Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 11;66(Pt 10):m1249–m1250. doi: 10.1107/S1600536810035919

Aqua­{μ-N-[3-(dimethyl­amino)­prop­yl]-N′-(2-oxidophen­yl)oxamidato(3−)}(1,10-phenanthroline)dicopper(II) nitrate

Zhongjun Gao a,*, Yanbao Wang a
PMCID: PMC2983269  PMID: 21587399

Abstract

The title complex, [Cu2(C13H16N3O3)(C12H8N2)(H2O)]NO3, consists of a nitrate ion and a binuclear CuII unit in which the oxamide ligand has a cis geometry, is fully deprotonated and acts in a bidentate fashion to one CuII atom and in a tetradentate fashion to the other CuII atom. The CuII atom coordination geometries are distorted square-planar and distorted square-pyramidal. In the crystal structure, binuclear complexes and nitrate ions are connected by classical O—H⋯O and non-classical C—H⋯O hydrogen bonds into a three-dimensional framework. The alkyl chains of the anion are equally disorded over two positions.

Related literature

For background to oxamide-bridged transition metal complexes, see: Kou et al. (1999); Ojima & Nonoyama (1988). For a related structure, see: Wang et al. (2003).graphic file with name e-66-m1249-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C13H16N3O3)(C12H8N2)(H2O)]NO3

  • M r = 649.60

  • Triclinic, Inline graphic

  • a = 10.543 (2) Å

  • b = 11.070 (2) Å

  • c = 11.404 (2) Å

  • α = 89.88 (3)°

  • β = 82.28 (3)°

  • γ = 78.24 (3)°

  • V = 1290.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 296 K

  • 0.56 × 0.51 × 0.46 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.448, T max = 0.508

  • 12596 measured reflections

  • 5984 independent reflections

  • 4281 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.129

  • S = 1.00

  • 5984 reflections

  • 397 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035919/jj2053sup1.cif

e-66-m1249-sup1.cif (30.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035919/jj2053Isup2.hkl

e-66-m1249-Isup2.hkl (292.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu2—O2 1.938 (2)
Cu2—O3 1.967 (2)
Cu2—N5 1.986 (3)
Cu2—N4 1.998 (3)
Cu2—O4 2.275 (2)
Cu1—N1 1.924 (3)
Cu1—O1 1.950 (2)
Cu1—N2 1.976 (2)
Cu1—N3 2.007 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.91 1.84 2.745 (3) 172
O4—H4B⋯O5 0.89 1.97 2.839 (5) 164
C19—H19⋯O4ii 0.93 2.51 3.355 (5) 152
C21—H21⋯O5ii 0.93 2.53 3.437 (7) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge the financial support of the Science Foundation of Shandong.

supplementary crystallographic information

Comment

Much research effort has been dedicated to studying oxamide-bridged transition metal complexes because of their bioactivities and the versatile bridging function (Kou et al., 1999; Ojima & Nonoyama, 1988).

The title compound, C25H25N6O4Cu2+, NO3-is a binuclear copper(II) complex and the structure is similar to that seen previously in a resemble compound (Wang et al., 2003)(Fig. 1). In the dinuclear cation, the oxalate groups bridge the two copper(II) ions. The separation of copper atoms is 5.192 (2) Å. The Cu-atom coordination geometries are regarded as distorted square and square pyramid, respectively. The oxamide ligand has a cis geometry, is fully deprotonated and acts in a hexadentate fashion. Cu—O and Cu—N bond lengths are shown in Table 1. For Cu1, the four atoms (O1, N1, N2, N3) from the oxalate groups build the square plane. The average value of the copper to N1, N2 and N3 bond distance is 1.969 Å. For Cu2, the donors on the oxamide (O2, O3) and the phen (N4, N5) offer the basal plane and the oxygen of a water molecule occupies an apical position with a bond length of 2.275 (2) Å. The maximum displacement from the least-square plane is 0.0055 (2) Å for O2 and the Cu2 atom lies 0.1282 (8) Å out of this plane.

In the crystal, the neutral binuclear complexes and nitrate ions are connected by classcial O—H···O and non-classical C—H···O hydrogen bonds into a three-dimensional framework (Fig. 2, Table 2).

Experimental

A water solution (10ml) of Cu(NO3)2.3H2O (0.484g, 2mmol) was added slowly into a ethanol solution (10ml) containing N-benzyl-N'-(3-amino-3-dimethylpropyl)oxamide (1mmol, 0.262g) and sodium ethoxide (0.204 g, 3mmol). The mixture was stirred quickly for 2h, then an aqueous solution (5ml) of 1,10-phenanthroline (0.180 g, 1mmol) was added dropwise into the mixture. The reaction solution was heated at 303K with stirring for 12h. The resulting solution was filtered and the filtrate was kept at room temperature. Green crystals suitable for X-ray analysis were obtained from the filtrate by slow evaporation for about three weeks. Yield, 69%, analysis, calculated for C25H26N6O7Cu2: C 46.22, H, 26.21; N 12.94%; found: C 46.26, H 26.29, N, 12.96%.

Refinement

H atoms were positioned geometrically [0.93 (CH), 0.97 (CH2), 0.96 (CH3) and 0.84 (OH)Å] and constrained to ride on their parent atoms with Uiso(H) =1.2(1.5 for methyl and hydroxy O)Ueq(C/N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of C25H25N6O4Cu2+, NO3- with 30% displacement ellipsoids. Symmetry code as in Table 2.

Fig. 2.

Fig. 2.

Packing diagram for C25H25N6O4Cu2+, NO3-. The O—H···O and C—H···O hydrogen bonds are shown by the dashed lines.

Crystal data

[Cu2(C13H16N3O3)(C12H8N2)(H2O)]NO3 Z = 2
Mr = 649.60 F(000) = 664
Triclinic, P1 Dx = 1.671 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.543 (2) Å Cell parameters from 3568 reflections
b = 11.070 (2) Å θ = 2.5–26.1°
c = 11.404 (2) Å µ = 1.71 mm1
α = 89.88 (3)° T = 296 K
β = 82.28 (3)° Block, green
γ = 78.24 (3)° 0.56 × 0.51 × 0.46 mm
V = 1290.7 (4) Å3

Data collection

Bruker SMART CCD diffractometer 5984 independent reflections
Radiation source: fine-focus sealed tube 4281 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 27.7°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→13
Tmin = 0.448, Tmax = 0.507 k = −14→14
12596 measured reflections l = −14→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.4001P] where P = (Fo2 + 2Fc2)/3
5984 reflections (Δ/σ)max = 0.015
397 parameters Δρmax = 0.62 e Å3
24 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu2 0.40128 (4) 0.40843 (4) 0.11469 (3) 0.04961 (14)
Cu1 0.71425 (4) 0.40018 (3) 0.43073 (3) 0.04054 (13)
O1 0.7295 (2) 0.5469 (2) 0.5175 (2) 0.0502 (6)
O2 0.4700 (2) 0.5278 (2) 0.1980 (2) 0.0492 (5)
O3 0.5323 (2) 0.2830 (2) 0.1794 (2) 0.0511 (6)
O4 0.2339 (2) 0.3919 (2) 0.2581 (2) 0.0543 (6)
H4A 0.2454 0.4047 0.3343 0.081*
H4B 0.2222 0.3144 0.2533 0.081*
N1 0.6041 (2) 0.5181 (2) 0.3446 (2) 0.0405 (6)
N2 0.6665 (3) 0.2809 (2) 0.3246 (2) 0.0425 (6)
N3 0.8428 (3) 0.2807 (2) 0.5112 (2) 0.0502 (7)
N5 0.3419 (3) 0.2952 (3) 0.0091 (3) 0.0575 (8)
N4 0.2882 (3) 0.5395 (3) 0.0326 (2) 0.0563 (8)
C1 0.6697 (3) 0.6510 (3) 0.4709 (3) 0.0421 (7)
C2 0.5972 (3) 0.6414 (3) 0.3765 (3) 0.0395 (6)
C3 0.5358 (3) 0.7454 (3) 0.3233 (3) 0.0463 (7)
H3 0.4893 0.7376 0.2609 0.056*
C4 0.5437 (3) 0.8605 (3) 0.3631 (3) 0.0553 (9)
H4 0.5030 0.9309 0.3276 0.066*
C5 0.6123 (3) 0.8709 (3) 0.4561 (3) 0.0557 (9)
H5 0.6157 0.9490 0.4839 0.067*
C6 0.6760 (3) 0.7680 (3) 0.5090 (3) 0.0506 (8)
H6 0.7233 0.7774 0.5704 0.061*
C8 0.5473 (3) 0.4728 (3) 0.2668 (3) 0.0404 (7)
C7 0.5848 (3) 0.3321 (3) 0.2560 (3) 0.0411 (7)
C9 0.7093 (4) 0.1462 (3) 0.3177 (3) 0.0552 (9)
H9A 0.7229 0.1188 0.2354 0.066* 0.50
H9B 0.6408 0.1092 0.3590 0.066* 0.50
H9C 0.7643 0.1220 0.2429 0.066* 0.50
H9D 0.6339 0.1081 0.3211 0.066* 0.50
C10A 0.8329 (7) 0.1021 (9) 0.3701 (7) 0.052 (2) 0.50
H10A 0.9037 0.1332 0.3250 0.063* 0.50
H10B 0.8554 0.0127 0.3657 0.063* 0.50
C11A 0.8168 (7) 0.1460 (5) 0.4988 (5) 0.0425 (14) 0.50
H11A 0.8772 0.0894 0.5405 0.051* 0.50
H11B 0.7287 0.1446 0.5357 0.051* 0.50
C12A 0.808 (2) 0.3076 (12) 0.6411 (7) 0.045 (3) 0.50
H12A 0.7188 0.3022 0.6651 0.067* 0.50
H12B 0.8195 0.3893 0.6585 0.067* 0.50
H12C 0.8642 0.2487 0.6832 0.067* 0.50
C13A 0.9744 (7) 0.2859 (10) 0.4700 (11) 0.070 (3) 0.50
H13A 0.9925 0.2667 0.3866 0.104* 0.50
H13B 1.0317 0.2271 0.5110 0.104* 0.50
H13C 0.9881 0.3673 0.4843 0.104* 0.50
C10B 0.7860 (8) 0.1011 (9) 0.4207 (9) 0.065 (3) 0.50
H10C 0.7232 0.1080 0.4920 0.078* 0.50
H10D 0.8228 0.0139 0.4062 0.078* 0.50
C11B 0.8951 (8) 0.1617 (7) 0.4474 (8) 0.070 (2) 0.50
H11C 0.9508 0.1075 0.4950 0.084* 0.50
H11D 0.9478 0.1750 0.3739 0.084* 0.50
C12B 0.807 (3) 0.2723 (13) 0.6375 (8) 0.051 (3) 0.50
H12D 0.7741 0.3537 0.6717 0.077* 0.50
H12E 0.8822 0.2333 0.6724 0.077* 0.50
H12F 0.7402 0.2244 0.6520 0.077* 0.50
C13B 0.9643 (8) 0.3396 (9) 0.4984 (10) 0.062 (3) 0.50
H13D 0.9932 0.3489 0.4160 0.093* 0.50
H13E 1.0330 0.2874 0.5333 0.093* 0.50
H13F 0.9424 0.4191 0.5379 0.093* 0.50
C14 0.3686 (4) 0.1724 (4) 0.0033 (4) 0.0696 (11)
H14 0.4312 0.1293 0.0466 0.083*
C15 0.3054 (5) 0.1069 (5) −0.0656 (4) 0.0860 (14)
H15 0.3252 0.0211 −0.0684 0.103*
C16 0.2135 (5) 0.1706 (6) −0.1293 (4) 0.0894 (16)
H16 0.1708 0.1271 −0.1755 0.107*
C17 0.1827 (4) 0.2987 (5) −0.1264 (3) 0.0746 (13)
C18 0.0877 (4) 0.3755 (7) −0.1880 (4) 0.0936 (19)
H18 0.0434 0.3380 −0.2379 0.112*
C19 0.0609 (4) 0.4953 (7) −0.1771 (4) 0.0887 (17)
H19 −0.0022 0.5402 −0.2188 0.106*
C20 0.1263 (4) 0.5612 (5) −0.1017 (3) 0.0718 (13)
C21 0.1012 (4) 0.6888 (5) −0.0819 (4) 0.0835 (15)
H21 0.0387 0.7396 −0.1201 0.100*
C22 0.1681 (4) 0.7399 (5) −0.0064 (4) 0.0789 (13)
H22 0.1513 0.8248 0.0077 0.095*
C23 0.2617 (4) 0.6610 (4) 0.0485 (4) 0.0669 (11)
H23 0.3079 0.6953 0.0989 0.080*
C24 0.2208 (3) 0.4897 (4) −0.0416 (3) 0.0608 (10)
C25 0.2498 (3) 0.3585 (4) −0.0538 (3) 0.0597 (10)
N6 0.1811 (5) 0.0538 (5) 0.2109 (4) 0.0969 (13)
O5 0.1519 (4) 0.1668 (4) 0.2262 (4) 0.1159 (13)
O6 0.2803 (6) −0.0114 (7) 0.2088 (7) 0.234 (4)
O7 0.0940 (7) 0.0076 (5) 0.1804 (5) 0.172 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu2 0.0456 (2) 0.0637 (3) 0.0430 (2) −0.01150 (19) −0.01790 (17) −0.00329 (19)
Cu1 0.0434 (2) 0.0357 (2) 0.0437 (2) −0.00387 (15) −0.01655 (16) −0.00239 (15)
O1 0.0609 (14) 0.0401 (12) 0.0532 (13) −0.0054 (10) −0.0281 (11) −0.0036 (10)
O2 0.0479 (12) 0.0504 (13) 0.0528 (13) −0.0077 (10) −0.0228 (10) 0.0007 (10)
O3 0.0535 (13) 0.0517 (14) 0.0529 (14) −0.0131 (11) −0.0210 (11) −0.0075 (11)
O4 0.0598 (14) 0.0626 (15) 0.0434 (12) −0.0153 (12) −0.0127 (10) −0.0018 (11)
N1 0.0398 (13) 0.0376 (13) 0.0459 (15) −0.0055 (10) −0.0163 (11) 0.0016 (11)
N2 0.0496 (15) 0.0349 (13) 0.0462 (15) −0.0094 (11) −0.0168 (12) −0.0026 (11)
N3 0.0547 (16) 0.0449 (15) 0.0490 (16) 0.0026 (12) −0.0199 (13) −0.0062 (12)
N5 0.0494 (16) 0.083 (2) 0.0421 (16) −0.0157 (15) −0.0117 (13) −0.0098 (15)
N4 0.0475 (16) 0.084 (2) 0.0384 (15) −0.0123 (15) −0.0112 (12) 0.0075 (15)
C1 0.0408 (16) 0.0395 (16) 0.0465 (17) −0.0064 (13) −0.0102 (13) −0.0017 (13)
C2 0.0394 (15) 0.0363 (15) 0.0434 (17) −0.0076 (12) −0.0081 (13) −0.0011 (12)
C3 0.0425 (16) 0.0457 (18) 0.0501 (19) −0.0043 (14) −0.0120 (14) 0.0023 (14)
C4 0.056 (2) 0.0373 (17) 0.069 (2) −0.0013 (15) −0.0087 (17) 0.0053 (16)
C5 0.057 (2) 0.0368 (17) 0.072 (2) −0.0082 (15) −0.0089 (18) −0.0062 (16)
C6 0.0534 (19) 0.0430 (18) 0.058 (2) −0.0090 (15) −0.0174 (16) −0.0075 (15)
C8 0.0361 (15) 0.0442 (17) 0.0433 (17) −0.0108 (12) −0.0101 (12) 0.0020 (13)
C7 0.0400 (15) 0.0436 (17) 0.0420 (17) −0.0124 (13) −0.0079 (13) −0.0021 (13)
C9 0.070 (2) 0.0364 (17) 0.062 (2) −0.0106 (16) −0.0221 (18) −0.0026 (15)
C10A 0.039 (4) 0.037 (4) 0.079 (6) −0.004 (4) −0.007 (4) −0.005 (4)
C11A 0.037 (3) 0.039 (3) 0.052 (4) −0.002 (3) −0.016 (3) 0.006 (3)
C12A 0.052 (5) 0.035 (8) 0.048 (5) −0.006 (6) −0.011 (4) 0.007 (3)
C13A 0.039 (4) 0.079 (7) 0.078 (8) 0.011 (4) 0.002 (4) −0.019 (5)
C10B 0.041 (5) 0.039 (4) 0.118 (9) −0.007 (4) −0.023 (5) 0.011 (6)
C11B 0.061 (5) 0.066 (5) 0.078 (6) 0.003 (4) −0.015 (4) −0.020 (4)
C12B 0.063 (6) 0.032 (8) 0.063 (6) −0.014 (7) −0.016 (4) 0.008 (4)
C13B 0.039 (4) 0.082 (7) 0.050 (6) 0.016 (4) 0.008 (3) 0.001 (5)
C14 0.068 (2) 0.085 (3) 0.059 (2) −0.019 (2) −0.0169 (19) −0.014 (2)
C15 0.087 (3) 0.103 (4) 0.073 (3) −0.029 (3) −0.015 (3) −0.029 (3)
C16 0.084 (3) 0.136 (5) 0.059 (3) −0.046 (3) −0.012 (2) −0.031 (3)
C17 0.054 (2) 0.133 (4) 0.040 (2) −0.027 (2) −0.0074 (17) −0.017 (2)
C18 0.053 (2) 0.192 (6) 0.041 (2) −0.032 (3) −0.0163 (19) −0.016 (3)
C19 0.051 (2) 0.170 (6) 0.044 (2) −0.014 (3) −0.0178 (18) 0.008 (3)
C20 0.047 (2) 0.126 (4) 0.038 (2) −0.009 (2) −0.0063 (15) 0.016 (2)
C21 0.058 (2) 0.125 (4) 0.057 (3) 0.004 (3) −0.007 (2) 0.036 (3)
C22 0.068 (3) 0.098 (4) 0.064 (3) −0.005 (2) −0.005 (2) 0.026 (2)
C23 0.064 (2) 0.081 (3) 0.054 (2) −0.011 (2) −0.0093 (18) 0.014 (2)
C24 0.0444 (18) 0.106 (3) 0.0308 (17) −0.0124 (19) −0.0050 (14) 0.0052 (18)
C25 0.0413 (18) 0.106 (3) 0.0328 (17) −0.0168 (19) −0.0052 (14) −0.0071 (18)
N6 0.102 (4) 0.099 (3) 0.088 (3) −0.015 (3) −0.013 (3) 0.020 (3)
O5 0.126 (3) 0.112 (3) 0.111 (3) −0.044 (3) 0.009 (2) −0.024 (3)
O6 0.127 (4) 0.271 (7) 0.272 (7) 0.036 (4) −0.028 (5) 0.155 (6)
O7 0.185 (5) 0.153 (5) 0.188 (5) −0.061 (4) −0.023 (4) −0.042 (4)

Geometric parameters (Å, °)

Cu2—O2 1.938 (2) C10A—H10A 0.9700
Cu2—O3 1.967 (2) C10A—H10B 0.9700
Cu2—N5 1.986 (3) C11A—H11A 0.9700
Cu2—N4 1.998 (3) C11A—H11B 0.9700
Cu2—O4 2.275 (2) C12A—H12A 0.9600
Cu1—N1 1.924 (3) C12A—H12B 0.9600
Cu1—O1 1.950 (2) C12A—H12C 0.9600
Cu1—N2 1.976 (2) C13A—H13A 0.9600
Cu1—N3 2.007 (3) C13A—H13B 0.9600
O1—C1 1.341 (4) C13A—H13C 0.9600
O2—C8 1.272 (4) C10B—C11B 1.508 (8)
O3—C7 1.273 (4) C10B—H10C 0.9700
O4—H4A 0.9085 C10B—H10D 0.9700
O4—H4B 0.8938 C11B—H11C 0.9700
N1—C8 1.289 (4) C11B—H11D 0.9700
N1—C2 1.398 (4) C12B—H12D 0.9600
N2—C7 1.286 (4) C12B—H12E 0.9600
N2—C9 1.467 (4) C12B—H12F 0.9600
N3—C13A 1.416 (7) C13B—H13D 0.9600
N3—C12B 1.446 (8) C13B—H13E 0.9600
N3—C11B 1.472 (6) C13B—H13F 0.9600
N3—C12A 1.493 (8) C14—C15 1.388 (5)
N3—C13B 1.542 (8) C14—H14 0.9300
N3—C11A 1.580 (6) C15—C16 1.368 (7)
N5—C14 1.331 (5) C15—H15 0.9300
N5—C25 1.362 (5) C16—C17 1.388 (7)
N4—C23 1.325 (5) C16—H16 0.9300
N4—C24 1.359 (5) C17—C25 1.406 (5)
C1—C6 1.385 (4) C17—C18 1.435 (7)
C1—C2 1.418 (4) C18—C19 1.301 (8)
C2—C3 1.383 (4) C18—H18 0.9300
C3—C4 1.376 (4) C19—C20 1.454 (7)
C3—H3 0.9300 C19—H19 0.9300
C4—C5 1.379 (5) C20—C21 1.396 (7)
C4—H4 0.9300 C20—C24 1.396 (5)
C5—C6 1.381 (5) C21—C22 1.374 (7)
C5—H5 0.9300 C21—H21 0.9300
C6—H6 0.9300 C22—C23 1.394 (6)
C8—C7 1.528 (4) C22—H22 0.9300
C9—C10A 1.497 (7) C23—H23 0.9300
C9—C10B 1.539 (8) C24—C25 1.425 (6)
C9—H9A 0.9700 N6—O6 1.140 (6)
C9—H9B 0.9700 N6—O7 1.227 (6)
C9—H9C 0.9700 N6—O5 1.232 (6)
C9—H9D 0.9700 N6—O5 1.232 (6)
C10A—C11A 1.523 (8)
O2—Cu2—O3 85.77 (9) H9A—C9—H9D 82.9
O2—Cu2—N5 172.13 (11) H9C—C9—H9D 108.1
O3—Cu2—N5 96.96 (12) C9—C10A—C11A 110.7 (5)
O2—Cu2—N4 92.76 (12) C9—C10A—H10A 109.5
O3—Cu2—N4 172.21 (10) C11A—C10A—H10A 109.5
N5—Cu2—N4 83.54 (14) C9—C10A—H10B 109.5
O2—Cu2—O4 96.91 (9) C11A—C10A—H10B 109.5
O3—Cu2—O4 95.19 (10) H10A—C10A—H10B 108.1
N5—Cu2—O4 90.21 (11) C10A—C11A—N3 112.4 (5)
N4—Cu2—O4 92.58 (10) C10A—C11A—H11A 109.1
N1—Cu1—O1 83.22 (10) N3—C11A—H11A 109.1
N1—Cu1—N2 82.68 (11) C10A—C11A—H11B 109.1
O1—Cu1—N2 165.80 (10) N3—C11A—H11B 109.1
N1—Cu1—N3 174.91 (11) H11A—C11A—H11B 107.9
O1—Cu1—N3 96.11 (10) N3—C12A—H12A 109.5
N2—Cu1—N3 98.09 (11) N3—C12A—H12B 109.5
C1—O1—Cu1 111.94 (19) H12A—C12A—H12B 109.5
C8—O2—Cu2 110.0 (2) N3—C12A—H12C 109.5
C7—O3—Cu2 110.2 (2) H12A—C12A—H12C 109.5
Cu2—O4—H4A 117.3 H12B—C12A—H12C 109.5
Cu2—O4—H4B 106.6 N3—C13A—H13A 109.5
H4A—O4—H4B 106.1 N3—C13A—H13B 109.5
C8—N1—C2 129.5 (3) H13A—C13A—H13B 109.5
C8—N1—Cu1 116.0 (2) N3—C13A—H13C 109.5
C2—N1—Cu1 114.5 (2) H13A—C13A—H13C 109.5
C7—N2—C9 118.3 (3) H13B—C13A—H13C 109.5
C7—N2—Cu1 113.2 (2) C11B—C10B—C9 120.0 (7)
C9—N2—Cu1 128.5 (2) C11B—C10B—H10C 107.3
C13A—N3—C12B 117.5 (12) C9—C10B—H10C 107.3
C13A—N3—C11B 76.3 (5) C11B—C10B—H10D 107.3
C12B—N3—C11B 115.1 (7) C9—C10B—H10D 107.3
C13A—N3—C12A 112.4 (10) H10C—C10B—H10D 106.9
C11B—N3—C12A 129.6 (7) N3—C11B—C10B 111.0 (7)
C12B—N3—C13B 104.9 (10) N3—C11B—H11C 109.4
C11B—N3—C13B 101.5 (4) C10B—C11B—H11C 109.4
C12A—N3—C13B 94.9 (9) N3—C11B—H11D 109.4
C13A—N3—C11A 111.8 (5) C10B—C11B—H11D 109.4
C12B—N3—C11A 87.3 (6) H11C—C11B—H11D 108.0
C12A—N3—C11A 102.6 (5) N3—C12B—H12D 109.5
C13B—N3—C11A 135.8 (4) N3—C12B—H12E 109.5
C13A—N3—Cu1 112.8 (6) H12D—C12B—H12E 109.5
C12B—N3—Cu1 114.8 (10) N3—C12B—H12F 109.5
C11B—N3—Cu1 114.9 (4) H12D—C12B—H12F 109.5
C12A—N3—Cu1 106.9 (9) H12E—C12B—H12F 109.5
C13B—N3—Cu1 103.2 (5) N3—C13B—H13D 109.5
C11A—N3—Cu1 109.7 (3) N3—C13B—H13E 109.5
C14—N5—C25 119.3 (3) H13D—C13B—H13E 109.5
C14—N5—Cu2 129.2 (3) N3—C13B—H13F 109.5
C25—N5—Cu2 111.0 (3) H13D—C13B—H13F 109.5
C23—N4—C24 118.1 (4) H13E—C13B—H13F 109.5
C23—N4—Cu2 130.2 (3) N5—C14—C15 121.7 (4)
C24—N4—Cu2 111.3 (3) N5—C14—H14 119.2
O1—C1—C6 123.6 (3) C15—C14—H14 119.2
O1—C1—C2 118.6 (3) C16—C15—C14 119.0 (5)
C6—C1—C2 117.8 (3) C16—C15—H15 120.5
C3—C2—N1 127.4 (3) C14—C15—H15 120.5
C3—C2—C1 121.2 (3) C15—C16—C17 121.4 (4)
N1—C2—C1 111.4 (3) C15—C16—H16 119.3
C4—C3—C2 119.6 (3) C17—C16—H16 119.3
C4—C3—H3 120.2 C16—C17—C25 116.4 (4)
C2—C3—H3 120.2 C16—C17—C18 126.5 (5)
C3—C4—C5 119.7 (3) C25—C17—C18 117.1 (5)
C3—C4—H4 120.2 C19—C18—C17 122.8 (5)
C5—C4—H4 120.2 C19—C18—H18 118.6
C4—C5—C6 121.4 (3) C17—C18—H18 118.6
C4—C5—H5 119.3 C18—C19—C20 122.1 (5)
C6—C5—H5 119.3 C18—C19—H19 118.9
C5—C6—C1 120.2 (3) C20—C19—H19 118.9
C5—C6—H6 119.9 C21—C20—C24 117.1 (4)
C1—C6—H6 119.9 C21—C20—C19 126.1 (5)
O2—C8—N1 129.6 (3) C24—C20—C19 116.8 (5)
O2—C8—C7 117.3 (3) C22—C21—C20 120.5 (4)
N1—C8—C7 113.0 (3) C22—C21—H21 119.7
O3—C7—N2 129.5 (3) C20—C21—H21 119.7
O3—C7—C8 115.4 (3) C21—C22—C23 118.1 (5)
N2—C7—C8 115.1 (3) C21—C22—H22 121.0
N2—C9—C10A 112.8 (4) C23—C22—H22 121.0
N2—C9—C10B 110.3 (5) N4—C23—C22 123.4 (4)
N2—C9—H9A 109.0 N4—C23—H23 118.3
C10A—C9—H9A 109.0 C22—C23—H23 118.3
C10B—C9—H9A 131.0 N4—C24—C20 122.8 (4)
N2—C9—H9B 109.0 N4—C24—C25 116.4 (3)
C10A—C9—H9B 109.0 C20—C24—C25 120.9 (4)
C10B—C9—H9B 85.6 N5—C25—C17 122.3 (4)
H9A—C9—H9B 107.8 N5—C25—C24 117.4 (3)
N2—C9—H9C 109.4 C17—C25—C24 120.3 (4)
C10A—C9—H9C 84.3 O6—N6—O7 115.5 (7)
C10B—C9—H9C 109.7 O6—N6—O5 129.4 (7)
H9B—C9—H9C 129.6 O7—N6—O5 114.5 (6)
N2—C9—H9D 109.7 O6—N6—O5 129.4 (7)
C10A—C9—H9D 128.2 O7—N6—O5 114.5 (6)
C10B—C9—H9D 109.5
N1—Cu1—O1—C1 −5.2 (2) Cu1—N2—C7—O3 −178.5 (3)
N2—Cu1—O1—C1 −12.1 (5) C9—N2—C7—C8 −178.8 (3)
N3—Cu1—O1—C1 169.7 (2) Cu1—N2—C7—C8 2.6 (3)
O3—Cu2—O2—C8 −10.2 (2) O2—C8—C7—O3 −1.2 (4)
N4—Cu2—O2—C8 177.5 (2) N1—C8—C7—O3 −179.3 (2)
O4—Cu2—O2—C8 84.6 (2) O2—C8—C7—N2 177.8 (2)
O2—Cu2—O3—C7 9.6 (2) N1—C8—C7—N2 −0.3 (4)
N5—Cu2—O3—C7 −177.8 (2) C7—N2—C9—C10A 161.3 (4)
O4—Cu2—O3—C7 −87.0 (2) Cu1—N2—C9—C10A −20.4 (5)
O1—Cu1—N1—C8 −175.3 (2) C7—N2—C9—C10B −169.8 (4)
N2—Cu1—N1—C8 3.0 (2) Cu1—N2—C9—C10B 8.5 (6)
O1—Cu1—N1—C2 4.5 (2) N2—C9—C10A—C11A 57.4 (8)
N2—Cu1—N1—C2 −177.2 (2) C10B—C9—C10A—C11A −33.0 (10)
N1—Cu1—N2—C7 −3.1 (2) C9—C10A—C11A—N3 −84.7 (7)
O1—Cu1—N2—C7 3.8 (6) C13A—N3—C11A—C10A −65.0 (8)
N3—Cu1—N2—C7 −178.0 (2) C12B—N3—C11A—C10A 176.4 (12)
N1—Cu1—N2—C9 178.6 (3) C11B—N3—C11A—C10A −44.5 (7)
O1—Cu1—N2—C9 −174.5 (4) C12A—N3—C11A—C10A 174.4 (11)
N3—Cu1—N2—C9 3.6 (3) C13B—N3—C11A—C10A −74.9 (9)
O1—Cu1—N3—C13A −76.3 (5) Cu1—N3—C11A—C10A 61.0 (5)
N2—Cu1—N3—C13A 104.2 (5) N2—C9—C10B—C11B −49.2 (10)
O1—Cu1—N3—C12B 62.0 (8) C10A—C9—C10B—C11B 51.2 (10)
N2—Cu1—N3—C12B −117.6 (7) C13A—N3—C11B—C10B −163.7 (9)
O1—Cu1—N3—C11B −161.2 (4) C12B—N3—C11B—C10B 82.0 (13)
N2—Cu1—N3—C11B 19.3 (4) C12A—N3—C11B—C10B 88.3 (14)
O1—Cu1—N3—C12A 47.8 (7) C13B—N3—C11B—C10B −165.3 (8)
N2—Cu1—N3—C12A −131.8 (7) C11A—N3—C11B—C10B 35.8 (6)
O1—Cu1—N3—C13B −51.6 (4) Cu1—N3—C11B—C10B −54.7 (8)
N2—Cu1—N3—C13B 128.9 (4) C9—C10B—C11B—N3 77.8 (11)
O1—Cu1—N3—C11A 158.3 (3) C25—N5—C14—C15 0.2 (6)
N2—Cu1—N3—C11A −21.2 (3) Cu2—N5—C14—C15 171.6 (3)
O3—Cu2—N5—C14 10.2 (3) N5—C14—C15—C16 0.1 (7)
N4—Cu2—N5—C14 −177.6 (3) C14—C15—C16—C17 0.1 (7)
O4—Cu2—N5—C14 −85.0 (3) C15—C16—C17—C25 −0.7 (6)
O3—Cu2—N5—C25 −177.9 (2) C15—C16—C17—C18 −179.3 (4)
N4—Cu2—N5—C25 −5.7 (2) C16—C17—C18—C19 177.3 (5)
O4—Cu2—N5—C25 86.9 (2) C25—C17—C18—C19 −1.4 (7)
O2—Cu2—N4—C23 −8.5 (3) C17—C18—C19—C20 0.5 (8)
N5—Cu2—N4—C23 178.5 (3) C18—C19—C20—C21 −177.9 (4)
O4—Cu2—N4—C23 88.6 (3) C18—C19—C20—C24 0.4 (6)
O2—Cu2—N4—C24 178.7 (2) C24—C20—C21—C22 0.3 (6)
N5—Cu2—N4—C24 5.7 (2) C19—C20—C21—C22 178.6 (4)
O4—Cu2—N4—C24 −84.2 (2) C20—C21—C22—C23 0.5 (6)
Cu1—O1—C1—C6 −173.9 (3) C24—N4—C23—C22 0.3 (5)
Cu1—O1—C1—C2 5.2 (3) Cu2—N4—C23—C22 −172.1 (3)
C8—N1—C2—C3 −6.4 (5) C21—C22—C23—N4 −0.8 (6)
Cu1—N1—C2—C3 173.9 (3) C23—N4—C24—C20 0.5 (5)
C8—N1—C2—C1 176.8 (3) Cu2—N4—C24—C20 174.3 (3)
Cu1—N1—C2—C1 −2.9 (3) C23—N4—C24—C25 −178.4 (3)
O1—C1—C2—C3 −178.6 (3) Cu2—N4—C24—C25 −4.7 (4)
C6—C1—C2—C3 0.6 (4) C21—C20—C24—N4 −0.8 (5)
O1—C1—C2—N1 −1.7 (4) C19—C20—C24—N4 −179.3 (3)
C6—C1—C2—N1 177.5 (3) C21—C20—C24—C25 178.1 (3)
N1—C2—C3—C4 −177.1 (3) C19—C20—C24—C25 −0.4 (5)
C1—C2—C3—C4 −0.7 (5) C14—N5—C25—C17 −0.9 (5)
C2—C3—C4—C5 −0.3 (5) Cu2—N5—C25—C17 −173.7 (3)
C3—C4—C5—C6 1.4 (5) C14—N5—C25—C24 177.7 (3)
C4—C5—C6—C1 −1.5 (5) Cu2—N5—C25—C24 4.9 (4)
O1—C1—C6—C5 179.6 (3) C16—C17—C25—N5 1.1 (5)
C2—C1—C6—C5 0.5 (5) C18—C17—C25—N5 179.9 (3)
Cu2—O2—C8—N1 −173.3 (3) C16—C17—C25—C24 −177.5 (4)
Cu2—O2—C8—C7 9.0 (3) C18—C17—C25—C24 1.3 (5)
C2—N1—C8—O2 0.2 (5) N4—C24—C25—N5 −0.1 (5)
Cu1—N1—C8—O2 179.9 (3) C20—C24—C25—N5 −179.1 (3)
C2—N1—C8—C7 177.9 (3) N4—C24—C25—C17 178.5 (3)
Cu1—N1—C8—C7 −2.4 (3) C20—C24—C25—C17 −0.5 (5)
Cu2—O3—C7—N2 174.0 (3) O6—N6—O5—O5 0.0 (3)
Cu2—O3—C7—C8 −7.2 (3) O7—N6—O5—O5 0.00 (17)
C9—N2—C7—O3 0.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O1i 0.91 1.84 2.745 (3) 172
O4—H4B···O5 0.89 1.97 2.839 (5) 164
C19—H19···O4ii 0.93 2.51 3.355 (5) 152
C21—H21···O5ii 0.93 2.53 3.437 (7) 167

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2053).

References

  1. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kou, H. Z., Zhou, B. C., Gao, S. & Wang, R. J. (1999). Angew. Chem. Int. Ed.42, 3288–3291. [DOI] [PubMed]
  3. Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev.92, 85–92.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Wang, S. B., Yang, G. M., Yu, L. H., Wang, Q. L. & Liao, D. Z. (2003). Transition Met. Chem 28, 632–634.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035919/jj2053sup1.cif

e-66-m1249-sup1.cif (30.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035919/jj2053Isup2.hkl

e-66-m1249-Isup2.hkl (292.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES