Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 15;66(Pt 10):o2557. doi: 10.1107/S160053681003518X

(1E,2E)-1,2-Bis(2,3,4-trimeth­oxy­benzyl­idene)hydrazine

Malai Haniti S A Hamid a, Mohammad Akbar Ali a, Aminul Huq Mirza a, Gan Ai Len a, Ray J Butcher b,*
PMCID: PMC2983268  PMID: 21587544

Abstract

The title compound, C20H24N2O6, was obtained as an unexpected product by the reaction of hydrazinium dithio­carbazate with 2,3,4-trimeth­oxy­benzaldehyde in refluxing ethanol. The mol­ecule lies on a center of inversion. The crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

The surprising formation of the title hydrazone was probably due to the decomposition of hydrazinium dithio­carbazate in solution resulting in the formation of hydrazine, which then reacted with 2,3,4-trimeth­oxy­benzaldehdye. Hydrazinium dithio­carbaza­tes are known to decompose on heating (Rudorf, 2007). For the biological activity of Schiff bases, see: Akbar Ali et al. (2008); Chan et al. (2008). For a previous report of the title compound (the X-ray structure was not provided), see: Praefcke et al. (1991). For comparison bond lengths in an aroyl hydrazone, see: Ji et al. (2010).graphic file with name e-66-o2557-scheme1.jpg

Experimental

Crystal data

  • C20H24N2O6

  • M r = 388.41

  • Monoclinic, Inline graphic

  • a = 10.0380 (9) Å

  • b = 7.0713 (7) Å

  • c = 13.9586 (14) Å

  • β = 102.800 (2)°

  • V = 966.18 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.60 × 0.36 × 0.04 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.943, T max = 0.996

  • 6576 measured reflections

  • 2203 independent reflections

  • 1846 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.123

  • S = 1.05

  • 2196 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003518X/bt5339sup1.cif

e-66-o2557-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003518X/bt5339Isup2.hkl

e-66-o2557-Isup2.hkl (108KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O3ii 0.98 2.54 3.3620 (18) 142
C8—H8B⋯O1iii 0.98 2.62 3.3735 (19) 134
C8—H8B⋯O2iii 0.98 2.62 3.5711 (18) 164

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MHSAH, MAA, AHM and GAL thank Universiti Brunei Darussalam for support. The X-ray Diffraction Laboratory, Department of Chemistry, National University of Singapore, is acknowledged for the collection of the X-ray diffraction data.

supplementary crystallographic information

Comment

The compound, C20H24N2O6 (I) was obtained by the reaction of hydrazinium dithiocarbazate and 2,3,4-trimethoxybenzaldehyde in boiling ethanol. The surprising formation of the hydrazone was probably due to the decomposition of hydrazinium dithiocarbazate in solution resulting in the formation of hydrazine, which then reacted with 2,3,4-trimethoxybenzaldehdye to form the corresponding hydrazone (I). Hydrazinium dithiocarbazates are known to decompose on heating (Rudorf, 2007).

Schiff bases have attracted considerable attention because they can act as chelating agents for metal ions and many of them also exhibit useful biological activities (Akbar Ali et al., 2008; Chan et al., 2008). Although the compound has previously been reported its X-ray structure has not been provided (Praefcke et al., 1991). Hydrazones derived from the reactions of hydrazines with aldehydes or ketones are common but bis-hydrazones are not.

The molecular structure of (I) is shown in Figure 1 and its selected bond lengths and angles are given in Table 1. Like most thiosemicarbazones and Schiff bases, the imine moiety in [I] shows an E configuration about the C10—N1 [1.283 (2) Å] and N1A—C10A bonds. The C10—N1 and N1A—C10A bond distances also compare well with C=N double bonds in other related compounds. A comparison of the N(1)—N(1 A) distance [1.413 (3) Å] with that in an aroyl hydrazone [1.377 (3) Å] (Ji et al. 2010) shows that the bond is shorter than a single N—N bond (1.44 Å) indicating that a significant π-charge delocalization occurs along the C—N—N—C moiety. As the bond angles C6—C10—N1 (121.68°) and C6A—C10A—N1A (121.68°) are close to that of a sp2-hybridized carbon atom (ca 120°), the molecule does not have a distorted geometry. Due the fact that the molecule lies on a center of inversion the dihedral angle between the two phenyl rings is 0.0°.

Figure 2 shows the packing of (I) in the unit cell. The packing diagram shows that there are intermolecular hydrogen bonds between one of the CH3 hydrogen atoms of one molecule with an ether oxygen of another molecule.

Experimental

2,3,4-trimethoxybenzaldehyde (0.24 g, 1.24 mmol) dissolved in absolute ethanol (5 ml) was mixed with a solution of hydrazinium dithiocarbazate (0.93 g, 0.66 mmol) in the same solvent (45 ml). After refluxing for two hours, the resulting clear yellow solution was left to stand at room temperature for five days to afford crystalline yellow plates. The crystals were filtered, washed with cold absolute ethanol and dried in vacuo. Yield: 0.152 g (63%); m.p. 192–194 °C; IR (KBr, cm-1): 2968, 2937, 2832, 1614, 1590, 1494, 1457, 1431, 1410, 1286, 1229, 1199. 1166, 1090, 1023, 1008, 943, 898, 809, 699, 667, 594, 540, 433; 1H NMR (400 MHz, CDCl3, 30 °C): δ 8.92 (2H, s, CH=N), 7.84 (2H, d, ArH), 6.76 (2H, d, ArH), 3.96 (6H, s, OCH3), 3.92 (6H, s, OCH3), 3.90 (6H, s, OCH3); Anal. Calcd. for C20H24N2O6 (388.42): C 61.85, H 6.23, N 7.21. Found: C 62.17, H 6.17, N 7.47%.

IR spectrum was recorded as a KBr disc with 13 mm KBr discs SPECAC accessory on a Perkin-Elmer 1600 F T IR spectrometer. 1H NMR spectrum was run in CDCl3 on a Varian 400-NMR spectrometer at Universiti Brunei Darussalam. Elemental analysis for C, H and N was done by the Elemental Analysis Laboratory, Department of Chemistry, National University of Singapore. The X-ray data were collected at the X-ray Diffraction Laboratory, Department of Chemistry, National University of Singapore using a Bruker-AXS Smart Apex CCD single-crystal diffractometer.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 Å and 0.98 Å, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The title compound, C20H24N2O6 with atom labeling. Displacement ellipsoids are at the 50 % probability level.

Fig. 2.

Fig. 2.

The molecular packing for C20H24N2O6 viewed down the a axis showing the intermolecular C—H···O interactions.

Crystal data

C20H24N2O6 F(000) = 412
Mr = 388.41 Dx = 1.335 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.0380 (9) Å Cell parameters from 1770 reflections
b = 7.0713 (7) Å θ = 2.8–27.1°
c = 13.9586 (14) Å µ = 0.10 mm1
β = 102.800 (2)° T = 100 K
V = 966.18 (16) Å3 Plate, yellow
Z = 2 0.60 × 0.36 × 0.04 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2203 independent reflections
Radiation source: fine-focus sealed tube 1846 reflections with I > 2σ(I)
graphite Rint = 0.033
ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→12
Tmin = 0.943, Tmax = 0.996 k = 0→9
6576 measured reflections l = 0→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.353P] where P = (Fo2 + 2Fc2)/3
2196 reflections (Δ/σ)max < 0.001
130 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.62846 (10) 0.45681 (14) 0.85047 (7) 0.0180 (2)
O2 0.61624 (9) 0.20990 (14) 0.70188 (7) 0.0165 (2)
O3 0.38623 (10) 0.18335 (14) 0.55439 (7) 0.0175 (2)
C10 0.15962 (14) 0.4221 (2) 0.54359 (10) 0.0154 (3)
H10 0.1582 0.3285 0.4945 0.018*
C1 0.29226 (14) 0.5791 (2) 0.69604 (11) 0.0172 (3)
H1 0.2190 0.6649 0.6944 0.021*
C2 0.40646 (15) 0.5899 (2) 0.77231 (10) 0.0180 (3)
H2 0.4113 0.6834 0.8218 0.022*
C3 0.51481 (14) 0.4635 (2) 0.77677 (10) 0.0153 (3)
C4 0.50841 (13) 0.33003 (19) 0.70148 (10) 0.0146 (3)
C5 0.39310 (14) 0.32122 (19) 0.62483 (10) 0.0147 (3)
C6 0.28211 (14) 0.44466 (19) 0.62113 (10) 0.0149 (3)
C7 0.64403 (15) 0.6012 (2) 0.92428 (11) 0.0202 (3)
H7A 0.6488 0.7252 0.8938 0.030*
H7B 0.7282 0.5789 0.9740 0.030*
H7C 0.5657 0.5983 0.9555 0.030*
C8 0.60816 (16) 0.0407 (2) 0.75753 (11) 0.0218 (3)
H8A 0.6081 0.0745 0.8256 0.033*
H8B 0.6871 −0.0401 0.7563 0.033*
H8C 0.5238 −0.0274 0.7286 0.033*
C9 0.44808 (17) 0.2382 (2) 0.47521 (11) 0.0250 (4)
H9A 0.3970 0.3440 0.4393 0.038*
H9B 0.4466 0.1309 0.4305 0.038*
H9C 0.5428 0.2769 0.5017 0.038*
N1 0.05345 (12) 0.52567 (17) 0.53984 (8) 0.0165 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0149 (5) 0.0161 (5) 0.0206 (5) 0.0020 (4) −0.0011 (4) −0.0043 (4)
O2 0.0135 (5) 0.0140 (5) 0.0223 (5) 0.0028 (4) 0.0046 (4) 0.0010 (4)
O3 0.0191 (5) 0.0148 (5) 0.0188 (5) −0.0001 (4) 0.0043 (4) −0.0027 (4)
C10 0.0161 (6) 0.0143 (7) 0.0160 (6) 0.0000 (5) 0.0043 (5) 0.0016 (5)
C1 0.0152 (7) 0.0160 (7) 0.0206 (7) 0.0040 (5) 0.0045 (5) 0.0010 (5)
C2 0.0199 (7) 0.0159 (7) 0.0183 (7) 0.0008 (6) 0.0043 (6) −0.0041 (5)
C3 0.0119 (6) 0.0155 (7) 0.0175 (7) −0.0021 (5) 0.0014 (5) 0.0012 (5)
C4 0.0130 (6) 0.0130 (7) 0.0189 (7) 0.0015 (5) 0.0055 (5) 0.0020 (5)
C5 0.0167 (6) 0.0128 (7) 0.0155 (6) −0.0011 (5) 0.0055 (5) 0.0002 (5)
C6 0.0136 (6) 0.0146 (7) 0.0164 (6) −0.0006 (5) 0.0028 (5) 0.0025 (5)
C7 0.0203 (7) 0.0190 (7) 0.0196 (7) −0.0001 (6) 0.0009 (6) −0.0035 (6)
C8 0.0277 (8) 0.0176 (8) 0.0212 (7) 0.0069 (6) 0.0082 (6) 0.0040 (6)
C9 0.0320 (8) 0.0244 (8) 0.0206 (7) 0.0016 (7) 0.0098 (6) −0.0024 (6)
N1 0.0146 (6) 0.0185 (6) 0.0154 (6) −0.0004 (5) 0.0012 (5) 0.0020 (5)

Geometric parameters (Å, °)

O1—C3 1.3572 (16) C3—C4 1.4036 (19)
O1—C7 1.4344 (17) C4—C5 1.3926 (19)
O2—C4 1.3750 (16) C5—C6 1.4072 (19)
O2—C8 1.4383 (17) C7—H7A 0.9800
O3—C5 1.3755 (17) C7—H7B 0.9800
O3—C9 1.4357 (18) C7—H7C 0.9800
C10—N1 1.2846 (19) C8—H8A 0.9800
C10—C6 1.4556 (19) C8—H8B 0.9800
C10—H10 0.9500 C8—H8C 0.9800
C1—C2 1.383 (2) C9—H9A 0.9800
C1—C6 1.400 (2) C9—H9B 0.9800
C1—H1 0.9500 C9—H9C 0.9800
C2—C3 1.398 (2) N1—N1i 1.411 (2)
C2—H2 0.9500
C3—O1—C7 117.32 (11) C1—C6—C10 122.64 (13)
C4—O2—C8 112.18 (11) C5—C6—C10 119.40 (13)
C5—O3—C9 113.41 (11) O1—C7—H7A 109.5
N1—C10—C6 121.62 (13) O1—C7—H7B 109.5
N1—C10—H10 119.2 H7A—C7—H7B 109.5
C6—C10—H10 119.2 O1—C7—H7C 109.5
C2—C1—C6 121.54 (13) H7A—C7—H7C 109.5
C2—C1—H1 119.2 H7B—C7—H7C 109.5
C6—C1—H1 119.2 O2—C8—H8A 109.5
C1—C2—C3 120.20 (13) O2—C8—H8B 109.5
C1—C2—H2 119.9 H8A—C8—H8B 109.5
C3—C2—H2 119.9 O2—C8—H8C 109.5
O1—C3—C2 124.83 (13) H8A—C8—H8C 109.5
O1—C3—C4 115.81 (12) H8B—C8—H8C 109.5
C2—C3—C4 119.36 (12) O3—C9—H9A 109.5
O2—C4—C5 119.67 (12) O3—C9—H9B 109.5
O2—C4—C3 120.47 (12) H9A—C9—H9B 109.5
C5—C4—C3 119.85 (12) O3—C9—H9C 109.5
O3—C5—C4 118.84 (12) H9A—C9—H9C 109.5
O3—C5—C6 119.97 (12) H9B—C9—H9C 109.5
C4—C5—C6 121.13 (13) C10—N1—N1i 111.38 (15)
C1—C6—C5 117.88 (13)
C6—C1—C2—C3 −0.8 (2) O2—C4—C5—O3 4.25 (19)
C7—O1—C3—C2 −6.1 (2) C3—C4—C5—O3 −176.89 (12)
C7—O1—C3—C4 174.78 (12) O2—C4—C5—C6 −178.71 (12)
C1—C2—C3—O1 −177.00 (13) C3—C4—C5—C6 0.2 (2)
C1—C2—C3—C4 2.1 (2) C2—C1—C6—C5 −0.9 (2)
C8—O2—C4—C5 −93.85 (15) C2—C1—C6—C10 175.88 (13)
C8—O2—C4—C3 87.29 (15) O3—C5—C6—C1 178.16 (12)
O1—C3—C4—O2 −3.77 (19) C4—C5—C6—C1 1.1 (2)
C2—C3—C4—O2 177.08 (13) O3—C5—C6—C10 1.3 (2)
O1—C3—C4—C5 177.38 (12) C4—C5—C6—C10 −175.69 (12)
C2—C3—C4—C5 −1.8 (2) N1—C10—C6—C1 0.1 (2)
C9—O3—C5—C4 −87.17 (15) N1—C10—C6—C5 176.74 (13)
C9—O3—C5—C6 95.76 (15) C6—C10—N1—N1i −178.28 (13)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7B···O3ii 0.98 2.54 3.3620 (18) 142
C8—H8B···O1iii 0.98 2.62 3.3735 (19) 134
C8—H8B···O2iii 0.98 2.62 3.5711 (18) 164

Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5339).

References

  1. Akbar Ali, M., Abu Bakar, J. H., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron, 27, 71–79.
  2. Bruker (1998). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chan, M.-H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.
  4. Ji, N.-N., Shi, A.-Q., Zhao, R.-G., Zheng, Z.-B. & Li, Z.-F. (2010). Bull. Korean Chem. Soc.31, 881–886.
  5. Praefcke, K., Kohne, B., Guendogan, B., Singer, D. & Demus, D. (1991). Mol. Cryst. Liq. Cryst.198, 393–405.
  6. Rudorf, W.-D. (2007). J. Sulfur Chem.28, 295–339.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003518X/bt5339sup1.cif

e-66-o2557-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003518X/bt5339Isup2.hkl

e-66-o2557-Isup2.hkl (108KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES