Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 11;66(Pt 10):o2555. doi: 10.1107/S1600536810035841

1-Phenyl-1H-naphtho­[1,2-e][1,3]oxazin-3(2H)-one

Humaira Y Gondal a, Misbah Bhatti a, Azra Gohar a, Muhammad Ali a, M Nawaz Tahir b,*
PMCID: PMC2983264  PMID: 21587542

Abstract

In the title compound, C18H13NO2, the naphthalene (r.m.s. deviation = 0.025 Å) and benzaldehyde (r.m.s. deviation = 0.006 Å) groups are oriented at a dihedral angle of 89.48 (4)°. The oxazine group is oriented at dihedral angles of 13.36 (4) and 85.08 (5)°, respectively, with respect to the naphthalene and benzaldehyde fragments. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R 2 2(8) loops. The dimers are linked into [010] chains via N—H⋯O hydrogen bonds. Weak C—H⋯π links and aromatic π–π stacking between the centroids of the naphthalene phenyl rings [centroid–centroid separation = 3.5977 (8) Å] help to consolidate the packing.

Related literature

For background to oxazinones, see: Patel et al. (1999); Waxman & Darke (2000). For graph-set notation, see: Bernstein et al. (1995). graphic file with name e-66-o2555-scheme1.jpg

Experimental

Crystal data

  • C18H13NO2

  • M r = 275.29

  • Monoclinic, Inline graphic

  • a = 11.5625 (4) Å

  • b = 16.9228 (5) Å

  • c = 7.2394 (2) Å

  • β = 98.155 (1)°

  • V = 1402.21 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.22 × 0.22 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.980, T max = 0.982

  • 9236 measured reflections

  • 2533 independent reflections

  • 1961 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.111

  • S = 1.03

  • 2533 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035841/hb5635sup1.cif

e-66-o2555-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035841/hb5635Isup2.hkl

e-66-o2555-Isup2.hkl (121.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.07 2.8698 (17) 155
C8—H8⋯O1ii 0.93 2.58 3.4725 (18) 161
C16—H16⋯Cg2iii 0.93 2.92 3.722 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

Oxazinones are an important class of heterocyclic compounds with a diverse range of biological activities (Patel et al., 1999; Waxman & Darke, 2000). During recent studies for the search of efficient, simple and green method for the preparation of naphthalene-condensed 1,3-oxazin-3-one derivatives, we have obtained the title compound (I, Fig. 1).

In the title compound, the naphthalene group A (C1—C10) and moiety B (C11—C17) of benzaldehyde group are planar with r. m. s. deviations of 0.0252 and 0.0056 Å, respectively. The dihedral angle between A/B is 89.48 (4)°. The fused group C (O1/C18/O2/N1) is also planar with r. m. s. deviation of 0.0037 Å. The dihedral angle between A/C and B/C is 13.36 (4) and 85.08 (5)°, respectively. The title compound is dimerized due to H-bonding of C—H···O type (Table 1, Fig. 2) with R22(8) ring motifs (Bernstein et al., 1995). The dimers are interlinked due to N—H···O type of H-bondings (Table 1, Fig. 2). There exists π–π interaction between the centroids of phenyl rings (C1/C6—C10) at a distance of 3.5977 (8) Å [symmetry code: 2 - x, - y, 1 - z]. The molecules are stabilized in the form of infinite one dimensional polymeric chains extending along the c axis.

Experimental

A mixture of β-naphthol (1.0 mmol), benzaldehyde (1.0 mmol), urea (1.0 mmol) and CuCl2 (0.1 mm mol) as a catalyst, were heated at 393 K in a round bottom flask for 3 h. The reaction was monitored through TLC. After completion of the reaction, the mixture was cooled to room temperature and washed thoroughly with distilled water. The crude product obtained was recrystallized from petroleum ether:ethyl acetate (1:5) to affoard colourless rods of (I) after 24 h.

Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The partial packing of (I), which shows that molecules are dimerized which are interlinked in one dimensional infinite polymeric chains.

Crystal data

C18H13NO2 F(000) = 576
Mr = 275.29 Dx = 1.304 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1961 reflections
a = 11.5625 (4) Å θ = 2.2–25.3°
b = 16.9228 (5) Å µ = 0.09 mm1
c = 7.2394 (2) Å T = 296 K
β = 98.155 (1)° Rod, colourless
V = 1402.21 (7) Å3 0.32 × 0.22 × 0.22 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2533 independent reflections
Radiation source: fine-focus sealed tube 1961 reflections with I > 2σ(I)
graphite Rint = 0.022
Detector resolution: 8.10 pixels mm-1 θmax = 25.3°, θmin = 2.2°
ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −18→20
Tmin = 0.980, Tmax = 0.982 l = −8→6
9236 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2624P] where P = (Fo2 + 2Fc2)/3
2533 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.89839 (10) 0.06939 (6) 0.83483 (14) 0.0559 (4)
O2 0.91991 (11) 0.19318 (7) 0.92712 (18) 0.0737 (5)
N1 0.85664 (10) 0.16926 (7) 0.62191 (18) 0.0510 (4)
C1 0.81409 (12) −0.02577 (8) 0.3762 (2) 0.0436 (5)
C2 0.75736 (14) −0.01136 (10) 0.1926 (2) 0.0563 (5)
C3 0.73596 (18) −0.07145 (12) 0.0667 (3) 0.0715 (7)
C4 0.77142 (19) −0.14822 (12) 0.1148 (3) 0.0767 (8)
C5 0.82829 (16) −0.16422 (10) 0.2880 (3) 0.0656 (7)
C6 0.85044 (12) −0.10406 (8) 0.4248 (2) 0.0488 (5)
C7 0.90596 (13) −0.11995 (8) 0.6071 (2) 0.0523 (5)
C8 0.92163 (13) −0.06237 (8) 0.7386 (2) 0.0502 (5)
C9 0.88322 (12) 0.01469 (8) 0.6891 (2) 0.0435 (4)
C10 0.83343 (11) 0.03472 (8) 0.51467 (19) 0.0406 (4)
C11 0.79834 (12) 0.11910 (8) 0.4725 (2) 0.0434 (4)
C12 0.66655 (12) 0.13238 (8) 0.4466 (2) 0.0459 (5)
C13 0.61359 (16) 0.18002 (12) 0.3073 (3) 0.0771 (7)
C14 0.49394 (18) 0.19161 (15) 0.2832 (3) 0.0978 (9)
C15 0.42673 (16) 0.15621 (12) 0.3962 (3) 0.0782 (7)
C16 0.47770 (16) 0.10947 (12) 0.5371 (3) 0.0766 (7)
C17 0.59754 (15) 0.09745 (10) 0.5628 (3) 0.0653 (6)
C18 0.89155 (13) 0.14824 (9) 0.7974 (2) 0.0523 (5)
H1 0.86962 0.21742 0.59296 0.0612*
H2 0.73438 0.03977 0.15747 0.0675*
H3 0.69733 −0.06099 −0.05240 0.0857*
H4 0.75608 −0.18873 0.02799 0.0920*
H5 0.85317 −0.21554 0.31735 0.0787*
H7 0.93233 −0.17084 0.63780 0.0627*
H8 0.95707 −0.07359 0.85922 0.0602*
H11 0.82686 0.13419 0.35624 0.0520*
H13 0.65851 0.20496 0.22768 0.0926*
H14 0.45948 0.22429 0.18762 0.1174*
H15 0.34624 0.16371 0.37798 0.0938*
H16 0.43200 0.08537 0.61676 0.0919*
H17 0.63155 0.06536 0.65983 0.0783*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0719 (7) 0.0430 (6) 0.0505 (6) −0.0007 (5) 0.0006 (5) −0.0011 (5)
O2 0.0814 (9) 0.0577 (7) 0.0769 (8) 0.0065 (6) −0.0061 (7) −0.0244 (6)
N1 0.0508 (7) 0.0327 (6) 0.0675 (9) −0.0037 (5) 0.0017 (6) 0.0014 (6)
C1 0.0422 (8) 0.0404 (8) 0.0512 (8) −0.0057 (6) 0.0170 (6) −0.0019 (6)
C2 0.0645 (10) 0.0564 (9) 0.0502 (9) −0.0054 (8) 0.0162 (7) −0.0021 (8)
C3 0.0857 (13) 0.0788 (13) 0.0523 (10) −0.0123 (10) 0.0180 (9) −0.0131 (9)
C4 0.0951 (15) 0.0696 (12) 0.0709 (13) −0.0161 (10) 0.0309 (11) −0.0278 (10)
C5 0.0740 (12) 0.0438 (9) 0.0859 (13) −0.0071 (8) 0.0352 (10) −0.0134 (9)
C6 0.0459 (8) 0.0381 (8) 0.0669 (10) −0.0049 (6) 0.0236 (7) −0.0035 (7)
C7 0.0479 (8) 0.0346 (7) 0.0771 (11) 0.0021 (6) 0.0187 (8) 0.0068 (7)
C8 0.0462 (8) 0.0431 (8) 0.0610 (9) 0.0017 (6) 0.0067 (7) 0.0122 (7)
C9 0.0435 (8) 0.0375 (7) 0.0498 (8) −0.0027 (6) 0.0080 (6) 0.0004 (6)
C10 0.0374 (7) 0.0352 (7) 0.0506 (8) −0.0022 (5) 0.0113 (6) 0.0032 (6)
C11 0.0459 (8) 0.0354 (7) 0.0491 (8) −0.0030 (6) 0.0077 (6) 0.0045 (6)
C12 0.0459 (8) 0.0357 (7) 0.0553 (9) −0.0012 (6) 0.0042 (6) 0.0004 (6)
C13 0.0565 (10) 0.0874 (13) 0.0853 (13) 0.0041 (9) 0.0026 (9) 0.0366 (11)
C14 0.0629 (12) 0.1150 (18) 0.1095 (17) 0.0172 (12) −0.0088 (12) 0.0423 (14)
C15 0.0478 (10) 0.0796 (13) 0.1042 (15) 0.0064 (9) 0.0009 (10) −0.0069 (12)
C16 0.0562 (11) 0.0755 (12) 0.1031 (15) −0.0015 (9) 0.0287 (10) 0.0056 (11)
C17 0.0546 (10) 0.0646 (11) 0.0795 (12) 0.0073 (8) 0.0192 (8) 0.0200 (9)
C18 0.0481 (8) 0.0421 (8) 0.0653 (10) 0.0026 (6) 0.0034 (7) −0.0061 (8)

Geometric parameters (Å, °)

O1—C9 1.3958 (17) C12—C17 1.373 (2)
O1—C18 1.3617 (18) C12—C13 1.366 (3)
O2—C18 1.2167 (19) C13—C14 1.384 (3)
N1—C11 1.4622 (19) C14—C15 1.346 (3)
N1—C18 1.3259 (19) C15—C16 1.358 (3)
N1—H1 0.8600 C16—C17 1.387 (3)
C1—C2 1.417 (2) C2—H2 0.9300
C1—C10 1.4280 (19) C3—H3 0.9300
C1—C6 1.4191 (19) C4—H4 0.9300
C2—C3 1.365 (3) C5—H5 0.9300
C3—C4 1.392 (3) C7—H7 0.9300
C4—C5 1.358 (3) C8—H8 0.9300
C5—C6 1.418 (2) C11—H11 0.9800
C6—C7 1.409 (2) C13—H13 0.9300
C7—C8 1.356 (2) C14—H14 0.9300
C8—C9 1.4075 (19) C15—H15 0.9300
C9—C10 1.355 (2) C16—H16 0.9300
C10—C11 1.5039 (19) C17—H17 0.9300
C11—C12 1.525 (2)
C9—O1—C18 120.13 (11) C15—C16—C17 120.35 (19)
C11—N1—C18 126.78 (12) C12—C17—C16 120.75 (18)
C11—N1—H1 117.00 O2—C18—N1 125.73 (14)
C18—N1—H1 117.00 O1—C18—O2 117.21 (13)
C2—C1—C6 118.33 (13) O1—C18—N1 117.05 (13)
C6—C1—C10 118.94 (13) C1—C2—H2 120.00
C2—C1—C10 122.72 (13) C3—C2—H2 120.00
C1—C2—C3 120.94 (16) C2—C3—H3 120.00
C2—C3—C4 120.63 (19) C4—C3—H3 120.00
C3—C4—C5 120.27 (19) C3—C4—H4 120.00
C4—C5—C6 121.17 (16) C5—C4—H4 120.00
C5—C6—C7 122.02 (14) C4—C5—H5 119.00
C1—C6—C5 118.64 (14) C6—C5—H5 119.00
C1—C6—C7 119.33 (13) C6—C7—H7 119.00
C6—C7—C8 121.20 (13) C8—C7—H7 119.00
C7—C8—C9 118.75 (13) C7—C8—H8 121.00
O1—C9—C10 122.00 (12) C9—C8—H8 121.00
O1—C9—C8 114.88 (12) N1—C11—H11 108.00
C8—C9—C10 123.11 (13) C10—C11—H11 108.00
C1—C10—C11 121.82 (12) C12—C11—H11 108.00
C1—C10—C9 118.59 (12) C12—C13—H13 120.00
C9—C10—C11 119.58 (12) C14—C13—H13 120.00
C10—C11—C12 113.63 (11) C13—C14—H14 120.00
N1—C11—C12 110.68 (11) C15—C14—H14 120.00
N1—C11—C10 108.56 (11) C14—C15—H15 120.00
C11—C12—C13 120.86 (14) C16—C15—H15 120.00
C11—C12—C17 121.24 (13) C15—C16—H16 120.00
C13—C12—C17 117.89 (15) C17—C16—H16 120.00
C12—C13—C14 120.81 (18) C12—C17—H17 120.00
C13—C14—C15 120.9 (2) C16—C17—H17 120.00
C14—C15—C16 119.30 (18)
C18—O1—C9—C8 164.13 (13) C5—C6—C7—C8 −176.94 (15)
C18—O1—C9—C10 −16.9 (2) C6—C7—C8—C9 −1.2 (2)
C9—O1—C18—O2 −170.95 (14) C7—C8—C9—O1 177.44 (13)
C9—O1—C18—N1 7.8 (2) C7—C8—C9—C10 −1.5 (2)
C18—N1—C11—C10 −27.00 (19) O1—C9—C10—C1 −175.98 (12)
C18—N1—C11—C12 98.36 (16) O1—C9—C10—C11 3.0 (2)
C11—N1—C18—O1 15.8 (2) C8—C9—C10—C1 2.9 (2)
C11—N1—C18—O2 −165.56 (15) C8—C9—C10—C11 −178.08 (13)
C6—C1—C2—C3 1.4 (2) C1—C10—C11—N1 −164.84 (12)
C10—C1—C2—C3 −177.10 (16) C1—C10—C11—C12 71.56 (17)
C2—C1—C6—C5 −0.1 (2) C9—C10—C11—N1 16.17 (17)
C2—C1—C6—C7 −179.36 (14) C9—C10—C11—C12 −107.43 (15)
C10—C1—C6—C5 178.41 (14) N1—C11—C12—C13 99.58 (17)
C10—C1—C6—C7 −0.9 (2) N1—C11—C12—C17 −79.96 (17)
C2—C1—C10—C9 176.78 (14) C10—C11—C12—C13 −137.98 (16)
C2—C1—C10—C11 −2.2 (2) C10—C11—C12—C17 42.48 (19)
C6—C1—C10—C9 −1.7 (2) C11—C12—C13—C14 179.58 (17)
C6—C1—C10—C11 179.35 (13) C17—C12—C13—C14 −0.9 (3)
C1—C2—C3—C4 −1.2 (3) C11—C12—C17—C16 −179.52 (16)
C2—C3—C4—C5 −0.2 (3) C13—C12—C17—C16 0.9 (3)
C3—C4—C5—C6 1.5 (3) C12—C13—C14—C15 −0.1 (3)
C4—C5—C6—C1 −1.3 (3) C13—C14—C15—C16 0.9 (3)
C4—C5—C6—C7 177.92 (17) C14—C15—C16—C17 −0.9 (3)
C1—C6—C7—C8 2.3 (2) C15—C16—C17—C12 −0.1 (3)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 2.07 2.8698 (17) 155
C8—H8···O1ii 0.93 2.58 3.4725 (18) 161
C16—H16···Cg2iii 0.93 2.92 3.722 (2) 145

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, −y, −z+2; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5635).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Patel, M., McHugh, R. J. Jr, Cordova, B. C., Klabe, R. M., Erickson-Viitanen, S., Trainor, G. L. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett.9, 3221–3224. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Waxman, L. & Darke, P. L. (2000). Antiviral Chem. Chemother.11, 1–22. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035841/hb5635sup1.cif

e-66-o2555-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035841/hb5635Isup2.hkl

e-66-o2555-Isup2.hkl (121.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES