Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 30;66(Pt 10):m1336–m1337. doi: 10.1107/S1600536810037384

catena-Poly[[(5-carb­oxy-2H-1,2,3-triazole-4-carboxyl­ato-κ2 N 3,O 4)sodium]-di-μ-aqua-κ4 O:O]

Hai-Yan Liu a, Li-Xin Liu a, Jing-Quan Sha a,*, Lian-Sheng Yu a
PMCID: PMC2983283  PMID: 21587466

Abstract

In the title coordination polymer, [Na(C4H2N3O4)(H2O)2]n, the NaI atom is six-coordinated by one O atom and one N atom from a 2H-1,2,3-triazole-4-carb­oxy-5-carboxyl­ate ligand and four O atoms from four water mol­ecules, forming a distorted octa­hedal geometry. The NaI atoms are bridged by water mol­ecules into a chain structure along [100]. Inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds connect the chains. An intra­molecular O—H⋯O hydrogen bond between the carboxyl­ate groups is observed.

Related literature

For general background to the design and synthesis of metal–organic frameworks (MOFs), see: Chen et al. (2009); Rosi et al. (2003); Su et al. (2004); Xiao et al. (2006). For the use of heterocyclic dicarb­oxy­lic acids in MOFs, see: Gao et al. (2006); Mukherjee et al. (2004); Shi et al. (2006); Sun et al. (2005). For metal complexes with 2H-1,2,3-triazole-4,5-dicarb­oxy­lic acid, see: Liu et al. (2008); Yue et al. (2008); Zheng et al. (2009).graphic file with name e-66-m1336-scheme1.jpg

Experimental

Crystal data

  • [Na(C4H2N3O4)(H2O)2]

  • M r = 215.11

  • Monoclinic, Inline graphic

  • a = 6.8706 (9) Å

  • b = 10.6280 (13) Å

  • c = 11.5585 (14) Å

  • β = 95.647 (1)°

  • V = 839.91 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.18 mm

Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.955, T max = 0.965

  • 4453 measured reflections

  • 1658 independent reflections

  • 1509 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.102

  • S = 1.00

  • 1658 reflections

  • 148 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037384/hy2351sup1.cif

e-66-m1336-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037384/hy2351Isup2.hkl

e-66-m1336-Isup2.hkl (81.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.95 (2) 1.74 (2) 2.652 (2) 158 (2)
O3—H3⋯O1 0.82 1.65 2.468 (2) 177
O5—H5A⋯N3ii 0.85 (2) 2.15 (2) 2.949 (2) 155 (2)
O5—H5B⋯O3iii 0.82 (2) 2.13 (2) 2.923 (2) 163 (2)
O6—H6A⋯O1i 0.84 (2) 2.07 (2) 2.902 (2) 173 (2)
O6—H6B⋯O4iii 0.80 (2) 2.03 (2) 2.819 (2) 173 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported financially by the National Natural Science Foundation (grant No. 20901031), the Natural Science Foundation (No. B200916) and the Education Ministry Key Teachers Foundation (1155 G53) of Heilongjiang Province and the Talent Training Fund of Jiamusi University (No. RC2009–034).

supplementary crystallographic information

Comment

Currently, there has been intense research effort on the design and synthesis of metal-organic frameworks (MOFs) owing to their intriguing variety of architectures and their tremendous potential applications in many fields (Chen et al., 2009; Rosi et al., 2003; Su et al., 2004; Xiao et al., 2006). As one kind of well known ligands, heterocyclic dicarboxylic acids have been used to prepare MOFs with multi-dimensional structures because of the hetero atoms may serve as potential coordinating sites (Gao et al., 2006; Mukherjee et al., 2004; Shi et al., 2006; Sun et al., 2005), such as 2H-1,2,3-triazole-4,5-dicarboxylic acid (H2tda). The three triazole N atoms of H2tda can coordinate to various metals (such as Mn, Cd and K), resulting in the formation of intriguing multi-dimensional structures with complicated topologies (Liu et al., 2008; Yue et al., 2008; Zheng et al., 2009).

In the title coordination polymer (Fig. 1), the NaI atom is six-coordinated by one O atom and one N atom from one Htda ligand, and four O atoms from water molecules, with a slightly distorted octahedral geometry. Furthermore, the NaI atoms are bridged by the water molecules, leading to a one-dimensional chain structure, as shown in Fig. 2. Intermolecular N—H···O, O—H···N and O—H···O hydrogen bonds connect the chains (Table 1).

Experimental

All chemicals were purchased from commercial sources and used without further purification. A mixture of H2tda and NaOH in a molar ratio of 1:1 was dissolved in water. Colorless block crystals of the title compound were obtained by slow evaporation of the filtrate over a period of 3 d.

Refinement

H atoms were located from a difference Fourier map. H3 attached to the carboxyl O3 was refined as riding atom, with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O). The other H atoms were refined isotropically.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with symmetry-related atoms to complete the Na coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, 2-y, 2-z; (ii) 1-x, 2-y, 2-z.]

Fig. 2.

Fig. 2.

View of the one-dimensional chain in the title compound.

Crystal data

[Na(C4H2N3O4)(H2O)2] F(000) = 440
Mr = 215.11 Dx = 1.701 Mg m3Dm = 1.701 Mg m3Dm measured by not measured
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2984 reflections
a = 6.8706 (9) Å θ = 2.6–28.2°
b = 10.6280 (13) Å µ = 0.20 mm1
c = 11.5585 (14) Å T = 293 K
β = 95.647 (1)° Block, colorless
V = 839.91 (18) Å3 0.23 × 0.22 × 0.18 mm
Z = 4

Data collection

Bruker APEX CCD diffractometer 1658 independent reflections
Radiation source: fine-focus sealed tube 1509 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.955, Tmax = 0.965 k = −9→13
4453 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.3697P] where P = (Fo2 + 2Fc2)/3
1658 reflections (Δ/σ)max = 0.001
148 parameters Δρmax = 0.47 e Å3
4 restraints Δρmin = −0.59 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H5B 0.091 (4) 1.1695 (18) 0.910 (3) 0.081 (10)*
H5A 0.028 (4) 1.076 (3) 0.8361 (16) 0.071 (8)*
H6A 0.503 (3) 1.018 (2) 1.1923 (15) 0.054 (7)*
H6B 0.433 (4) 1.1154 (18) 1.136 (2) 0.056 (7)*
Na1 0.25079 (9) 0.92974 (6) 0.99461 (6) 0.0348 (2)
O1 0.11703 (17) 0.54042 (11) 0.85612 (9) 0.0331 (3)
O2 0.15004 (18) 0.74783 (11) 0.87493 (10) 0.0347 (3)
N1 0.34905 (19) 0.72021 (12) 1.09099 (11) 0.0260 (3)
O6 0.4709 (2) 1.04572 (12) 1.12560 (11) 0.0364 (3)
O3 0.20462 (18) 0.34772 (11) 0.96846 (10) 0.0348 (3)
H3 0.1733 0.4126 0.9330 0.042*
O5 0.0576 (2) 1.09590 (12) 0.90710 (11) 0.0388 (3)
N3 0.42462 (19) 0.54647 (13) 1.19491 (11) 0.0276 (3)
O4 0.3474 (2) 0.29745 (11) 1.14248 (11) 0.0420 (3)
N2 0.4322 (2) 0.67011 (13) 1.18801 (11) 0.0282 (3)
C2 0.3282 (2) 0.51189 (14) 1.09393 (12) 0.0225 (3)
C4 0.2933 (2) 0.37598 (15) 1.06997 (14) 0.0279 (3)
C3 0.2809 (2) 0.62053 (14) 1.02900 (12) 0.0216 (3)
C1 0.1755 (2) 0.63899 (14) 0.91084 (12) 0.0243 (3)
H2 0.499 (3) 0.719 (2) 1.2488 (19) 0.045 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.0355 (4) 0.0270 (4) 0.0401 (4) −0.0001 (3) −0.0051 (3) 0.0002 (3)
O1 0.0393 (6) 0.0318 (6) 0.0254 (6) −0.0025 (5) −0.0109 (5) −0.0054 (5)
O2 0.0422 (7) 0.0302 (6) 0.0280 (6) −0.0002 (5) −0.0147 (5) 0.0058 (5)
N1 0.0289 (7) 0.0246 (7) 0.0226 (6) 0.0010 (5) −0.0072 (5) −0.0012 (5)
O6 0.0493 (8) 0.0284 (7) 0.0300 (6) 0.0013 (5) −0.0030 (5) −0.0014 (5)
O3 0.0438 (7) 0.0226 (6) 0.0366 (6) −0.0034 (5) −0.0025 (5) −0.0036 (5)
O5 0.0505 (8) 0.0310 (7) 0.0327 (7) 0.0001 (6) −0.0066 (6) −0.0020 (5)
N3 0.0309 (7) 0.0281 (7) 0.0226 (6) 0.0028 (5) −0.0042 (5) 0.0021 (5)
O4 0.0553 (8) 0.0258 (6) 0.0443 (7) 0.0062 (5) 0.0022 (6) 0.0097 (5)
N2 0.0334 (7) 0.0278 (7) 0.0212 (6) 0.0014 (6) −0.0088 (5) −0.0025 (5)
C2 0.0216 (7) 0.0241 (8) 0.0215 (7) 0.0018 (5) −0.0003 (5) 0.0006 (6)
C4 0.0274 (8) 0.0241 (8) 0.0323 (8) 0.0011 (6) 0.0040 (6) 0.0001 (6)
C3 0.0206 (7) 0.0233 (7) 0.0198 (7) 0.0008 (5) −0.0035 (5) −0.0007 (5)
C1 0.0221 (7) 0.0292 (8) 0.0204 (7) 0.0004 (6) −0.0050 (5) 0.0006 (6)

Geometric parameters (Å, °)

Na1—O5 2.3747 (15) O3—C4 1.303 (2)
Na1—O6 2.3765 (14) O3—H3 0.8200
Na1—O2 2.4377 (13) O5—H5B 0.82 (2)
Na1—O6i 2.4855 (15) O5—H5A 0.85 (2)
Na1—O5ii 2.5157 (16) N3—N2 1.3178 (19)
Na1—N1 2.5510 (14) N3—C2 1.336 (2)
O1—C1 1.2683 (19) O4—C4 1.215 (2)
O2—C1 1.2356 (19) N2—H2 0.95 (2)
N1—N2 1.3196 (18) C2—C3 1.398 (2)
N1—C3 1.3375 (19) C2—C4 1.486 (2)
O6—H6A 0.84 (2) C3—C1 1.4946 (19)
O6—H6B 0.80 (2)
O5—Na1—O6 100.34 (5) C3—N1—Na1 113.19 (9)
O5—Na1—O2 103.44 (5) Na1—O6—Na1i 100.06 (5)
O6—Na1—O2 154.19 (5) Na1—O6—H6A 120.0 (17)
O5—Na1—O6i 96.45 (5) Na1i—O6—H6A 113.8 (17)
O6—Na1—O6i 79.94 (5) Na1—O6—H6B 112.2 (18)
O2—Na1—O6i 87.54 (5) Na1i—O6—H6B 105.3 (19)
O5—Na1—O5ii 79.20 (5) H6A—O6—H6B 105 (2)
O6—Na1—O5ii 106.25 (5) C4—O3—H3 109.5
O2—Na1—O5ii 88.03 (5) Na1—O5—Na1ii 100.80 (5)
O6i—Na1—O5ii 172.90 (5) Na1—O5—H5B 124 (2)
O5—Na1—N1 161.44 (5) Na1ii—O5—H5B 109 (2)
O6—Na1—N1 92.87 (5) Na1—O5—H5A 107.1 (19)
O2—Na1—N1 66.65 (4) Na1ii—O5—H5A 105.9 (19)
O6i—Na1—N1 98.66 (5) H5B—O5—H5A 109 (3)
O5ii—Na1—N1 84.65 (5) N2—N3—C2 103.92 (12)
O5—Na1—Na1i 100.92 (4) N3—N2—N1 115.94 (12)
O6—Na1—Na1i 41.05 (3) N3—N2—H2 121.2 (13)
O2—Na1—Na1i 123.06 (4) N1—N2—H2 122.8 (13)
O6i—Na1—Na1i 38.90 (3) N3—C2—C3 108.12 (13)
O5ii—Na1—Na1i 147.18 (5) N3—C2—C4 119.18 (13)
N1—Na1—Na1i 97.61 (4) C3—C2—C4 132.70 (14)
O5—Na1—Na1ii 40.97 (4) O4—C4—O3 123.18 (15)
O6—Na1—Na1ii 107.45 (5) O4—C4—C2 120.42 (15)
O2—Na1—Na1ii 97.09 (4) O3—C4—C2 116.40 (13)
O6i—Na1—Na1ii 137.15 (4) N1—C3—C2 108.42 (12)
O5ii—Na1—Na1ii 38.23 (3) N1—C3—C1 119.88 (13)
N1—Na1—Na1ii 122.34 (4) C2—C3—C1 131.70 (13)
Na1i—Na1—Na1ii 132.86 (4) O2—C1—O1 125.34 (14)
C1—O2—Na1 121.94 (9) O2—C1—C3 118.01 (13)
N2—N1—C3 103.59 (12) O1—C1—C3 116.64 (13)
N2—N1—Na1 142.86 (10)

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2iii 0.95 (2) 1.74 (2) 2.652 (2) 158 (2)
O3—H3···O1 0.82 1.65 2.468 (2) 177
O5—H5A···N3iv 0.85 (2) 2.15 (2) 2.949 (2) 155 (2)
O5—H5B···O3v 0.82 (2) 2.13 (2) 2.923 (2) 163 (2)
O6—H6A···O1iii 0.84 (2) 2.07 (2) 2.902 (2) 173 (2)
O6—H6B···O4v 0.80 (2) 2.03 (2) 2.819 (2) 173 (2)

Symmetry codes: (iii) x+1/2, −y+3/2, z+1/2; (iv) x−1/2, −y+3/2, z−1/2; (v) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2351).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, X., Wan, C., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J.15, 6518–6528. [DOI] [PubMed]
  3. Gao, H.-L., Yi, L., Zhao, B., Zhao, X.-Q., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem.45, 5980–5988. [DOI] [PubMed]
  4. Liu, G.-F., Ren, Z.-G., Chen, Y., Liu, D., Li, H.-X., Zhang, Y. & Lang, J.-P. (2008). Inorg. Chem. Commun.11, 225–229.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  6. Mukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. J. (2004). J. Am. Chem. Soc.126, 2464–2473. [DOI] [PubMed]
  7. Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O’Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129. [DOI] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shi, W., Chen, X.-Y., Xu, N., Song, H.-B., Zhao, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Eur. J. Inorg. Chem.23, 4931–4937.
  11. Su, C. Y., Goforth, A. M., Smith, M. D., Pellechia, P. J. & zur Loye, H. C. (2004). J. Am. Chem. Soc.126, 3576–3586. [DOI] [PubMed]
  12. Sun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed.44, 5814–5817. [DOI] [PubMed]
  13. Xiao, D.-R., Wang, E.-B., An, H.-Y., Li, Y.-G., Su, Z.-M. & Sun, C.-Y. (2006). Chem. Eur. J.12, 6528–6541. [DOI] [PubMed]
  14. Yue, Y.-F., Liang, J., Gao, E.-Q., Fang, C.-J., Yan, Z.-G. & Yan, C.-H. (2008). Inorg. Chem.47, 6115–6117. [DOI] [PubMed]
  15. Zheng, Z. B., Wua, R. T., Lib, J. K. & Sun, Y. F. (2009). J. Coord. Chem.62, 2324–2336.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037384/hy2351sup1.cif

e-66-m1336-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037384/hy2351Isup2.hkl

e-66-m1336-Isup2.hkl (81.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES