Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 18;66(Pt 10):o2593. doi: 10.1107/S1600536810035567

2-Amino-6-(2,4-dichloro­phen­yl)-4-oxo-3,5-diphenyl­cyclo­hex-2-enecarbonitrile

A Jahubar Ali a, S Athimoolam b, S Asath Bahadur c,*, V P Alex Raja d
PMCID: PMC2983276  PMID: 21587572

Abstract

In the title compound, C25H18Cl2N2O, the cyclo­hexene ring has a sofa conformation. All the substituents in the cyclo­hexene ring, except the cyano group (which is axial) occupy equatorial positions. The crystal structure is stabilized through N—H⋯O hydrogen bonds, forming a chain extending along the b axis and through C—H⋯N and C—H⋯Cl inter­actions. It is remarkable that only one of the amino H atoms is involved in hydrogen bonding.

Related literature

For the synthesis of the title compound, see: Rodriguez & Dulcere (1993).graphic file with name e-66-o2593-scheme1.jpg

Experimental

Crystal data

  • C25H18Cl2N2O

  • M r = 433.31

  • Monoclinic, Inline graphic

  • a = 10.8650 (9) Å

  • b = 14.0010 (3) Å

  • c = 14.3021 (6) Å

  • β = 94.697 (10)°

  • V = 2168.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • 18613 measured reflections

  • 3269 independent reflections

  • 2457 reflections with I > 2σ(I)

  • R int = 0.041

  • θmax = 23.7°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.127

  • S = 1.07

  • 3269 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035567/bt5346sup1.cif

e-66-o2593-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035567/bt5346Isup2.hkl

e-66-o2593-Isup2.hkl (157.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.86 1.91 2.759 (3) 171
C33—H33⋯N11ii 0.93 2.72 3.402 (4) 131
C52—H52⋯Cl2iii 0.93 2.97 3.897 (3) 174
C54—H54⋯N11iv 0.93 2.72 3.541 (4) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

SAB sincerely thank the Vice Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. SA thanks the Vice Chancellor of Anna University of Technology, Tirunelveli, for his support and encouragement.

supplementary crystallographic information

Comment

Alkenes undergo co-halogenation reactions to afford bifunctional compounds which serve as potential synthons towards the synthesis of various heterocyclic compounds (Rodriguez & Dulcere, 1993). The regio/stereoselectivity of such addition reactions is governed by various factors, one being structural features of the alkene. We were interested in investigating some of the structure features in the title compound, which may alter the regio/stereoselectivity in addition reactions.

The molecular structure of the title compound is shown in Fig. 1. The cyclohexene ring is in a sofa conformation. Two phenyl rings are oriented with a dihedral angle of 54.8 (1)° to each other. Further, the dichlorophenyl rings are making dihedral angles of 66.7 (1)° and 84.3 (1)° with the phenyl rings of C31/C36 and C51/C56 respectively. The crystal structure is stabilized by intermolecular C—H···N, C—H···Cl and classical N—H···O hydrgeon bonds (Tab. 1). The packing diagram of the title compound is shown in Fig. 2.

A chain C(6) motif extending along the b axis of the unit cell is observed through classical N—H···O hydrogen bond (Fig.3). Centrosymmetric ring R22(16) motif is formed around the crystallographic inversion centre through C—H···Cl bond (Fig. 4). Further, another ring R22(18) motif is observed around crystallographic inversion centre through a C—H···N bond (Fig. 5). These ring motifs are connected along c axis of the unit cell through another C—H···N bond [C54—H54···N11(x, -y - 1/2, z - 1/2)].

Experimental

A mixture of 1,3-diphenylacetone 5 (1 mmol), 2-[(2,4-dichlorophenyl)methylene]malononitrile (1 mmol), and sodium ethoxide (2 mmol) was ground well in a mortar and pestle at ambient temperature for about 15–30 sec. Then water (50–70 ml) was added to the mixture and the product was filtered and washed with water, dried in vacuo and subjected to flash chromatographic purification employing flash silica gel (230–400 mesh) with petroleum ether-ethyl acetate mixture as eluent. The products were further recrystallized from ethanol-ethyl acetate mixture (1:2 v/v).

Refinement

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq (parent atom).

Figures

Fig. 1.

Fig. 1.

The title molecule with the atom numbering scheme. The displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title structure viewed down the a axis. (Cl is shown in green, N in blue, O in red, C in black and H as circle)

Fig. 3.

Fig. 3.

Chain C(6) motif formed through N—H···O hydrogen bonds. H-bond are drawn as dashed lines. (Cl is shown in green, N in blue, O in red, C in black and H in pink)

Fig. 4.

Fig. 4.

Ring R22(16) motif formed through C—H···Cl hydrogen bonds. H-bonds are drawn as dashed lines. (Cl is shown in green, N in blue, O in red, C in black and H in pink)

Fig. 5.

Fig. 5.

Ring R22(18) motif formed through C—H···N hydrogen bonds. H-bonds are drawn as dashed lines. (Cl is shown in green, N in blue, O in red, C in black and H in pink)

Crystal data

C25H18Cl2N2O F(000) = 896
Mr = 433.31 Dx = 1.327 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4312 reflections
a = 10.8650 (9) Å θ = 2.1–20.1°
b = 14.0010 (3) Å µ = 0.32 mm1
c = 14.3021 (6) Å T = 293 K
β = 94.697 (10)° Block, colourless
V = 2168.3 (2) Å3 0.21 × 0.18 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2457 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.041
graphite θmax = 23.7°, θmin = 1.9°
ω scans h = −12→12
18613 measured reflections k = −15→15
3269 independent reflections l = −11→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.6095P] where P = (Fo2 + 2Fc2)/3
3269 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.4045 (2) 0.02803 (16) 0.72770 (17) 0.0330 (6)
H1 −0.4171 0.0873 0.6918 0.040*
C11 −0.3249 (3) 0.04896 (18) 0.8132 (2) 0.0431 (7)
N11 −0.2610 (3) 0.0631 (2) 0.8783 (2) 0.0732 (8)
C2 −0.5291 (2) −0.00720 (16) 0.75371 (18) 0.0368 (6)
N2 −0.6097 (2) 0.06106 (15) 0.76626 (19) 0.0593 (7)
H2A −0.6820 0.0468 0.7825 0.071*
H2B −0.5901 0.1198 0.7582 0.071*
C3 −0.5514 (2) −0.10311 (16) 0.76488 (18) 0.0339 (6)
C31 −0.6736 (2) −0.13559 (16) 0.79292 (18) 0.0349 (6)
C32 −0.7174 (3) −0.1068 (2) 0.8762 (2) 0.0499 (7)
H32 −0.6686 −0.0681 0.9170 0.060*
C33 −0.8332 (3) −0.1348 (2) 0.9000 (2) 0.0570 (8)
H33 −0.8622 −0.1139 0.9559 0.068*
C34 −0.9040 (3) −0.1925 (2) 0.8420 (2) 0.0529 (8)
H34 −0.9823 −0.2105 0.8573 0.064*
C35 −0.8600 (3) −0.2245 (2) 0.7603 (2) 0.0553 (8)
H35 −0.9075 −0.2658 0.7214 0.066*
C36 −0.7462 (2) −0.19578 (18) 0.7358 (2) 0.0450 (7)
H36 −0.7179 −0.2173 0.6800 0.054*
C4 −0.4589 (2) −0.17242 (16) 0.74985 (17) 0.0341 (6)
O1 −0.47452 (17) −0.25760 (11) 0.76898 (14) 0.0518 (5)
C5 −0.3365 (2) −0.14431 (15) 0.71259 (17) 0.0317 (6)
H5 −0.2750 −0.1411 0.7665 0.038*
C51 −0.2942 (2) −0.22077 (16) 0.64729 (17) 0.0326 (6)
C52 −0.3644 (3) −0.2437 (2) 0.56597 (19) 0.0503 (7)
H52 −0.4376 −0.2109 0.5501 0.060*
C53 −0.3271 (3) −0.3151 (2) 0.5073 (2) 0.0637 (9)
H53 −0.3759 −0.3305 0.4529 0.076*
C54 −0.2196 (3) −0.3629 (2) 0.5289 (2) 0.0623 (9)
H54 −0.1945 −0.4104 0.4891 0.075*
C55 −0.1493 (3) −0.3410 (2) 0.6084 (2) 0.0587 (8)
H55 −0.0756 −0.3735 0.6233 0.070*
C56 −0.1864 (2) −0.27073 (18) 0.6676 (2) 0.0442 (7)
H56 −0.1376 −0.2569 0.7224 0.053*
C6 −0.3415 (2) −0.04533 (15) 0.66641 (16) 0.0304 (6)
H6 −0.3942 −0.0514 0.6078 0.037*
C61 −0.2188 (2) −0.00592 (16) 0.64069 (17) 0.0331 (6)
C62 −0.1086 (2) −0.02628 (18) 0.69160 (19) 0.0421 (7)
H62 −0.1091 −0.0689 0.7414 0.051*
C63 0.0019 (3) 0.01363 (19) 0.6720 (2) 0.0495 (7)
H63 0.0744 −0.0020 0.7078 0.059*
C64 0.0039 (2) 0.07653 (18) 0.5992 (2) 0.0447 (7)
C65 −0.1028 (3) 0.09852 (19) 0.54492 (19) 0.0482 (7)
H65 −0.1012 0.1407 0.4948 0.058*
C66 −0.2121 (2) 0.05682 (18) 0.56630 (18) 0.0408 (6)
Cl1 0.14075 (7) 0.13127 (6) 0.57487 (7) 0.0697 (3)
Cl2 −0.34352 (8) 0.08729 (7) 0.49620 (6) 0.0767 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0406 (14) 0.0178 (12) 0.0411 (15) −0.0015 (10) 0.0056 (12) 0.0034 (10)
C11 0.0529 (17) 0.0276 (14) 0.0496 (19) −0.0052 (12) 0.0085 (15) −0.0023 (13)
N11 0.091 (2) 0.0676 (19) 0.0584 (18) −0.0100 (16) −0.0111 (17) −0.0102 (15)
C2 0.0385 (14) 0.0216 (13) 0.0509 (16) −0.0003 (11) 0.0069 (12) −0.0025 (11)
N2 0.0484 (14) 0.0201 (11) 0.113 (2) 0.0014 (10) 0.0288 (14) 0.0001 (12)
C3 0.0390 (14) 0.0188 (12) 0.0445 (15) −0.0007 (10) 0.0072 (11) −0.0015 (10)
C31 0.0398 (14) 0.0173 (12) 0.0481 (16) −0.0011 (10) 0.0057 (12) 0.0014 (11)
C32 0.0500 (17) 0.0442 (16) 0.0569 (19) −0.0121 (13) 0.0128 (14) −0.0087 (14)
C33 0.0554 (18) 0.059 (2) 0.059 (2) −0.0105 (16) 0.0200 (15) −0.0041 (16)
C34 0.0399 (15) 0.0469 (17) 0.073 (2) −0.0075 (13) 0.0103 (15) 0.0120 (15)
C35 0.0475 (17) 0.0484 (18) 0.069 (2) −0.0146 (14) 0.0020 (16) −0.0070 (15)
C36 0.0460 (16) 0.0388 (15) 0.0505 (17) −0.0032 (13) 0.0063 (13) −0.0033 (13)
C4 0.0414 (14) 0.0208 (13) 0.0401 (15) −0.0012 (11) 0.0043 (11) −0.0006 (10)
O1 0.0584 (12) 0.0189 (10) 0.0814 (14) 0.0015 (8) 0.0262 (10) 0.0072 (9)
C5 0.0370 (13) 0.0220 (12) 0.0352 (14) 0.0006 (10) −0.0015 (11) 0.0004 (10)
C51 0.0376 (14) 0.0218 (12) 0.0388 (15) −0.0035 (10) 0.0065 (12) 0.0008 (10)
C52 0.0589 (17) 0.0416 (16) 0.0487 (18) 0.0059 (14) −0.0059 (14) −0.0082 (14)
C53 0.091 (3) 0.057 (2) 0.0431 (18) −0.0098 (19) 0.0013 (17) −0.0123 (15)
C54 0.083 (2) 0.0398 (17) 0.068 (2) −0.0021 (17) 0.0296 (19) −0.0153 (16)
C55 0.0547 (18) 0.0407 (17) 0.083 (2) 0.0088 (14) 0.0164 (17) −0.0076 (16)
C56 0.0407 (15) 0.0344 (15) 0.0573 (18) 0.0007 (12) 0.0024 (13) −0.0041 (13)
C6 0.0348 (13) 0.0208 (12) 0.0354 (14) −0.0018 (10) 0.0008 (11) 0.0017 (10)
C61 0.0396 (14) 0.0224 (12) 0.0376 (15) −0.0010 (10) 0.0054 (11) −0.0021 (11)
C62 0.0411 (15) 0.0352 (14) 0.0498 (17) −0.0036 (12) 0.0021 (13) 0.0074 (12)
C63 0.0398 (15) 0.0422 (16) 0.066 (2) −0.0031 (13) 0.0035 (14) −0.0018 (15)
C64 0.0464 (17) 0.0334 (15) 0.0574 (18) −0.0070 (12) 0.0222 (14) −0.0106 (13)
C65 0.063 (2) 0.0375 (15) 0.0464 (17) −0.0061 (14) 0.0205 (15) 0.0027 (13)
C66 0.0467 (15) 0.0349 (14) 0.0405 (15) −0.0003 (12) 0.0026 (12) 0.0035 (12)
Cl1 0.0587 (5) 0.0600 (5) 0.0957 (7) −0.0188 (4) 0.0390 (4) −0.0138 (4)
Cl2 0.0674 (6) 0.0881 (7) 0.0720 (6) −0.0043 (5) −0.0109 (4) 0.0438 (5)

Geometric parameters (Å, °)

C1—C11 1.469 (4) C5—H5 0.9800
C1—C2 1.516 (3) C51—C56 1.375 (3)
C1—C6 1.546 (3) C51—C52 1.375 (4)
C1—H1 0.9800 C52—C53 1.388 (4)
C11—N11 1.132 (3) C52—H52 0.9300
C2—N2 1.319 (3) C53—C54 1.358 (5)
C2—C3 1.376 (3) C53—H53 0.9300
N2—H2A 0.8600 C54—C55 1.353 (5)
N2—H2B 0.8600 C54—H54 0.9300
C3—C4 1.426 (3) C55—C56 1.380 (4)
C3—C31 1.489 (3) C55—H55 0.9300
C31—C36 1.376 (3) C56—H56 0.9300
C31—C32 1.379 (4) C6—C61 1.516 (3)
C32—C33 1.387 (4) C6—H6 0.9800
C32—H32 0.9300 C61—C62 1.379 (3)
C33—C34 1.353 (4) C61—C66 1.386 (3)
C33—H33 0.9300 C62—C63 1.374 (4)
C34—C35 1.373 (4) C62—H62 0.9300
C34—H34 0.9300 C63—C64 1.365 (4)
C35—C36 1.371 (4) C63—H63 0.9300
C35—H35 0.9300 C64—C65 1.376 (4)
C36—H36 0.9300 C64—Cl1 1.734 (3)
C4—O1 1.238 (3) C65—C66 1.380 (4)
C4—C5 1.524 (3) C65—H65 0.9300
C5—C51 1.517 (3) C66—Cl2 1.730 (3)
C5—C6 1.534 (3)
C11—C1—C2 109.7 (2) C56—C51—C52 117.7 (2)
C11—C1—C6 110.3 (2) C56—C51—C5 121.7 (2)
C2—C1—C6 111.65 (18) C52—C51—C5 120.7 (2)
C11—C1—H1 108.4 C51—C52—C53 120.7 (3)
C2—C1—H1 108.4 C51—C52—H52 119.7
C6—C1—H1 108.4 C53—C52—H52 119.7
N11—C11—C1 177.9 (3) C54—C53—C52 120.4 (3)
N2—C2—C3 124.5 (2) C54—C53—H53 119.8
N2—C2—C1 114.5 (2) C52—C53—H53 119.8
C3—C2—C1 121.0 (2) C55—C54—C53 119.7 (3)
C2—N2—H2A 120.0 C55—C54—H54 120.1
C2—N2—H2B 120.0 C53—C54—H54 120.1
H2A—N2—H2B 120.0 C54—C55—C56 120.2 (3)
C2—C3—C4 120.9 (2) C54—C55—H55 119.9
C2—C3—C31 119.9 (2) C56—C55—H55 119.9
C4—C3—C31 119.2 (2) C51—C56—C55 121.4 (3)
C36—C31—C32 118.0 (2) C51—C56—H56 119.3
C36—C31—C3 120.5 (2) C55—C56—H56 119.3
C32—C31—C3 121.5 (2) C61—C6—C5 115.67 (19)
C31—C32—C33 121.0 (3) C61—C6—C1 109.56 (18)
C31—C32—H32 119.5 C5—C6—C1 110.94 (18)
C33—C32—H32 119.5 C61—C6—H6 106.7
C34—C33—C32 120.0 (3) C5—C6—H6 106.7
C34—C33—H33 120.0 C1—C6—H6 106.7
C32—C33—H33 120.0 C62—C61—C66 116.0 (2)
C33—C34—C35 119.8 (3) C62—C61—C6 122.6 (2)
C33—C34—H34 120.1 C66—C61—C6 121.3 (2)
C35—C34—H34 120.1 C63—C62—C61 122.9 (3)
C36—C35—C34 120.4 (3) C63—C62—H62 118.5
C36—C35—H35 119.8 C61—C62—H62 118.5
C34—C35—H35 119.8 C64—C63—C62 119.1 (3)
C35—C36—C31 120.9 (3) C64—C63—H63 120.4
C35—C36—H36 119.6 C62—C63—H63 120.4
C31—C36—H36 119.6 C63—C64—C65 120.6 (2)
O1—C4—C3 120.7 (2) C63—C64—Cl1 120.4 (2)
O1—C4—C5 117.7 (2) C65—C64—Cl1 119.0 (2)
C3—C4—C5 121.5 (2) C64—C65—C66 118.7 (3)
C51—C5—C4 110.51 (19) C64—C65—H65 120.6
C51—C5—C6 111.97 (19) C66—C65—H65 120.6
C4—C5—C6 112.53 (19) C65—C66—C61 122.6 (2)
C51—C5—H5 107.2 C65—C66—Cl2 116.9 (2)
C4—C5—H5 107.2 C61—C66—Cl2 120.5 (2)
C6—C5—H5 107.2
C2—C1—C11—N11 121 (8) C56—C51—C52—C53 0.3 (4)
C6—C1—C11—N11 −2(8) C5—C51—C52—C53 −178.5 (2)
C11—C1—C2—N2 87.0 (3) C51—C52—C53—C54 −0.8 (5)
C6—C1—C2—N2 −150.4 (2) C52—C53—C54—C55 0.5 (5)
C11—C1—C2—C3 −91.5 (3) C53—C54—C55—C56 0.1 (5)
C6—C1—C2—C3 31.1 (3) C52—C51—C56—C55 0.4 (4)
N2—C2—C3—C4 180.0 (3) C5—C51—C56—C55 179.2 (2)
C1—C2—C3—C4 −1.7 (4) C54—C55—C56—C51 −0.6 (4)
N2—C2—C3—C31 0.0 (4) C51—C5—C6—C61 −63.6 (3)
C1—C2—C3—C31 178.4 (2) C4—C5—C6—C61 171.2 (2)
C2—C3—C31—C36 120.0 (3) C51—C5—C6—C1 170.83 (19)
C4—C3—C31—C36 −59.9 (3) C4—C5—C6—C1 45.6 (3)
C2—C3—C31—C32 −60.1 (4) C11—C1—C6—C61 −58.9 (2)
C4—C3—C31—C32 120.0 (3) C2—C1—C6—C61 178.81 (19)
C36—C31—C32—C33 −2.4 (4) C11—C1—C6—C5 70.0 (2)
C3—C31—C32—C33 177.7 (3) C2—C1—C6—C5 −52.3 (3)
C31—C32—C33—C34 1.2 (5) C5—C6—C61—C62 −31.7 (3)
C32—C33—C34—C35 1.1 (5) C1—C6—C61—C62 94.5 (3)
C33—C34—C35—C36 −2.1 (5) C5—C6—C61—C66 151.3 (2)
C34—C35—C36—C31 0.8 (4) C1—C6—C61—C66 −82.4 (3)
C32—C31—C36—C35 1.4 (4) C66—C61—C62—C63 1.0 (4)
C3—C31—C36—C35 −178.7 (2) C6—C61—C62—C63 −176.1 (2)
C2—C3—C4—O1 172.7 (2) C61—C62—C63—C64 0.2 (4)
C31—C3—C4—O1 −7.4 (4) C62—C63—C64—C65 −1.3 (4)
C2—C3—C4—C5 −5.6 (4) C62—C63—C64—Cl1 177.9 (2)
C31—C3—C4—C5 174.4 (2) C63—C64—C65—C66 1.0 (4)
O1—C4—C5—C51 38.1 (3) Cl1—C64—C65—C66 −178.2 (2)
C3—C4—C5—C51 −143.6 (2) C64—C65—C66—C61 0.4 (4)
O1—C4—C5—C6 164.1 (2) C64—C65—C66—Cl2 179.7 (2)
C3—C4—C5—C6 −17.7 (3) C62—C61—C66—C65 −1.4 (4)
C4—C5—C51—C56 −117.1 (3) C6—C61—C66—C65 175.8 (2)
C6—C5—C51—C56 116.6 (2) C62—C61—C66—Cl2 179.4 (2)
C4—C5—C51—C52 61.7 (3) C6—C61—C66—Cl2 −3.5 (3)
C6—C5—C51—C52 −64.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O1i 0.86 1.91 2.759 (3) 171
C33—H33···N11ii 0.93 2.72 3.402 (4) 131
C52—H52···Cl2iii 0.93 2.97 3.897 (3) 174
C54—H54···N11iv 0.93 2.72 3.541 (4) 147

Symmetry codes: (i) −x−1, y+1/2, −z+3/2; (ii) −x−1, −y, −z+2; (iii) −x−1, −y, −z+1; (iv) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5346).

References

  1. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Rodriguez, J. & Dulcere, J.-P. (1993). Synthesis, pp. 1176–1205.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035567/bt5346sup1.cif

e-66-o2593-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035567/bt5346Isup2.hkl

e-66-o2593-Isup2.hkl (157.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES