Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 11;66(Pt 10):o2528. doi: 10.1107/S1600536810035701

2-Chloro-5-nitro­benzaldehyde thio­semicarbazone

Yu-Mei Hao a,*
PMCID: PMC2983295  PMID: 21587521

Abstract

The title Schiff base compound, C8H7ClN4O2S, was prepared by the reaction of equimolar quanti­ties of 2-chloro-5-nitro­benzaldehyde with thio­semicarbazide in methanol. The mol­ecule adopts a trans configuration with respect to the azomethine group and the dihedral angle between the benzene ring and the thio­semicarbazide group is 6.8 (3)°. In the crystal, mol­ecules are linked through inter­molecular N—H⋯S hydrogen bonds, forming chains propagating in [010].

Related literature

For the crystal structures of similar Schiff base compounds, see: Ferrari et al. (1999); Shanmuga Sundara Raj et al. (2000); Chattopadhyay et al. (1988). For a similar compound reported by the author, see: Hao (2010). For reference structural data, see: Allen et al. (1987).graphic file with name e-66-o2528-scheme1.jpg

Experimental

Crystal data

  • C8H7ClN4O2S

  • M r = 258.69

  • Monoclinic, Inline graphic

  • a = 11.611 (2) Å

  • b = 8.439 (2) Å

  • c = 12.016 (3) Å

  • β = 113.909 (2)°

  • V = 1076.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.909, T max = 0.914

  • 6657 measured reflections

  • 2344 independent reflections

  • 1573 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.111

  • S = 1.02

  • 2344 reflections

  • 154 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035701/hb5633sup1.cif

e-66-o2528-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035701/hb5633Isup2.hkl

e-66-o2528-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯S1i 0.89 (1) 2.53 (1) 3.408 (2) 173 (2)
N3—H3⋯S1ii 0.90 (1) 2.46 (1) 3.3266 (19) 161 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Recently, the crystal structures of a number of Schiff base compounds bearing the hydrazone groups derived from the thiosemicarbazide with aldehydes have been reported (Ferrari et al., 1999; Shanmuga Sundara Raj et al., 2000; Chattopadhyay et al., 1988). Recently, the author has reported a Schiff base compound derived from the thiosemicarbazide with 2-hydroxy-4-methoxybenzaldehyde (Hao, 2010), in this paper, the title new Schiff base compound, (I), Fig. 1, is reported.

The molecule of the title compound adopts a trans configuration with respect to the azomethine group. All the bond lengths are within normal values (Allen et al., 1987). The dihedral angle between the C1-C6 benzene ring and the plane defined by N2-N3-C8-S1-N4 is 6.8 (3)°, indicating the planar of the molecule. In the crystal structure, molecules are linked through intermolecular N—H···S hydrogen bonds (Table 1), to form chains (Fig. 2).

Experimental

2-Chloro-5-nitrobenzaldehyde (0.1 mmol, 18.6 mg) and thiosemicarbazide (0.1 mmol, 9.1 mg) were refluxed in methanol (30 ml) for 30 min to give a clear yellow solution. Yellow blocks of (I) were formed by slow evaporation of the solvent over several days at room temperature.

Refinement

H3, H4A and H4B were located from a difference Fourier map and refined isotropically, with the N—H and H···H distances restrained to 0.90 (1) Å and 1.43 (2) Å, respectively, and with Uiso restrained to 0.08Å2. Other H atoms were constrained to ideal geometries, with d(C—H) = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing of the title compound with hydrogen bonds drawn as dashed lines.

Crystal data

C8H7ClN4O2S F(000) = 528
Mr = 258.69 Dx = 1.596 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1613 reflections
a = 11.611 (2) Å θ = 2.8–24.7°
b = 8.439 (2) Å µ = 0.54 mm1
c = 12.016 (3) Å T = 298 K
β = 113.909 (2)° Block, yellow
V = 1076.4 (4) Å3 0.18 × 0.17 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2344 independent reflections
Radiation source: fine-focus sealed tube 1573 reflections with I > 2σ(I)
graphite Rint = 0.038
ω scans θmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.909, Tmax = 0.914 k = −7→10
6657 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.052P)2 + 0.1148P] where P = (Fo2 + 2Fc2)/3
2344 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.20 e Å3
4 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.22502 (8) −0.41154 (8) 0.48549 (7) 0.0669 (3)
N1 0.11203 (19) 0.1863 (3) 0.67884 (19) 0.0541 (6)
N2 0.33718 (17) 0.0503 (2) 0.40689 (17) 0.0402 (5)
N3 0.39548 (18) 0.0489 (2) 0.32765 (18) 0.0409 (5)
N4 0.4229 (2) 0.3150 (2) 0.3570 (2) 0.0543 (6)
O1 0.13241 (19) 0.3120 (2) 0.64124 (19) 0.0694 (6)
O2 0.0674 (2) 0.1755 (3) 0.7540 (2) 0.0965 (8)
S1 0.50185 (6) 0.18861 (7) 0.19837 (6) 0.0460 (2)
C1 0.2313 (2) −0.0903 (3) 0.50752 (19) 0.0375 (5)
C2 0.1926 (2) −0.2336 (3) 0.5392 (2) 0.0424 (6)
C3 0.1273 (2) −0.2416 (3) 0.6133 (2) 0.0504 (6)
H3A 0.1013 −0.3389 0.6314 0.061*
C4 0.1014 (2) −0.1031 (3) 0.6600 (2) 0.0506 (6)
H4 0.0584 −0.1054 0.7107 0.061*
C5 0.1405 (2) 0.0385 (3) 0.6300 (2) 0.0422 (6)
C6 0.2036 (2) 0.0480 (3) 0.5549 (2) 0.0406 (5)
H6 0.2275 0.1460 0.5360 0.049*
C7 0.2974 (2) −0.0829 (3) 0.4273 (2) 0.0407 (5)
H7 0.3105 −0.1747 0.3912 0.049*
C8 0.4371 (2) 0.1867 (2) 0.3007 (2) 0.0382 (5)
H3 0.412 (2) −0.0446 (19) 0.301 (2) 0.080*
H4B 0.394 (3) 0.312 (3) 0.4146 (19) 0.080*
H4A 0.450 (2) 0.4093 (18) 0.346 (2) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1005 (6) 0.0371 (4) 0.0800 (5) −0.0034 (3) 0.0541 (4) 0.0020 (3)
N1 0.0526 (13) 0.0621 (15) 0.0564 (14) 0.0075 (11) 0.0311 (11) −0.0029 (11)
N2 0.0496 (11) 0.0372 (11) 0.0447 (12) 0.0008 (9) 0.0303 (9) 0.0032 (9)
N3 0.0569 (12) 0.0283 (10) 0.0533 (13) 0.0023 (9) 0.0385 (10) 0.0013 (9)
N4 0.0835 (16) 0.0338 (11) 0.0712 (15) −0.0090 (11) 0.0578 (13) −0.0081 (11)
O1 0.0868 (14) 0.0503 (12) 0.0874 (15) 0.0001 (10) 0.0521 (12) −0.0058 (11)
O2 0.143 (2) 0.0869 (16) 0.1135 (18) 0.0285 (15) 0.1077 (17) 0.0100 (14)
S1 0.0628 (4) 0.0345 (3) 0.0580 (4) −0.0034 (3) 0.0423 (3) 0.0004 (3)
C1 0.0400 (12) 0.0374 (13) 0.0381 (13) −0.0023 (10) 0.0190 (11) 0.0026 (10)
C2 0.0497 (14) 0.0366 (12) 0.0432 (14) −0.0023 (10) 0.0213 (11) 0.0017 (10)
C3 0.0563 (15) 0.0509 (15) 0.0503 (15) −0.0118 (12) 0.0281 (13) 0.0073 (12)
C4 0.0515 (15) 0.0632 (17) 0.0483 (15) −0.0046 (13) 0.0317 (12) 0.0042 (13)
C5 0.0416 (13) 0.0480 (14) 0.0413 (14) 0.0005 (11) 0.0214 (11) −0.0010 (11)
C6 0.0431 (13) 0.0384 (13) 0.0457 (14) −0.0031 (10) 0.0236 (11) 0.0037 (10)
C7 0.0496 (14) 0.0333 (12) 0.0486 (14) 0.0012 (10) 0.0294 (12) −0.0009 (11)
C8 0.0435 (13) 0.0310 (12) 0.0460 (14) −0.0001 (10) 0.0243 (11) 0.0023 (10)

Geometric parameters (Å, °)

Cl1—C2 1.735 (2) C1—C6 1.393 (3)
N1—O2 1.214 (3) C1—C2 1.396 (3)
N1—O1 1.214 (3) C1—C7 1.456 (3)
N1—C5 1.471 (3) C2—C3 1.386 (3)
N2—C7 1.277 (3) C3—C4 1.382 (4)
N2—N3 1.374 (2) C3—H3A 0.9300
N3—C8 1.348 (3) C4—C5 1.378 (3)
N3—H3 0.899 (10) C4—H4 0.9300
N4—C8 1.322 (3) C5—C6 1.376 (3)
N4—H4B 0.88 (3) C6—H6 0.9300
N4—H4A 0.886 (10) C7—H7 0.9300
S1—C8 1.681 (2)
O2—N1—O1 123.3 (2) C4—C3—H3A 120.5
O2—N1—C5 117.8 (2) C2—C3—H3A 120.5
O1—N1—C5 118.9 (2) C5—C4—C3 118.6 (2)
C7—N2—N3 116.36 (19) C5—C4—H4 120.7
C8—N3—N2 118.95 (18) C3—C4—H4 120.7
C8—N3—H3 121.7 (18) C6—C5—C4 122.8 (2)
N2—N3—H3 119.1 (18) C6—C5—N1 118.5 (2)
C8—N4—H4B 122.8 (17) C4—C5—N1 118.6 (2)
C8—N4—H4A 122.1 (17) C5—C6—C1 119.5 (2)
H4B—N4—H4A 115 (2) C5—C6—H6 120.3
C6—C1—C2 117.5 (2) C1—C6—H6 120.3
C6—C1—C7 120.4 (2) N2—C7—C1 119.6 (2)
C2—C1—C7 122.1 (2) N2—C7—H7 120.2
C3—C2—C1 122.6 (2) C1—C7—H7 120.2
C3—C2—Cl1 117.04 (19) N4—C8—N3 116.9 (2)
C1—C2—Cl1 120.40 (18) N4—C8—S1 123.49 (17)
C4—C3—C2 119.1 (2) N3—C8—S1 119.59 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4A···S1i 0.89 (1) 2.53 (1) 3.408 (2) 173 (2)
N3—H3···S1ii 0.90 (1) 2.46 (1) 3.3266 (19) 161 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5633).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chattopadhyay, D., Mazumdar, S. K., Banerjee, T., Ghosh, S. & Mak, T. C. W. (1988). Acta Cryst. C44, 1025–1028. [DOI] [PubMed]
  4. Ferrari, M. B., Capacchi, S., Pelosi, G., Reffo, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (1999). Inorg. Chim. Acta, 286, 134–141. [DOI] [PubMed]
  5. Hao, Y.-M. (2010). Acta Cryst. E66, o2211. [DOI] [PMC free article] [PubMed]
  6. Shanmuga Sundara Raj, S., Fun, H.-K., Zhang, X.-J., Tian, Y.-P., Xie, F.-X. & Ma, J.-L. (2000). Acta Cryst. C56, 1238–1239. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035701/hb5633sup1.cif

e-66-o2528-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035701/hb5633Isup2.hkl

e-66-o2528-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES