1 adducts with mono and dicarb­oxy­lic acids (Etter & Adsmond, 1990) rather than individual self-assembly compounds (Scheinbeim & Schempp, 1976). The Inline graphic(8) motif is frequently observed when a carb­oxy­lic acid inter­acts with a 2-amino heterocyclic ring system, see: Lynch & Jones (2004). It is also one of the most commonly occuring motifs, see: Allen et al. (1998). For the biological activity of amino­pyrimidine derivatives and 2-(1H-indol-3-yl)acetic acid, see: Hunt et al. (1980); Arteca (1996). For related structures, see: Karle et al. (1964); Low et al. (2002). For related co-crystals of amino­pyrimidines, see: Thanigaimani et al. (2006, 2007, 2008). For stacking intera­ctions, see: Hunter (1994). For hydrogen-bond motifs, see:, see: Bernstein et al. (1995); Etter (1990).graphic file with name e-66-o2634-scheme1.jpg

Experimental

Crystal data

  • C10H9NO2·C6H9N3O2

  • M r = 330.34

  • Triclinic, Inline graphic

  • a = 7.4555 (1) Å

  • b = 10.7197 (2) Å

  • c = 11.2537 (2) Å

  • α = 62.981 (1)°

  • β = 85.863 (1)°

  • γ = 85.584 (1)°

  • V = 798.16 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.970, T max = 0.978

  • 19719 measured reflections

  • 5363 independent reflections

  • 3979 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.137

  • S = 1.06

  • 5363 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037724/bv2155sup1.cif

e-66-o2634-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037724/bv2155Isup2.hkl

e-66-o2634-Isup2.hkl (257.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4 0.86 2.04 2.8927 (14) 171
O3—H3⋯N1 0.82 1.88 2.6979 (12) 172
N4—H4⋯N3i 0.86 2.45 3.2184 (17) 149
C10—H10A⋯O4ii 0.97 2.59 3.5491 (18) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the DST-India (FIST programme) for the use of APEXII diffractometer at the School of Chemistry, Bharathidasan University.

supplementary crystallographic information

Comment

A study of non-covalent interactions, such as hydrogen bonding, plays a key role in molecular recognition and crystal engineering (Desiraju, 1989). The prime importance of aminopyrimidine-carboxylate interactions is due to their involvement in protein-nuleic acid recognition and protein-drug binding (Hunt et al., 1980; Baker & Santi, 1965). Aminopyrimidines readily pair up with carboxylic acids to form adducts rather than individual self-assembly compounds which is evident from the fact that 2-aminopyrimidine forms a wide variety of 1:1 adducts with mono and dicarboxylic acids (Etter & Adsmond, 1990) rather than individual self-assembly compounds (Scheinbeim & Schempp, 1976). The R22(8) motif is a robust synthon which is frequently observed when a carboxylic acid interacts with a 2-amino heterocyclic ring system (Lynch & Jones, 2004). This motif is also recognized to be one of the top 5 motifs among the 24 commonly occurring motifs in crystal structures (Allen et al., 1998). Auxin is a plant growth hormone which induces cell elongation in stems. 2-(1H-indol-3-yl)acetic acid is the first isolated auxin (Arteca, 1996). The crystal structures of 4,6-dimethoxypyrimidin-2-amine (Low et al., 2002) and 2-(1H-indol-3-yl)acetic acid (Karle et al.,1964) have already been reported. Several cocrystals of 4,6-dimethoxypyrimidin-2-amine with various carboxylic acids such as 4,6-dimethoxypyrimidin-2-amine 4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006), 4,6-dimethoxypyrimidin-2-amine phthalic acid (1/1) (Thanigaimani et al., 2007) and 4,6-dimethoxypyrimidin-2-amine anthranilic acid (1/1) (Thanigaimani et al., 2008) have been recently reported from our group. In the present study, the various hydrogen-bonding patterns in the 4,6-dimethoxypyrimidin-2-amine (1H-indol-3-yl)acetic acid (1/1) cocrystal, (I), are thoroughly investigated.

The asymmetric unit (Fig. 1) contains a molecule of 4,6-dimethoxypyrimidin-2-amine and a molecule of 2-(1H-indol-3-yl)acetic acid, which are linked by N—H···O and O—H···N hydrogen bonds (Table. 1), forming an eight-membered ring with graph-set notation R22(8) (Etter, 1990; Bernstein et al., 1995). This motif is further linked by an N—H···N hydrogen bond, involving the N3 atom of 4,6-dimethoxypyrimidin-2-amine and N4 atom of the 2-(1H-indol-3-yl)acetic acid molecule, to form a supramolecular chain along the c axis. This supramolecular chain is further interlinked with a neighboring chain through a couple of C—H···O hydrogen bonds. These C—H···O hydrogen bonds form another R22(8) motif. Further N—H···O, N—H···N and C—H···O hydrogen bonds combine together to form a large ring motif, with graph-set notation R64(22). This ring motif extends to give a one dimensional supramolecular ladder as shown in Fig. 2. π-π stacking interaction is observed between two aminopyrimidine rings. They have an interplanar distance, centroid-to-centroid distance and a slip angle (the angle between the centroid vector and the normal to the plane) of 3.4413 (4) Å, 3.4937 (6) Å and 9.93° respectively. These are typical aromatic stacking values (Hunter, 1994).

Experimental

A hot ethanolic solution (20 ml) of 4,6-dimethoxypyrimidin-2-amine (38 mg, Aldrich) and 2-(1H-indol-3-yl)acetic acid (44 mg, Loba Chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature; afer a few days, colourless plate-like crystals were obtained.

Refinement

All hydrogen atoms were positioned geometrically and were refined using a riding model. The N—H, O—H and C—H bond lengths are 0.86, 0.82 and 0.93–0.97 Å, respectively [Uiso(H)=1.2 Ueq (parent atom)].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

The crystal structure of (I). Dashed lines indicate hydrogen bonds H atoms not involved in hydrogen bonding have been omitted [symmetry codes: (i) x, y, z - 1; (ii) -x + 1, -y + 2, -z]

Crystal data

C10H9NO2·C6H9N3O2 Z = 2
Mr = 330.34 F(000) = 348
Triclinic, P1 Dx = 1.375 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4555 (1) Å Cell parameters from 5363 reflections
b = 10.7197 (2) Å θ = 2.0–31.8°
c = 11.2537 (2) Å µ = 0.10 mm1
α = 62.981 (1)° T = 293 K
β = 85.863 (1)° Prism, colourless
γ = 85.584 (1)° 0.30 × 0.25 × 0.22 mm
V = 798.16 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5363 independent reflections
Radiation source: fine-focus sealed tube 3979 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 31.8°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.970, Tmax = 0.978 k = −15→15
19719 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.0927P] where P = (Fo2 + 2Fc2)/3
5363 reflections (Δ/σ)max < 0.001
220 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.47314 (13) 0.61367 (8) 0.19523 (8) 0.0511 (3)
O4 0.41360 (15) 0.83007 (9) 0.17016 (9) 0.0610 (3)
N4 0.33691 (16) 0.67797 (12) −0.21918 (11) 0.0549 (4)
C9 0.47507 (14) 0.75081 (11) 0.12695 (11) 0.0401 (3)
C10 0.56115 (15) 0.79980 (13) −0.01155 (11) 0.0458 (3)
C11 0.44583 (15) 0.77265 (11) −0.09994 (11) 0.0409 (3)
C12 0.47745 (18) 0.67593 (13) −0.14708 (13) 0.0514 (4)
C13 0.20837 (16) 0.77659 (11) −0.21974 (11) 0.0429 (3)
C14 0.27307 (14) 0.83893 (10) −0.14517 (10) 0.0372 (3)
C15 0.16352 (16) 0.94084 (11) −0.12571 (11) 0.0438 (3)
C16 −0.00356 (18) 0.97665 (13) −0.17950 (13) 0.0526 (4)
C17 −0.06486 (18) 0.91367 (14) −0.25289 (14) 0.0567 (4)
C18 0.03945 (18) 0.81345 (14) −0.27433 (13) 0.0532 (4)
O1 0.05798 (14) 0.34071 (10) 0.80461 (9) 0.0602 (3)
O2 0.34975 (14) 0.31388 (9) 0.43080 (9) 0.0556 (3)
N1 0.29633 (12) 0.51850 (9) 0.43555 (8) 0.0385 (2)
N2 0.24541 (15) 0.73208 (10) 0.43481 (10) 0.0492 (3)
N3 0.15054 (12) 0.54001 (10) 0.62253 (9) 0.0421 (3)
C2 0.23037 (13) 0.59256 (10) 0.49907 (10) 0.0368 (3)
C4 0.13751 (15) 0.40253 (12) 0.68250 (11) 0.0433 (3)
C5 0.20213 (16) 0.31430 (11) 0.62803 (11) 0.0450 (3)
C6 0.28114 (14) 0.37938 (11) 0.50225 (11) 0.0398 (3)
C7 −0.0202 (2) 0.42776 (17) 0.86200 (15) 0.0684 (5)
C8 0.3549 (2) 0.16378 (14) 0.49465 (17) 0.0659 (5)
H3 0.41670 0.59300 0.26640 0.0770*
H4 0.33010 0.62570 −0.25810 0.0660*
H10A 0.57970 0.89940 −0.05000 0.0550*
H10B 0.67780 0.75120 −0.00610 0.0550*
H12 0.58030 0.61690 −0.13220 0.0620*
H15 0.20310 0.98350 −0.07720 0.0530*
H16 −0.07720 1.04400 −0.16680 0.0630*
H17 −0.17860 0.94000 −0.28800 0.0680*
H18 −0.00150 0.77200 −0.32350 0.0640*
H2A 0.29580 0.77020 0.35610 0.0590*
H2B 0.20460 0.78330 0.47240 0.0590*
H5 0.19270 0.21760 0.67350 0.0540*
H7A 0.07320 0.47350 0.87930 0.1030*
H7B −0.08420 0.37130 0.94420 0.1030*
H7C −0.10200 0.49700 0.80110 0.1030*
H8A 0.42070 0.12850 0.57470 0.0990*
H8B 0.41310 0.12980 0.43540 0.0990*
H8C 0.23430 0.13240 0.51670 0.0990*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0697 (5) 0.0377 (4) 0.0429 (4) −0.0047 (4) 0.0080 (4) −0.0168 (3)
O4 0.0885 (7) 0.0381 (4) 0.0480 (5) 0.0014 (4) 0.0132 (5) −0.0150 (4)
N4 0.0687 (7) 0.0542 (6) 0.0561 (6) 0.0007 (5) 0.0025 (5) −0.0387 (5)
C9 0.0420 (5) 0.0379 (5) 0.0382 (5) −0.0017 (4) −0.0039 (4) −0.0151 (4)
C10 0.0439 (5) 0.0476 (6) 0.0420 (6) −0.0072 (4) 0.0042 (4) −0.0170 (5)
C11 0.0467 (5) 0.0377 (5) 0.0352 (5) −0.0028 (4) 0.0065 (4) −0.0149 (4)
C12 0.0560 (6) 0.0490 (6) 0.0510 (7) 0.0056 (5) 0.0053 (5) −0.0265 (5)
C13 0.0552 (6) 0.0392 (5) 0.0349 (5) −0.0069 (4) 0.0053 (4) −0.0175 (4)
C14 0.0473 (5) 0.0311 (4) 0.0300 (4) −0.0056 (4) 0.0055 (4) −0.0115 (4)
C15 0.0564 (6) 0.0341 (5) 0.0398 (5) −0.0021 (4) 0.0030 (4) −0.0165 (4)
C16 0.0553 (6) 0.0429 (6) 0.0527 (7) 0.0058 (5) 0.0020 (5) −0.0174 (5)
C17 0.0521 (6) 0.0554 (7) 0.0534 (7) −0.0018 (5) −0.0064 (5) −0.0161 (6)
C18 0.0626 (7) 0.0539 (7) 0.0441 (6) −0.0107 (6) −0.0034 (5) −0.0216 (5)
O1 0.0812 (6) 0.0527 (5) 0.0390 (4) −0.0194 (4) 0.0135 (4) −0.0137 (4)
O2 0.0780 (6) 0.0368 (4) 0.0509 (5) −0.0012 (4) 0.0043 (4) −0.0201 (4)
N1 0.0450 (4) 0.0338 (4) 0.0330 (4) −0.0032 (3) −0.0023 (3) −0.0117 (3)
N2 0.0683 (6) 0.0343 (5) 0.0418 (5) −0.0048 (4) 0.0059 (4) −0.0152 (4)
N3 0.0480 (5) 0.0405 (5) 0.0349 (4) −0.0054 (4) −0.0001 (3) −0.0142 (4)
C2 0.0388 (5) 0.0352 (5) 0.0341 (5) −0.0026 (4) −0.0056 (4) −0.0129 (4)
C4 0.0469 (5) 0.0443 (6) 0.0335 (5) −0.0096 (4) −0.0026 (4) −0.0119 (4)
C5 0.0556 (6) 0.0342 (5) 0.0389 (5) −0.0082 (4) −0.0046 (4) −0.0098 (4)
C6 0.0454 (5) 0.0348 (5) 0.0378 (5) −0.0026 (4) −0.0065 (4) −0.0145 (4)
C7 0.0834 (10) 0.0718 (9) 0.0483 (7) −0.0218 (7) 0.0227 (7) −0.0266 (7)
C8 0.0883 (10) 0.0380 (6) 0.0730 (9) −0.0021 (6) −0.0022 (8) −0.0268 (6)

Geometric parameters (Å, °)

O3—C9 1.3142 (15) C13—C18 1.3907 (18)
O4—C9 1.2048 (16) C14—C15 1.4009 (17)
O3—H3 0.8200 C15—C16 1.3746 (18)
O1—C7 1.427 (2) C16—C17 1.398 (2)
O1—C4 1.3397 (14) C17—C18 1.377 (2)
O2—C6 1.3415 (16) C10—H10A 0.9700
O2—C8 1.432 (2) C10—H10B 0.9700
N4—C12 1.3637 (18) C12—H12 0.9300
N4—C13 1.3693 (18) C15—H15 0.9300
N4—H4 0.8600 C16—H16 0.9300
N1—C2 1.3371 (15) C17—H17 0.9300
N1—C6 1.3405 (16) C18—H18 0.9300
N2—C2 1.3431 (16) C4—C5 1.3843 (18)
N3—C2 1.3502 (13) C5—C6 1.3723 (16)
N3—C4 1.3213 (17) C5—H5 0.9300
N2—H2B 0.8600 C7—H7A 0.9600
N2—H2A 0.8600 C7—H7B 0.9600
C9—C10 1.5103 (16) C7—H7C 0.9600
C10—C11 1.4961 (17) C8—H8A 0.9600
C11—C14 1.4311 (16) C8—H8B 0.9600
C11—C12 1.362 (2) C8—H8C 0.9600
C13—C14 1.4146 (17)
O2···C12i 3.3132 (16) C5···H8C 2.7400
O2···N4i 3.1900 (15) C5···H8A 2.7300
O3···N4i 3.2341 (17) C6···H3 2.7900
O3···N1 2.6979 (12) C8···H5 2.5400
O3···C12i 3.3749 (18) C9···H2A 2.9000
O3···C4ii 3.2606 (15) C12···H8Bi 3.0400
O4···N2 2.8927 (14) C13···H7Bvii 2.8900
O1···H10Bii 2.8800 C14···H7Bvii 2.7500
O2···H3 2.7700 C15···H5viii 2.8100
O2···H4i 2.8800 C16···H5viii 2.8100
O3···H4i 2.6800 H2A···C9 2.9000
O4···H2A 2.0400 H2A···O4 2.0400
O4···H10Aiii 2.5900 H3···N1 1.8800
O4···H16iv 2.7500 H3···C2 2.8700
N1···O3 2.6979 (12) H3···C6 2.7900
N2···O4 2.8927 (14) H3···O2 2.7700
N3···N4v 3.2184 (17) H4···O3i 2.6800
N4···O3i 3.2341 (17) H4···C2vi 3.0600
N4···N3vi 3.2184 (17) H4···H7Avi 2.5500
N4···O2i 3.1900 (15) H4···N3vi 2.4500
N1···H3 1.8800 H4···O2i 2.8800
N3···H18v 2.9500 H5···C15ix 2.8100
N3···H7C 2.5600 H5···C16ix 2.8100
N3···H4v 2.4500 H5···C8 2.5400
N3···H7A 2.6700 H5···H8A 2.3400
N4···H7Avi 2.8400 H5···H8C 2.3200
C2···C4vii 3.5198 (15) H7A···N4v 2.8400
C2···C5vii 3.5089 (15) H7A···N3 2.6700
C4···C9ii 3.5501 (16) H7A···H4v 2.5500
C4···O3ii 3.2606 (15) H7B···C13vii 2.8900
C4···C2vii 3.5198 (15) H7B···C14vii 2.7500
C5···C2vii 3.5089 (15) H7C···N3 2.5600
C5···C9ii 3.5822 (16) H8A···H5 2.3400
C9···C15 3.5484 (16) H8A···C5 2.7300
C9···C4ii 3.5501 (16) H8B···C12i 3.0400
C9···C5ii 3.5822 (16) H8C···H5 2.3200
C12···O3i 3.3749 (18) H8C···C5 2.7400
C12···O2i 3.3132 (16) H10A···O4iii 2.5900
C15···C9 3.5484 (16) H10B···O1ii 2.8800
C2···H3 2.8700 H16···O4iv 2.7500
C2···H4v 3.0600 H18···N3vi 2.9500
C9—O3—H3 109.00 C11—C12—H12 125.00
C4—O1—C7 118.24 (12) N4—C12—H12 125.00
C6—O2—C8 117.57 (11) C16—C15—H15 121.00
C12—N4—C13 109.14 (12) C14—C15—H15 121.00
C12—N4—H4 125.00 C17—C16—H16 119.00
C13—N4—H4 125.00 C15—C16—H16 119.00
C2—N1—C6 116.09 (9) C18—C17—H17 119.00
C2—N3—C4 115.07 (11) C16—C17—H17 119.00
C2—N2—H2B 120.00 C13—C18—H18 121.00
C2—N2—H2A 120.00 C17—C18—H18 121.00
H2A—N2—H2B 120.00 N1—C2—N2 117.23 (9)
O3—C9—C10 113.48 (11) N1—C2—N3 126.02 (11)
O4—C9—C10 123.11 (12) N2—C2—N3 116.74 (11)
O3—C9—O4 123.41 (11) N3—C4—C5 124.42 (10)
C9—C10—C11 111.17 (10) O1—C4—N3 119.52 (12)
C12—C11—C14 106.25 (11) O1—C4—C5 116.06 (12)
C10—C11—C14 126.02 (11) C4—C5—C6 115.35 (11)
C10—C11—C12 127.64 (11) O2—C6—N1 111.97 (10)
N4—C12—C11 110.41 (12) O2—C6—C5 124.99 (12)
N4—C13—C14 107.17 (10) N1—C6—C5 123.04 (11)
C14—C13—C18 122.00 (12) C4—C5—H5 122.00
N4—C13—C18 130.78 (13) C6—C5—H5 122.00
C11—C14—C13 107.03 (10) O1—C7—H7A 109.00
C11—C14—C15 133.95 (11) O1—C7—H7B 109.00
C13—C14—C15 118.96 (10) O1—C7—H7C 109.00
C14—C15—C16 118.84 (12) H7A—C7—H7B 109.00
C15—C16—C17 121.25 (13) H7A—C7—H7C 109.00
C16—C17—C18 121.46 (13) H7B—C7—H7C 110.00
C13—C18—C17 117.48 (13) O2—C8—H8A 110.00
H10A—C10—H10B 108.00 O2—C8—H8B 109.00
C11—C10—H10B 109.00 O2—C8—H8C 109.00
C11—C10—H10A 109.00 H8A—C8—H8B 109.00
C9—C10—H10A 109.00 H8A—C8—H8C 109.00
C9—C10—H10B 109.00 H8B—C8—H8C 109.00
C7—O1—C4—C5 −176.42 (11) C10—C11—C12—N4 176.92 (11)
C7—O1—C4—N3 3.89 (17) C10—C11—C14—C13 −176.77 (11)
C8—O2—C6—N1 175.18 (11) C10—C11—C14—C15 0.2 (2)
C8—O2—C6—C5 −5.60 (17) C12—C11—C14—C13 −0.14 (13)
C13—N4—C12—C11 −0.47 (15) C12—C11—C14—C15 176.84 (13)
C12—N4—C13—C14 0.36 (14) N4—C13—C14—C15 −177.65 (10)
C12—N4—C13—C18 −177.05 (13) C18—C13—C14—C11 177.55 (11)
C6—N1—C2—N3 −0.22 (15) N4—C13—C14—C11 −0.13 (13)
C2—N1—C6—O2 179.64 (9) C18—C13—C14—C15 0.03 (17)
C6—N1—C2—N2 179.42 (10) N4—C13—C18—C17 176.85 (13)
C2—N1—C6—C5 0.40 (16) C14—C13—C18—C17 −0.23 (19)
C2—N3—C4—C5 1.29 (16) C13—C14—C15—C16 0.16 (16)
C4—N3—C2—N2 179.77 (10) C11—C14—C15—C16 −176.54 (12)
C2—N3—C4—O1 −179.05 (10) C14—C15—C16—C17 −0.16 (19)
C4—N3—C2—N1 −0.59 (15) C15—C16—C17—C18 0.0 (2)
O4—C9—C10—C11 −109.62 (14) C16—C17—C18—C13 0.2 (2)
O3—C9—C10—C11 70.10 (13) O1—C4—C5—C6 179.20 (10)
C9—C10—C11—C12 −109.00 (14) N3—C4—C5—C6 −1.13 (17)
C9—C10—C11—C14 66.91 (16) C4—C5—C6—O2 −178.92 (11)
C14—C11—C12—N4 0.37 (14) C4—C5—C6—N1 0.21 (17)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z; (iv) −x, −y+2, −z; (v) x, y, z+1; (vi) x, y, z−1; (vii) −x, −y+1, −z+1; (viii) x, y+1, z−1; (ix) x, y−1, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O4 0.86 2.04 2.8927 (14) 171
O3—H3···N1 0.82 1.88 2.6979 (12) 172
N4—H4···N3vi 0.86 2.45 3.2184 (17) 149
C10—H10A···O4iii 0.97 2.59 3.5491 (18) 172

Symmetry codes: (vi) x, y, z−1; (iii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2155).

References

  1. Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.
  2. Arteca, R. (1996). Plant Growth Substances: Principles and Applications New York: Chapman and Hall.
  3. Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci.54, 1252–1257. [DOI] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  5. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier.
  7. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  8. Etter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589–591.
  9. Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem.187, 533–536. [DOI] [PMC free article] [PubMed]
  10. Hunter, C. A. (1994). Chem. Soc. Rev.23, 101–109.
  11. Karle, I. L., Britts, K. & Gum, P. (1964). Acta Cryst.17, 496–499.
  12. Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294. [DOI] [PubMed]
  13. Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. [DOI] [PubMed]
  14. Scheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607–609.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976–o2978.
  18. Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4212. [DOI] [PubMed]
  19. Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2008). Acta Cryst. E64, o107–o108. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037724/bv2155sup1.cif

e-66-o2634-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037724/bv2155Isup2.hkl

e-66-o2634-Isup2.hkl (257.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES