Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Nov;86(21):8580–8584. doi: 10.1073/pnas.86.21.8580

Selective loss of cholinergic neurons in the ventral striatum of patients with Alzheimer disease.

S Lehéricy 1, E C Hirsch 1, P Cervera 1, L B Hersh 1, J J Hauw 1, M Ruberg 1, Y Agid 1
PMCID: PMC298326  PMID: 2682652

Abstract

Cholinergic neurons were studied by immunohistochemistry with an antiserum against human choline acetyltransferase in the caudate nucleus, putamen, and ventral striatum (including the nucleus accumbens) of three patients with Alzheimer disease and three control subjects. Immunoreactive cell bodies were mapped and counted. In the ventral striatum of patients with Alzheimer disease, a 60% decrease in the number of cholinergic neurons was observed, whereas in the caudate nucleus and putamen values for control subjects and patients were similar. To determine whether all neurons in the ventral striatum were affected, neuropeptide Y-containing neurons were also immunostained, mapped, and counted. The number of these neurons was the same in control subjects and patients with Alzheimer disease, indicating that neuronal loss is not generalized in the ventral striatum and may be specific to the cholinergic population.

Full text

PDF
8580

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin M. C., Kalivas P. W. The effect of cholinergic stimulation in the nucleus accumbens on locomotor behavior. Brain Res. 1988 Feb 16;441(1-2):209–214. doi: 10.1016/0006-8993(88)91400-x. [DOI] [PubMed] [Google Scholar]
  2. Beal M. F., Mazurek M. F., McKee M. A. The regional distribution of somatostatin and neuropeptide Y in control and Alzheimer's disease striatum. Neurosci Lett. 1987 Aug 18;79(1-2):201–206. doi: 10.1016/0304-3940(87)90697-5. [DOI] [PubMed] [Google Scholar]
  3. Bird T. D., Stranahan S., Sumi S. M., Raskind M. Alzheimer's disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Ann Neurol. 1983 Sep;14(3):284–293. doi: 10.1002/ana.410140306. [DOI] [PubMed] [Google Scholar]
  4. Bruce G., Wainer B. H., Hersh L. B. Immunoaffinity purification of human choline acetyltransferase: comparison of the brain and placental enzymes. J Neurochem. 1985 Aug;45(2):611–620. doi: 10.1111/j.1471-4159.1985.tb04030.x. [DOI] [PubMed] [Google Scholar]
  5. Davies P. Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res. 1979 Aug 3;171(2):319–327. doi: 10.1016/0006-8993(79)90336-6. [DOI] [PubMed] [Google Scholar]
  6. Dawbarn D., Hunt S. P., Emson P. C. Neuropeptide Y: regional distribution chromatographic characterization and immunohistochemical demonstration in post-mortem human brain. Brain Res. 1984 Mar 26;296(1):168–173. doi: 10.1016/0006-8993(84)90526-2. [DOI] [PubMed] [Google Scholar]
  7. German D. C., Bruce G., Hersh L. B. Immunohistochemical staining of cholinergic neurons in the human brain using a polyclonal antibody to human choline acetyltransferase. Neurosci Lett. 1985 Oct 24;61(1-2):1–5. doi: 10.1016/0304-3940(85)90391-x. [DOI] [PubMed] [Google Scholar]
  8. Graybiel A. M., Hirsch E. C., Agid Y. A. Differences in tyrosine hydroxylase-like immunoreactivity characterize the mesostriatal innervation of striosomes and extrastriosomal matrix at maturity. Proc Natl Acad Sci U S A. 1987 Jan;84(1):303–307. doi: 10.1073/pnas.84.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graybiel A. M. Neurochemically specified subsystems in the basal ganglia. Ciba Found Symp. 1984;107:114–149. doi: 10.1002/9780470720882.ch7. [DOI] [PubMed] [Google Scholar]
  10. Graybiel A. M., Ragsdale C. W., Jr Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5723–5726. doi: 10.1073/pnas.75.11.5723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Groenewegen H. J., Room P., Witter M. P., Lohman A. H. Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience. 1982 Apr;7(4):977–996. doi: 10.1016/0306-4522(82)90055-0. [DOI] [PubMed] [Google Scholar]
  12. Hammond P., Brimijoin S. Acetylcholinesterase in Huntington's and Alzheimer's diseases: simultaneous enzyme assay and immunoassay of multiple brain regions. J Neurochem. 1988 Apr;50(4):1111–1116. doi: 10.1111/j.1471-4159.1988.tb10580.x. [DOI] [PubMed] [Google Scholar]
  13. Hirsch E. C., Graybiel A. M., Hersh L. B., Duyckaerts C., Agid Y. Striosomes and extrastriosomal matrix contain different amounts of immunoreactive choline acetyltransferase in the human striatum. Neurosci Lett. 1989 Jan 16;96(2):145–150. doi: 10.1016/0304-3940(89)90048-7. [DOI] [PubMed] [Google Scholar]
  14. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984 Jul;34(7):939–944. doi: 10.1212/wnl.34.7.939. [DOI] [PubMed] [Google Scholar]
  15. Mesulam M. M., Asuncion Morán M. Cholinesterases within neurofibrillary tangles related to age and Alzheimer's disease. Ann Neurol. 1987 Aug;22(2):223–228. doi: 10.1002/ana.410220206. [DOI] [PubMed] [Google Scholar]
  16. Mesulam M. M., Mufson E. J., Levey A. I., Wainer B. H. Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience. 1984 Jul;12(3):669–686. doi: 10.1016/0306-4522(84)90163-5. [DOI] [PubMed] [Google Scholar]
  17. Mogenson G. J., Jones D. L., Yim C. Y. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol. 1980;14(2-3):69–97. doi: 10.1016/0301-0082(80)90018-0. [DOI] [PubMed] [Google Scholar]
  18. Mufson E. J., Mash D. C., Hersh L. B. Neurofibrillary tangles in cholinergic pedunculopontine neurons in Alzheimer's disease. Ann Neurol. 1988 Nov;24(5):623–629. doi: 10.1002/ana.410240506. [DOI] [PubMed] [Google Scholar]
  19. Nagai T., McGeer P. L., Peng J. H., McGeer E. G., Dolman C. E. Choline acetyltransferase immunohistochemistry in brains of Alzheimer's disease patients and controls. Neurosci Lett. 1983 Apr 11;36(2):195–199. doi: 10.1016/0304-3940(83)90264-1. [DOI] [PubMed] [Google Scholar]
  20. Oyanagi K., Takahashi H., Wakabayashi K., Ikuta F. Selective involvement of large neurons in the neostriatum of Alzheimer's disease and senile dementia: a morphometric investigation. Brain Res. 1987 May 19;411(2):205–211. doi: 10.1016/0006-8993(87)91071-7. [DOI] [PubMed] [Google Scholar]
  21. Parent A., Csonka C., Etienne P. The occurrence of large acetylcholinesterase-containing neurons in human neostriatum as disclosed in normal and Alzheimer-diseased brains. Brain Res. 1984 Jan 16;291(1):154–158. doi: 10.1016/0006-8993(84)90663-2. [DOI] [PubMed] [Google Scholar]
  22. Pearson R. C., Esiri M. M., Hiorns R. W., Wilcock G. K., Powell T. P. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4531–4534. doi: 10.1073/pnas.82.13.4531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Phillips S., Sangalang V., Sterns G. Basal forebrain infarction. A clinicopathologic correlation. Arch Neurol. 1987 Nov;44(11):1134–1138. doi: 10.1001/archneur.1987.00520230024008. [DOI] [PubMed] [Google Scholar]
  24. Price D. L., Struble R. G., Whitehouse P. J., Kitt C. A., Cork L. C., Walker L. C., Casanova M. F. Alzheimer's disease: a multisystem disorder. Res Publ Assoc Res Nerv Ment Dis. 1986;64:209–214. [PubMed] [Google Scholar]
  25. Rinne J. O., Paljärvi L., Rinne U. K. Neuronal size and density in the nucleus basalis of Meynert in Alzheimer's disease. J Neurol Sci. 1987 Jun;79(1-2):67–76. doi: 10.1016/0022-510x(87)90260-7. [DOI] [PubMed] [Google Scholar]
  26. Rossor M. N., Garrett N. J., Johnson A. L., Mountjoy C. Q., Roth M., Iversen L. L. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain. 1982 Jun;105(Pt 2):313–330. doi: 10.1093/brain/105.2.313. [DOI] [PubMed] [Google Scholar]
  27. Saper C. B., Wainer B. H., German D. C. Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer's disease. Neuroscience. 1987 Nov;23(2):389–398. doi: 10.1016/0306-4522(87)90063-7. [DOI] [PubMed] [Google Scholar]
  28. Satoh K., Fibiger H. C. Distribution of central cholinergic neurons in the baboon (Papio papio). I. General morphology. J Comp Neurol. 1985 Jun 8;236(2):197–214. doi: 10.1002/cne.902360205. [DOI] [PubMed] [Google Scholar]
  29. Simpson J., Yates C. M., Gordon A., St Clair D. M. Olfactory tubercle choline acetyltransferase activity in Alzheimer-type dementia, Down's syndrome and Huntington's chorea. J Neurol Neurosurg Psychiatry. 1984 Oct;47(10):1138–1139. doi: 10.1136/jnnp.47.10.1138-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yang C. R., Mogenson G. J. Hippocampal signal transmission to the pedunculopontine nucleus and its regulation by dopamine D2 receptors in the nucleus accumbens: an electrophysiological and behavioural study. Neuroscience. 1987 Dec;23(3):1041–1055. doi: 10.1016/0306-4522(87)90179-5. [DOI] [PubMed] [Google Scholar]
  31. Zweig R. M., Whitehouse P. J., Casanova M. F., Walker L. C., Jankel W. R., Price D. L. Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol. 1987 Jul;22(1):18–25. doi: 10.1002/ana.410220107. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES