Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 4;66(Pt 10):o2479. doi: 10.1107/S1600536810035142

(E)-1-(2,5-Dichloro-3-thien­yl)-3-(3,4-dimeth­oxy­phen­yl)prop-2-en-1-one

William T A Harrison a,*, C S Chidan Kumar b, H S Yathirajan b, A N Mayekar b,c, B Narayana d
PMCID: PMC2983303  PMID: 21587480

Abstract

In the title compound, C15H12Cl2O3S, the prop-2-en-1-one (enone) fragment is almost planar [C—C—C—O = 2.2 (4)°] and it subtends dihedral angles of 11.9 (2) and 11.0 (2)° with the thio­phene and benzene rings, respectively. The dihedral angle between the aromatic rings is 3.47 (16)°. In the crystal, weak C—H⋯O and C—H⋯Cl inter­actions link the mol­ecules, leading to R 2 2(14), R 2 2(24) and C(11) supra­molecular motifs occurring within the three-dimensional network. Weak aromatic π–π stacking [centroid–centroid separations = 3.6823 (15) and 3.8722 (15) Å] may also help to consolidate the packing.

Related literature

For a related structure and background references, see: Jasinski et al. (2010). For reference structural data, see: Allen et al. (1987).graphic file with name e-66-o2479-scheme1.jpg

Experimental

Crystal data

  • C15H12Cl2O3S

  • M r = 343.21

  • Monoclinic, Inline graphic

  • a = 8.9331 (2) Å

  • b = 8.9997 (2) Å

  • c = 18.8210 (5) Å

  • β = 100.181 (1)°

  • V = 1489.29 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 120 K

  • 0.24 × 0.12 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan [SADABS (Bruker, 2003) and Blessing (1995)] T min = 0.873, T max = 0.944

  • 22032 measured reflections

  • 3424 independent reflections

  • 2834 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.113

  • S = 1.10

  • 3424 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035142/ng5014sup1.cif

e-66-o2479-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035142/ng5014Isup2.hkl

e-66-o2479-Isup2.hkl (168KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.53 3.227 (3) 130
C12—H12⋯O1ii 0.95 2.55 3.441 (3) 157
C14—H14A⋯O3iii 0.98 2.53 3.474 (3) 161
C15—H15B⋯Cl1iv 0.98 2.82 3.647 (3) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

CSC thanks the University of Mysore for providing research facilities. HSY thanks the University of Mysore for sanctioning sabbatical leave.

supplementary crystallographic information

Comment

The title compound, (I), (Fig. 1), was prepared as part of our ongoing structural studies (Jasinski et al., 2010) of chalcone-like compounds, in which substituted aromatic ring systems are linked by a prop-2-en-1-one bridge.

The prop-2-en-1-one fragment in (I) is almost planar [C7—C8—C9—O3 = 2.2 (4)°] and it subtends dihedral angles of 11.9 (2) and 11.0 (2)° with the thiophene and benzene rings, respectively. The dihedral angle between the aromatic rings is 3.47 (16)°. The carbon atoms of the methoxy groups are close to co-planar with their attached benzene ring [displacements of 0.033 (5) and 0.100 (5)Å for C14 and C15, respectively]. Otherwise, the bond lengths for (I) fall within their expected ranges (Allen et al., 1987) and are similar to those in a related structure (Jasinski et al., 2010).

In the crystal, three weak C—H···O and one C—H···Cl interactions (Table 1) link the molecules. Considered individually, they generate the following motifs: the C3—H3 bond generates inversion dimers containing R22(14) rings, whereas the C12—H12 bond leads to C(11) chains propagating in [010]. The methyl-H bonds lead to inversion-generated R22(24) loops (for C15—H15B) and C(11) chains (for C14—H14A). Taken together, these four interactions generate a three-dimensional network. Weak aromatic π-π stacking [centroid-centroid separations = 3.6823 (15) and 3.8722 (15) Å] may also help to consolidate the packing.

Experimental

2,5-Dichloro-3-acetylthiophene was obtained as a gift sample from SeQuent Scientific ltd., New Mangalore, India. 1-(2,5-Dichlorothiophen-3-yl)ethanone (1.95 g, 0.01 mol) was mixed with 3,4-dimethoxybenzaldehyde (1.66 g, 0.01 mol) and dissolved in ethanol (30 ml). To this, 3 ml of 50% KOH was added. The reaction mixture was stirred for 6 h. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Irregular yellow crystals of (I) were obtained by the slow evaporation of DMF solution (m.p.: 389–391 K).

Refinement

The hydrogen atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

Crystal data

C15H12Cl2O3S F(000) = 704
Mr = 343.21 Dx = 1.531 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 20728 reflections
a = 8.9331 (2) Å θ = 2.9–27.5°
b = 8.9997 (2) Å µ = 0.58 mm1
c = 18.8210 (5) Å T = 120 K
β = 100.181 (1)° Fragment, yellow
V = 1489.29 (6) Å3 0.24 × 0.12 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 3424 independent reflections
Radiation source: fine-focus sealed tube 2834 reflections with I > 2σ(I)
graphite Rint = 0.056
ω and φ scans θmax = 27.6°, θmin = 3.2°
Absorption correction: multi-scan [SADABS (Bruker, 2003) and Blessing (1995)] h = −11→11
Tmin = 0.873, Tmax = 0.944 k = −11→11
22032 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.034P)2 + 1.9239P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
3424 reflections Δρmax = 0.72 e Å3
193 parameters Δρmin = −0.41 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.011 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4943 (3) 0.2226 (3) 0.72975 (12) 0.0218 (5)
C2 0.5681 (3) 0.2506 (3) 0.67246 (14) 0.0253 (5)
H2 0.6632 0.2050 0.6705 0.030*
C3 0.5013 (3) 0.3471 (3) 0.61723 (14) 0.0273 (5)
H3 0.5512 0.3644 0.5774 0.033*
C4 0.3644 (3) 0.4175 (3) 0.61939 (13) 0.0248 (5)
C5 0.2908 (3) 0.3901 (3) 0.67817 (13) 0.0227 (5)
H5 0.1977 0.4388 0.6809 0.027*
C6 0.3533 (3) 0.2927 (3) 0.73192 (12) 0.0207 (5)
C7 0.2948 (3) 0.5123 (3) 0.55890 (14) 0.0269 (5)
H7 0.3459 0.5142 0.5187 0.032*
C8 0.1686 (3) 0.5971 (3) 0.55235 (13) 0.0232 (5)
H8 0.1154 0.6027 0.5918 0.028*
C9 0.1115 (3) 0.6799 (3) 0.48719 (13) 0.0230 (5)
C10 −0.0865 (3) 0.8706 (3) 0.43372 (13) 0.0217 (5)
C11 −0.0291 (3) 0.7698 (3) 0.48589 (12) 0.0213 (5)
C12 −0.1241 (3) 0.7591 (3) 0.53941 (13) 0.0265 (5)
H12 −0.1035 0.6955 0.5803 0.032*
C13 −0.2457 (3) 0.8490 (3) 0.52538 (14) 0.0298 (6)
C14 0.6852 (3) 0.0533 (3) 0.78546 (16) 0.0382 (7)
H14A 0.7073 −0.0128 0.8274 0.057*
H14B 0.7672 0.1264 0.7875 0.057*
H14C 0.6776 −0.0053 0.7411 0.057*
C15 0.1441 (3) 0.3186 (3) 0.79360 (15) 0.0317 (6)
H15A 0.1087 0.2819 0.8368 0.047*
H15B 0.0709 0.2905 0.7505 0.047*
H15C 0.1532 0.4270 0.7960 0.047*
O1 0.5440 (2) 0.1289 (2) 0.78610 (9) 0.0284 (4)
O2 0.28886 (19) 0.25494 (19) 0.78990 (9) 0.0265 (4)
O3 0.1727 (2) 0.6738 (2) 0.43354 (10) 0.0417 (5)
S1 −0.25196 (7) 0.95280 (7) 0.44816 (4) 0.02811 (19)
Cl1 −0.01562 (8) 0.92675 (7) 0.35926 (3) 0.03212 (19)
Cl2 −0.38786 (8) 0.86816 (11) 0.57543 (4) 0.0513 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0237 (11) 0.0212 (12) 0.0189 (11) −0.0020 (9) −0.0004 (9) −0.0012 (9)
C2 0.0203 (11) 0.0268 (13) 0.0298 (13) −0.0032 (10) 0.0076 (10) −0.0045 (10)
C3 0.0309 (13) 0.0281 (13) 0.0250 (13) −0.0083 (11) 0.0105 (10) 0.0000 (10)
C4 0.0299 (13) 0.0216 (12) 0.0238 (12) −0.0040 (10) 0.0073 (10) 0.0007 (10)
C5 0.0266 (12) 0.0204 (12) 0.0213 (12) −0.0007 (9) 0.0050 (10) −0.0023 (9)
C6 0.0256 (11) 0.0190 (11) 0.0182 (11) −0.0033 (9) 0.0056 (9) −0.0021 (9)
C7 0.0264 (12) 0.0298 (14) 0.0260 (13) −0.0011 (10) 0.0084 (10) 0.0025 (10)
C8 0.0204 (11) 0.0237 (12) 0.0267 (12) 0.0006 (9) 0.0074 (10) −0.0039 (10)
C9 0.0220 (11) 0.0271 (13) 0.0208 (12) 0.0034 (10) 0.0062 (9) −0.0009 (10)
C10 0.0195 (11) 0.0242 (12) 0.0211 (12) 0.0005 (9) 0.0025 (9) −0.0032 (9)
C11 0.0213 (11) 0.0247 (12) 0.0180 (11) 0.0003 (9) 0.0040 (9) −0.0030 (9)
C12 0.0261 (12) 0.0357 (14) 0.0181 (12) 0.0048 (11) 0.0051 (10) −0.0003 (10)
C13 0.0265 (12) 0.0410 (15) 0.0232 (13) 0.0034 (11) 0.0077 (10) −0.0050 (11)
C14 0.0296 (14) 0.0439 (17) 0.0400 (16) 0.0158 (12) 0.0033 (12) 0.0039 (13)
C15 0.0320 (13) 0.0358 (15) 0.0307 (14) 0.0038 (11) 0.0152 (11) −0.0037 (11)
O1 0.0297 (9) 0.0313 (10) 0.0242 (9) 0.0095 (8) 0.0045 (7) 0.0036 (7)
O2 0.0308 (9) 0.0277 (9) 0.0230 (9) 0.0043 (7) 0.0106 (7) 0.0036 (7)
O3 0.0426 (11) 0.0582 (14) 0.0277 (10) 0.0238 (10) 0.0159 (9) 0.0103 (9)
S1 0.0233 (3) 0.0303 (4) 0.0296 (3) 0.0064 (3) 0.0016 (2) −0.0019 (3)
Cl1 0.0378 (4) 0.0324 (4) 0.0278 (3) −0.0019 (3) 0.0102 (3) 0.0059 (3)
Cl2 0.0363 (4) 0.0820 (6) 0.0411 (4) 0.0219 (4) 0.0215 (3) 0.0036 (4)

Geometric parameters (Å, °)

C1—O1 1.367 (3) C9—C11 1.491 (3)
C1—C2 1.383 (3) C10—C11 1.368 (3)
C1—C6 1.415 (3) C10—Cl1 1.713 (2)
C2—C3 1.404 (4) C10—S1 1.717 (2)
C2—H2 0.9500 C11—C12 1.430 (3)
C3—C4 1.385 (4) C12—C13 1.343 (4)
C3—H3 0.9500 C12—H12 0.9500
C4—C5 1.405 (3) C13—Cl2 1.718 (3)
C4—C7 1.470 (3) C13—S1 1.720 (3)
C5—C6 1.380 (3) C14—O1 1.435 (3)
C5—H5 0.9500 C14—H14A 0.9800
C6—O2 1.364 (3) C14—H14B 0.9800
C7—C8 1.348 (3) C14—H14C 0.9800
C7—H7 0.9500 C15—O2 1.427 (3)
C8—C9 1.448 (3) C15—H15A 0.9800
C8—H8 0.9500 C15—H15B 0.9800
C9—O3 1.231 (3) C15—H15C 0.9800
O1—C1—C2 125.7 (2) C11—C10—Cl1 129.58 (18)
O1—C1—C6 114.9 (2) C11—C10—S1 113.31 (18)
C2—C1—C6 119.4 (2) Cl1—C10—S1 117.10 (14)
C1—C2—C3 119.4 (2) C10—C11—C12 110.9 (2)
C1—C2—H2 120.3 C10—C11—C9 125.4 (2)
C3—C2—H2 120.3 C12—C11—C9 123.7 (2)
C4—C3—C2 121.5 (2) C13—C12—C11 112.4 (2)
C4—C3—H3 119.2 C13—C12—H12 123.8
C2—C3—H3 119.2 C11—C12—H12 123.8
C3—C4—C5 118.8 (2) C12—C13—Cl2 127.1 (2)
C3—C4—C7 119.9 (2) C12—C13—S1 113.43 (19)
C5—C4—C7 121.3 (2) Cl2—C13—S1 119.47 (16)
C6—C5—C4 120.3 (2) O1—C14—H14A 109.5
C6—C5—H5 119.9 O1—C14—H14B 109.5
C4—C5—H5 119.9 H14A—C14—H14B 109.5
O2—C6—C5 124.9 (2) O1—C14—H14C 109.5
O2—C6—C1 114.6 (2) H14A—C14—H14C 109.5
C5—C6—C1 120.6 (2) H14B—C14—H14C 109.5
C8—C7—C4 129.2 (2) O2—C15—H15A 109.5
C8—C7—H7 115.4 O2—C15—H15B 109.5
C4—C7—H7 115.4 H15A—C15—H15B 109.5
C7—C8—C9 122.1 (2) O2—C15—H15C 109.5
C7—C8—H8 118.9 H15A—C15—H15C 109.5
C9—C8—H8 118.9 H15B—C15—H15C 109.5
O3—C9—C8 122.1 (2) C1—O1—C14 116.9 (2)
O3—C9—C11 120.4 (2) C6—O2—C15 116.97 (19)
C8—C9—C11 117.5 (2) C10—S1—C13 89.97 (12)
O1—C1—C2—C3 178.3 (2) S1—C10—C11—C12 0.2 (3)
C6—C1—C2—C3 −0.5 (4) Cl1—C10—C11—C9 −2.3 (4)
C1—C2—C3—C4 1.3 (4) S1—C10—C11—C9 179.10 (19)
C2—C3—C4—C5 −0.5 (4) O3—C9—C11—C10 −12.1 (4)
C2—C3—C4—C7 −177.2 (2) C8—C9—C11—C10 170.1 (2)
C3—C4—C5—C6 −1.1 (4) O3—C9—C11—C12 166.6 (3)
C7—C4—C5—C6 175.6 (2) C8—C9—C11—C12 −11.1 (4)
C4—C5—C6—O2 −177.8 (2) C10—C11—C12—C13 0.4 (3)
C4—C5—C6—C1 1.9 (4) C9—C11—C12—C13 −178.6 (2)
O1—C1—C6—O2 −0.3 (3) C11—C12—C13—Cl2 179.3 (2)
C2—C1—C6—O2 178.7 (2) C11—C12—C13—S1 −0.8 (3)
O1—C1—C6—C5 179.9 (2) C2—C1—O1—C14 0.1 (4)
C2—C1—C6—C5 −1.1 (3) C6—C1—O1—C14 178.9 (2)
C3—C4—C7—C8 −175.4 (3) C5—C6—O2—C15 1.8 (3)
C5—C4—C7—C8 8.0 (4) C1—C6—O2—C15 −178.0 (2)
C4—C7—C8—C9 −177.4 (2) C11—C10—S1—C13 −0.5 (2)
C7—C8—C9—O3 2.2 (4) Cl1—C10—S1—C13 −179.29 (16)
C7—C8—C9—C11 179.9 (2) C12—C13—S1—C10 0.7 (2)
Cl1—C10—C11—C12 178.78 (19) Cl2—C13—S1—C10 −179.34 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O3i 0.95 2.53 3.227 (3) 130
C12—H12···O1ii 0.95 2.55 3.441 (3) 157
C14—H14A···O3iii 0.98 2.53 3.474 (3) 161
C15—H15B···Cl1iv 0.98 2.82 3.647 (3) 142

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+3/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5014).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bruker (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717. [DOI] [PMC free article] [PubMed]
  6. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035142/ng5014sup1.cif

e-66-o2479-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035142/ng5014Isup2.hkl

e-66-o2479-Isup2.hkl (168KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES