Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 11;66(Pt 10):o2531–o2532. doi: 10.1107/S1600536810035695

(2E)-2-Benzyl­idene-5,6-dimethoxy­indan-1-one

Mohamed Ashraf Ali a, Rusli Ismail a, Soo Choon Tan a, Chin Sing Yeap b,, Hoong-Kun Fun b,*,§
PMCID: PMC2983266  PMID: 21587524

Abstract

The mol­ecular structure of the title compound, C18H16O3, is roughly planar; the maximum deviation of the indanone ring system is 0.027 (1) Å and it makes a dihedral angle of 2.69 (3)° with the phenyl ring. The torsion angles between the two meth­oxy groups and the ­indanone ring are −14.67 (11) and −1.11 (12)°. In the crystal, mol­ecules are connected into a ribbon along the a axis via weak inter­molecular C—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯π and π–π [centroid–centroid distance = 3.7086 (6) Å] inter­actions are also observed.

Related literature

For general background to and the biological activity of chalcone derivatives, see: Boumendjel et al. (2009); D’Archivio et al. (2008); Dicarlo et al. (1999); Echeverria et al. (2009); Heidenreich et al. (2008); Katsori & Hadjipavlou-Latina (2009); Miranda et al. (1999); Nowakowska (2007); Shah et al. (2008); Syed et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o2531-scheme1.jpg

Experimental

Crystal data

  • C18H16O3

  • M r = 280.31

  • Monoclinic, Inline graphic

  • a = 6.0209 (6) Å

  • b = 14.8550 (14) Å

  • c = 15.2292 (15) Å

  • β = 90.603 (2)°

  • V = 1362.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.44 × 0.29 × 0.16 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.960, T max = 0.985

  • 31475 measured reflections

  • 6003 independent reflections

  • 4902 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.130

  • S = 1.09

  • 6003 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035695/is2598sup1.cif

e-66-o2531-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035695/is2598Isup2.hkl

e-66-o2531-Isup2.hkl (293.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O3i 0.96 2.53 3.4107 (11) 152
C18—H18B⋯O2ii 0.96 2.58 3.5320 (11) 173
C16—H16ACg1iii 0.93 2.99 3.7224 (9) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors wish to express their thanks to Universiti Sains Malysia (USM) for providing research facilities. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160 and CSY thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Chalcones have been reported to possess antiinflammatory, antimicrobial, antioxidant and anticancer properties (Echeverria et al., 2009; Nowakowska, 2007; Miranda et al., 1999; Shah et al., 2008; Boumendjel et al., 2009; Katsori & Hadjipavlou-Latina, 2009). Chalcones are one of the major classes of natural products with widespread distribution in spices, tea, beer, fruits and vegetables. They have been recently subjects of great interest for their pharmacological activities (Dicarlo et al., 1999). Prostate cancer is one of the most commonly diagnosed cancers in men and the second leading cause of cancer deaths in the European Union and United States of America (Heidenreich et al., 2008). Many antitumor drugs have been developed for prostate cancer patients, but their intolerable systemic toxicity often limits their clinical use. Chemoprevention is one of the most promising approaches in prostate cancer research, in which natural or synthetic agents are used to prevent this malignant disease (Heidenreich et al., 2008; Syed et al., 2008; D'Archivio et al., 2008).

The molecular structure of the title compound is essentially coplanar (Fig. 1). The maximum deviation of the indanone group is 0.027 (1) Å and it makes dihedral angle of 2.69 (3)° with the phenyl ring [C11–C16]. The torsion angles of the two methoxy groups are [C17–O2–C4–C5] 165.99 (7) and [C18–O3–C5–C4] 179.19 (7)°.

In the crystal structure, intermolecular C17—H17A···O3 hydrogen bonds (Table 1) link the molecules into dimers (Fig. 2). These dimers are interconnected into ribbons propagating along the [100] direction via intermolecular C18—H18B···O2 hydrogen bonds (Fig. 2, Table 1). Weak intermolecular C—H···π (Table 1) and π–π interactions are also observed. [Cg1···Cg2iv of 3.7086 (6) Å; (iv) 1 - x, 1 - y, -z. Cg1 and Cg2 are the centroids of C2–C7 and C11–C16 benzene ring.]

Experimental

A mixture of 5,6-dimethoxyindan-1-one (0.001 mmol) and benzaldehyde (0.001 mmol) were dissolved in methanol (10 ml) and 30% sodium hydroxide solution (5 ml) was added and stirred for 5 h. After completion of the reaction as evident from TLC, the mixture was poured into crushed ice then neutralized with concentrated HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to reveal the title compound as light yellow crystals.

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model. A rotating-group model were applied for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal packing of title compound, showing chains along the [100] direction. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C18H16O3 F(000) = 592
Mr = 280.31 Dx = 1.367 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7296 reflections
a = 6.0209 (6) Å θ = 2.7–34.9°
b = 14.8550 (14) Å µ = 0.09 mm1
c = 15.2292 (15) Å T = 100 K
β = 90.603 (2)° Yellow, colourless
V = 1362.0 (2) Å3 0.44 × 0.29 × 0.16 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 6003 independent reflections
Radiation source: fine-focus sealed tube 4902 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 35.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.960, Tmax = 0.985 k = −23→23
31475 measured reflections l = −23→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.2363P] where P = (Fo2 + 2Fc2)/3
6003 reflections (Δ/σ)max = 0.001
192 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.07043 (10) 0.71482 (4) 0.09037 (4) 0.01685 (13)
O2 0.07512 (10) 0.55593 (4) 0.41523 (4) 0.01527 (12)
O3 0.42675 (10) 0.46101 (4) 0.40716 (4) 0.01623 (13)
C1 0.22764 (13) 0.66575 (5) 0.11035 (5) 0.01189 (13)
C2 0.26214 (13) 0.61731 (5) 0.19344 (5) 0.01122 (13)
C3 0.12486 (13) 0.61613 (5) 0.26768 (5) 0.01208 (13)
H3A −0.0055 0.6497 0.2689 0.014*
C4 0.18842 (13) 0.56395 (5) 0.33862 (5) 0.01188 (13)
C5 0.38768 (13) 0.51154 (5) 0.33496 (5) 0.01213 (13)
C6 0.52425 (13) 0.51522 (5) 0.26166 (5) 0.01263 (14)
H6A 0.6561 0.4827 0.2602 0.015*
C7 0.45911 (12) 0.56873 (5) 0.19043 (5) 0.01121 (13)
C8 0.57760 (13) 0.58179 (5) 0.10412 (5) 0.01231 (13)
H8A 0.5966 0.5249 0.0738 0.015*
H8B 0.7219 0.6095 0.1131 0.015*
C9 0.42250 (13) 0.64368 (5) 0.05349 (5) 0.01186 (13)
C10 0.43407 (13) 0.67809 (5) −0.02828 (5) 0.01274 (14)
H10A 0.3154 0.7150 −0.0441 0.015*
C11 0.60191 (13) 0.66724 (5) −0.09638 (5) 0.01229 (13)
C12 0.79718 (14) 0.61621 (6) −0.08618 (5) 0.01469 (14)
H12A 0.8259 0.5868 −0.0334 0.018*
C13 0.94801 (14) 0.60945 (6) −0.15463 (6) 0.01690 (15)
H13A 1.0760 0.5751 −0.1472 0.020*
C14 0.90917 (15) 0.65353 (6) −0.23413 (6) 0.01682 (15)
H14A 1.0106 0.6487 −0.2795 0.020*
C15 0.71743 (15) 0.70489 (6) −0.24506 (6) 0.01576 (15)
H15A 0.6910 0.7349 −0.2977 0.019*
C16 0.56526 (14) 0.71135 (5) −0.17716 (5) 0.01416 (14)
H16A 0.4370 0.7454 −0.1853 0.017*
C17 −0.09525 (14) 0.62140 (6) 0.43137 (6) 0.01619 (15)
H17A −0.1545 0.6122 0.4890 0.024*
H17B −0.2118 0.6149 0.3883 0.024*
H17C −0.0333 0.6808 0.4276 0.024*
C18 0.62128 (14) 0.40534 (6) 0.40883 (6) 0.01640 (15)
H18A 0.6235 0.3701 0.4617 0.025*
H18B 0.7514 0.4426 0.4071 0.025*
H18C 0.6192 0.3660 0.3588 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0151 (3) 0.0202 (3) 0.0153 (3) 0.0057 (2) 0.0018 (2) 0.0026 (2)
O2 0.0144 (3) 0.0191 (3) 0.0123 (3) 0.0035 (2) 0.0052 (2) 0.0029 (2)
O3 0.0157 (3) 0.0197 (3) 0.0133 (3) 0.0048 (2) 0.0024 (2) 0.0056 (2)
C1 0.0121 (3) 0.0125 (3) 0.0111 (3) 0.0000 (2) 0.0014 (2) −0.0003 (2)
C2 0.0117 (3) 0.0116 (3) 0.0104 (3) −0.0001 (2) 0.0013 (2) 0.0003 (2)
C3 0.0116 (3) 0.0128 (3) 0.0119 (3) 0.0004 (2) 0.0017 (2) 0.0001 (2)
C4 0.0109 (3) 0.0137 (3) 0.0111 (3) −0.0003 (2) 0.0024 (2) 0.0000 (2)
C5 0.0122 (3) 0.0126 (3) 0.0116 (3) 0.0001 (2) 0.0005 (2) 0.0014 (2)
C6 0.0116 (3) 0.0143 (3) 0.0120 (3) 0.0013 (2) 0.0012 (2) 0.0009 (2)
C7 0.0112 (3) 0.0114 (3) 0.0110 (3) −0.0005 (2) 0.0013 (2) −0.0001 (2)
C8 0.0118 (3) 0.0140 (3) 0.0111 (3) 0.0013 (2) 0.0021 (2) 0.0007 (2)
C9 0.0118 (3) 0.0124 (3) 0.0115 (3) 0.0005 (2) 0.0019 (2) 0.0000 (2)
C10 0.0134 (3) 0.0130 (3) 0.0118 (3) 0.0010 (2) 0.0015 (2) 0.0003 (2)
C11 0.0136 (3) 0.0120 (3) 0.0113 (3) −0.0004 (2) 0.0015 (2) 0.0002 (2)
C12 0.0143 (3) 0.0165 (3) 0.0133 (3) 0.0018 (3) 0.0019 (3) 0.0014 (3)
C13 0.0148 (3) 0.0193 (4) 0.0167 (4) 0.0021 (3) 0.0038 (3) −0.0005 (3)
C14 0.0175 (4) 0.0185 (4) 0.0146 (3) −0.0029 (3) 0.0057 (3) −0.0015 (3)
C15 0.0186 (4) 0.0164 (3) 0.0123 (3) −0.0030 (3) 0.0024 (3) 0.0015 (3)
C16 0.0154 (3) 0.0145 (3) 0.0126 (3) 0.0003 (2) 0.0012 (3) 0.0013 (2)
C17 0.0141 (3) 0.0189 (4) 0.0156 (3) 0.0024 (3) 0.0043 (3) −0.0007 (3)
C18 0.0153 (3) 0.0169 (3) 0.0171 (4) 0.0032 (3) −0.0010 (3) 0.0032 (3)

Geometric parameters (Å, °)

O1—C1 1.2303 (10) C10—C11 1.4645 (11)
O2—C4 1.3628 (10) C10—H10A 0.9300
O2—C17 1.4366 (10) C11—C12 1.4061 (11)
O3—C5 1.3499 (10) C11—C16 1.4092 (11)
O3—C18 1.4338 (10) C12—C13 1.3933 (12)
C1—C2 1.4687 (11) C12—H12A 0.9300
C1—C9 1.5017 (11) C13—C14 1.3941 (12)
C2—C7 1.3894 (11) C13—H13A 0.9300
C2—C3 1.4076 (11) C14—C15 1.3923 (13)
C3—C4 1.3805 (11) C14—H14A 0.9300
C3—H3A 0.9300 C15—C16 1.3920 (12)
C4—C5 1.4318 (11) C15—H15A 0.9300
C5—C6 1.3945 (11) C16—H16A 0.9300
C6—C7 1.3977 (11) C17—H17A 0.9600
C6—H6A 0.9300 C17—H17B 0.9600
C7—C8 1.5146 (11) C17—H17C 0.9600
C8—C9 1.5154 (11) C18—H18A 0.9600
C8—H8A 0.9700 C18—H18B 0.9600
C8—H8B 0.9700 C18—H18C 0.9600
C9—C10 1.3487 (11)
C4—O2—C17 116.88 (6) C9—C10—H10A 114.5
C5—O3—C18 118.07 (7) C11—C10—H10A 114.5
O1—C1—C2 127.21 (7) C12—C11—C16 118.04 (7)
O1—C1—C9 126.20 (7) C12—C11—C10 124.30 (7)
C2—C1—C9 106.59 (6) C16—C11—C10 117.65 (7)
C7—C2—C3 121.92 (7) C13—C12—C11 120.47 (8)
C7—C2—C1 109.82 (7) C13—C12—H12A 119.8
C3—C2—C1 128.26 (7) C11—C12—H12A 119.8
C4—C3—C2 118.38 (7) C12—C13—C14 120.74 (8)
C4—C3—H3A 120.8 C12—C13—H13A 119.6
C2—C3—H3A 120.8 C14—C13—H13A 119.6
O2—C4—C3 125.58 (7) C15—C14—C13 119.50 (8)
O2—C4—C5 114.40 (7) C15—C14—H14A 120.2
C3—C4—C5 120.02 (7) C13—C14—H14A 120.2
O3—C5—C6 125.08 (7) C16—C15—C14 120.02 (8)
O3—C5—C4 114.17 (7) C16—C15—H15A 120.0
C6—C5—C4 120.75 (7) C14—C15—H15A 120.0
C5—C6—C7 118.72 (7) C15—C16—C11 121.21 (8)
C5—C6—H6A 120.6 C15—C16—H16A 119.4
C7—C6—H6A 120.6 C11—C16—H16A 119.4
C2—C7—C6 120.16 (7) O2—C17—H17A 109.5
C2—C7—C8 111.85 (7) O2—C17—H17B 109.5
C6—C7—C8 127.99 (7) H17A—C17—H17B 109.5
C7—C8—C9 103.06 (6) O2—C17—H17C 109.5
C7—C8—H8A 111.2 H17A—C17—H17C 109.5
C9—C8—H8A 111.2 H17B—C17—H17C 109.5
C7—C8—H8B 111.2 O3—C18—H18A 109.5
C9—C8—H8B 111.2 O3—C18—H18B 109.5
H8A—C8—H8B 109.1 H18A—C18—H18B 109.5
C10—C9—C1 119.86 (7) O3—C18—H18C 109.5
C10—C9—C8 131.47 (7) H18A—C18—H18C 109.5
C1—C9—C8 108.67 (6) H18B—C18—H18C 109.5
C9—C10—C11 130.91 (7)
O1—C1—C2—C7 179.73 (8) C5—C6—C7—C2 0.24 (11)
C9—C1—C2—C7 −0.12 (8) C5—C6—C7—C8 −178.92 (7)
O1—C1—C2—C3 0.09 (13) C2—C7—C8—C9 −1.30 (8)
C9—C1—C2—C3 −179.76 (7) C6—C7—C8—C9 177.91 (8)
C7—C2—C3—C4 −0.86 (11) O1—C1—C9—C10 −0.86 (13)
C1—C2—C3—C4 178.74 (7) C2—C1—C9—C10 179.00 (7)
C17—O2—C4—C3 −14.67 (11) O1—C1—C9—C8 179.44 (8)
C17—O2—C4—C5 165.99 (7) C2—C1—C9—C8 −0.71 (8)
C2—C3—C4—O2 179.62 (7) C7—C8—C9—C10 −178.48 (8)
C2—C3—C4—C5 −1.07 (11) C7—C8—C9—C1 1.18 (8)
C18—O3—C5—C6 −1.11 (12) C1—C9—C10—C11 −179.66 (8)
C18—O3—C5—C4 179.19 (7) C8—C9—C10—C11 −0.03 (15)
O2—C4—C5—O3 1.72 (10) C9—C10—C11—C12 −1.40 (14)
C3—C4—C5—O3 −177.66 (7) C9—C10—C11—C16 178.97 (8)
O2—C4—C5—C6 −178.00 (7) C16—C11—C12—C13 −0.44 (12)
C3—C4—C5—C6 2.62 (12) C10—C11—C12—C13 179.93 (8)
O3—C5—C6—C7 178.15 (7) C11—C12—C13—C14 0.46 (13)
C4—C5—C6—C7 −2.16 (12) C12—C13—C14—C15 0.04 (13)
C3—C2—C7—C6 1.31 (11) C13—C14—C15—C16 −0.54 (13)
C1—C2—C7—C6 −178.36 (7) C14—C15—C16—C11 0.55 (12)
C3—C2—C7—C8 −179.41 (7) C12—C11—C16—C15 −0.06 (12)
C1—C2—C7—C8 0.92 (9) C10—C11—C16—C15 179.60 (7)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C2–C7 benzene ring.
D—H···A D—H H···A D···A D—H···A
C17—H17A···O3i 0.96 2.53 3.4107 (11) 152
C18—H18B···O2ii 0.96 2.58 3.5320 (11) 173
C16—H16A···Cg1iii 0.93 2.99 3.7224 (9) 137

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1, y, z; (iii) x, −y+1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2598).

References

  1. Boumendjel, A., Ronot, X. & Boutonnat, J. (2009). Curr. Drug Targets, 10, 363–371. [DOI] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. D’Archivio, M., Santangelo, C., Scazzocchio, B., Vari, R., Filesi, C., Masella, R. & Giovannini, C. (2008). Int. J. Mol. Sci.9, 213–228. [DOI] [PMC free article] [PubMed]
  5. Dicarlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci.65, 337–353. [DOI] [PubMed]
  6. Echeverria, C., Santibanez, J. S., Donoso-Tauda, O., Escobar, C. A. & Ramirez-Tagle, R. (2009). Int. J. Mol. Sci.10, 221–231. [DOI] [PMC free article] [PubMed]
  7. Heidenreich, A., Aus, G., Bolla, M., Joniau, S., Matveev, V. B., Schmid, H. P. & Zattoni, F. (2008). Eur. Urol.53, 68–80. [DOI] [PubMed]
  8. Katsori, A. M. & Hadjipavlou-Latina, D. (2009). Curr. Med. Chem.16, 1062–1081. [DOI] [PubMed]
  9. Miranda, C. L., Stevens, J. F., Helmrich, A., Henderson, M. C., Rodriguez, R. J., Yang, Y. H., Deinzer, M. L., Barnes, D. W. & Buhler, D. R. (1999). Food Chem. Toxicol.37, 271–285. [DOI] [PubMed]
  10. Nowakowska, Z. (2007). Eur. J. Med. Chem.42, 125–137. [DOI] [PubMed]
  11. Shah, A., Khan, A. M., Qureshi, R., Ansari, F. L., Nazar, M. F. & Shah, S. S. (2008). Int. J. Mol. Sci.9, 1424–1434. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Syed, D. N., Suh, Y., Afag, F. & Mukhtar, H. (2008). Cancer Lett.265, 167–176. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035695/is2598sup1.cif

e-66-o2531-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035695/is2598Isup2.hkl

e-66-o2531-Isup2.hkl (293.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES