Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 18;66(Pt 10):o2581. doi: 10.1107/S1600536810036561

rac-1-(Furan-2-ylmeth­yl)-N-nitro-5-(oxolan-2-ylmeth­yl)-1,3,5-triazinan-2-imine

Chuan-Wen Sun a,*, Xu-Bo Ma a, Hong-Fei Bu a
PMCID: PMC2983308  PMID: 21587563

Abstract

In the title compound C13H19N5O4, which belongs to the insecticidally active neonicotinoid group of compounds, the triazane ring exhibits a half-chair conformation. The large discrepancy between the two nitro O—N—N bond angles [116.1 (2) and 123.98 (19)°] may be attributed to intra­molecular N—H⋯O hydrogen bonding involving one of the nitro O atoms as the acceptor. The delocalization of the electrons extends as far as the nitro group, forming coplanar π-electron networks. In the crystal, inversion dimers lined by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For general background to neonicotinoids, see: Kagabu et al. (2005); Peter & Ralf (2008); Riley & Merz (2007); Tian et al. (2007); Tomizawa et al. (2000). For the synthesis, see: Zhu et al. (2010).graphic file with name e-66-o2581-scheme1.jpg

Experimental

Crystal data

  • C13H19N5O4

  • M r = 309.33

  • Monoclinic, Inline graphic

  • a = 11.1898 (12) Å

  • b = 9.262 (1) Å

  • c = 14.4863 (15) Å

  • β = 99.276 (2)°

  • V = 1481.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 9196 measured reflections

  • 2902 independent reflections

  • 2615 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.164

  • S = 1.18

  • 2902 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036561/zs2064sup1.cif

e-66-o2581-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036561/zs2064Isup2.hkl

e-66-o2581-Isup2.hkl (142.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.82 (3) 1.97 (3) 2.563 (3) 128 (2)
N2—H2⋯O1i 0.82 (3) 2.43 (3) 3.035 (3) 132 (2)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

In recent years, the neonicotinoids have been the fastest-growing class of insecticides used in modern crop protection (Tomizawa et al., 2000; Kagabu et al., 2005; Tian et al., 2007; Peter & Ralf, 2008). We report here crystal structure of one of these compounds, C13H19N5O4, the title compound (I). In the structure of (I) (Fig. 1), the triazine ring exhibits a half-chair conformation with a dihedral angle of 50.62° between plane A (C8, N3, C7, N2, C6) and plane B (C6, N1, C8). The bond angles C8–N1–C6, N1–C6–N2, C6–N2–C7, N2–C7–N3, C7–N3–C8 and N3–C8–N1 are 108.15 (19), 111.20 (18), 122.69 (19), 118.54 (19), 119.94 (18) and 111.98 (18)° respectively, in turn indicating asymmetry and strong tensility in the 1,3,5-hexahydrotriazine ring. The large discrepancy between the nitro O3–N5–N4 and O4–N5–N4 bond angles [116.1 (2) and 123.98 (19)° respectively] may be attributed to the intramolecular N2–H···O3 hydrogen bond (Table 1). There is also a single intermolecular N–H···O hydrogen bond associated with N2 (Fig. 2).

Interestingly, due to the transfer of the lone-pair of electrons from the hetero-N atoms to the C7═N4 double bond, the C7–N2 and C7–N3 bond lengths (1.327 (3) Å and 1.338 (3) Å), are both remarkably shorter than the pure C–N single bond (1.49 Å), but close to the C═C value (1.33 Å). The delocalization of the electrons extends as far as the electron-withdrawing nitro group, forming a coplanar π-electron network. A six-membered plane C (C7, N4, N5, O3, H2 and N2) is established by the intramolecular N2–H···O3 hydrogen bond. In addition, planes A and C form an enlarged plane D (comprising C6, C8, N3, C7, N2, H2, N4, O3 and O4).

Experimental

The title compound was prepared by the literature method (Zhu et al., 2010) and was recrystallized from ethanol-water (10:1), giving colorless crystals (yield 79.6%). 1HNMR(CDCl3, 400 Hz): 9.61 (1H, s, NH), 7.37–7.36 (2H, d, J = 0.8 Hz, furan—H), 6.38–6.34 (3H,m,furan—H), 4.49–4.47(6H, m, CH2—furan, triazine–H), 3.97–3.85 (2H, m, CH2—tetrahydrofuran), 3.53–3.12 (3H, m, tetrahydrofuran—H) 1.86–1.64(4H, m, tetrahydrofuran—H); IR(KBr, cm-1) 3278(N—H), 1588 (C═N), 1195 (C—O—C), 1060 (C—N), Anal.: calcd. for C13H19N5O4: C 50.48, H 6.19, N 22.64%; found, C 51.03, H 6.17, N 22.75%.

Refinement

H atoms bonded to C were positioned geometrically [C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98Å (methine)] and refined in riding modes [Uiso(H) = 1.2Ueq(C). H atoms bonded to N were found in Fourier difference maps and refined with the constraints of N—H = 0.82 (3)Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme with non-H atoms shown as 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A perspective view of the packing of the title compound (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C13H19N5O4 F(000) = 656
Mr = 309.33 Dx = 1.387 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4051 reflections
a = 11.1898 (12) Å θ = 2.5–28.3°
b = 9.262 (1) Å µ = 0.11 mm1
c = 14.4863 (15) Å T = 298 K
β = 99.276 (2)° Block, colorless
V = 1481.7 (3) Å3 0.16 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2615 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.054
graphite θmax = 26.0°, θmin = 2.1°
φ and ω scans h = −12→13
9196 measured reflections k = −9→11
2902 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164 H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.7103P] where P = (Fo2 + 2Fc2)/3
2902 reflections (Δ/σ)max < 0.001
202 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1890 (2) 1.0871 (3) −0.01634 (16) 0.0487 (6)
H1 0.1262 1.0589 −0.0684 0.058*
C2 0.2996 (3) 1.1394 (3) −0.0536 (2) 0.0696 (8)
H2A 0.3568 1.0614 −0.0561 0.084*
H2B 0.2777 1.1802 −0.1157 0.084*
C3 0.3511 (3) 1.2516 (4) 0.0146 (2) 0.0736 (9)
H3A 0.3924 1.3257 −0.0156 0.088*
H3B 0.4078 1.2094 0.0651 0.088*
C4 0.2436 (3) 1.3124 (3) 0.0502 (2) 0.0615 (7)
H4A 0.2630 1.3307 0.1169 0.074*
H4B 0.2191 1.4027 0.0188 0.074*
C5 0.2134 (2) 0.9639 (3) 0.05245 (16) 0.0473 (6)
H5A 0.2792 0.9902 0.1017 0.057*
H5B 0.1420 0.9468 0.0809 0.057*
C6 0.1429 (2) 0.7399 (3) −0.02488 (15) 0.0482 (6)
H6A 0.1663 0.6655 −0.0656 0.058*
H6B 0.0791 0.7970 −0.0608 0.058*
C7 0.16647 (19) 0.6493 (2) 0.13610 (15) 0.0382 (5)
C8 0.3341 (2) 0.7465 (3) 0.06578 (16) 0.0476 (6)
H8A 0.4025 0.8074 0.0900 0.057*
H8B 0.3630 0.6705 0.0290 0.057*
C9 0.3679 (2) 0.6694 (3) 0.23428 (16) 0.0532 (6)
H9A 0.3267 0.6217 0.2798 0.064*
H9B 0.3899 0.7657 0.2574 0.064*
C10 0.4795 (2) 0.5882 (3) 0.22556 (16) 0.0482 (6)
C11 0.5939 (2) 0.6300 (3) 0.23025 (18) 0.0540 (6)
H11 0.6233 0.7234 0.2408 0.065*
C12 0.6623 (2) 0.5070 (4) 0.2163 (2) 0.0693 (8)
H12 0.7454 0.5036 0.2161 0.083*
C13 0.5869 (3) 0.3982 (4) 0.2035 (3) 0.0808 (10)
H13 0.6081 0.3034 0.1925 0.097*
N1 0.24528 (17) 0.8309 (2) 0.00685 (12) 0.0440 (5)
N2 0.09726 (18) 0.6721 (2) 0.05406 (13) 0.0434 (5)
H2 0.024 (2) 0.659 (3) 0.0503 (18) 0.052*
N3 0.28447 (16) 0.6810 (2) 0.14521 (12) 0.0442 (5)
N4 0.13154 (16) 0.5958 (2) 0.21520 (13) 0.0463 (5)
N5 0.01557 (17) 0.5609 (2) 0.21385 (14) 0.0486 (5)
O1 0.14841 (15) 1.20885 (19) 0.03162 (12) 0.0540 (5)
O2 0.47092 (18) 0.4451 (2) 0.20884 (18) 0.0799 (7)
O3 −0.06477 (17) 0.5800 (3) 0.14598 (15) 0.0902 (8)
O4 −0.00984 (17) 0.5099 (2) 0.28658 (14) 0.0709 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0558 (14) 0.0487 (14) 0.0407 (12) −0.0013 (11) 0.0050 (10) 0.0002 (10)
C2 0.092 (2) 0.0565 (17) 0.0706 (18) −0.0087 (16) 0.0424 (17) 0.0028 (14)
C3 0.0628 (17) 0.078 (2) 0.084 (2) −0.0169 (16) 0.0242 (16) −0.0094 (17)
C4 0.0651 (17) 0.0516 (16) 0.0669 (17) −0.0046 (13) 0.0075 (13) −0.0092 (13)
C5 0.0543 (14) 0.0514 (14) 0.0384 (11) −0.0023 (11) 0.0141 (10) 0.0002 (10)
C6 0.0558 (14) 0.0530 (14) 0.0361 (11) 0.0010 (11) 0.0086 (10) −0.0008 (10)
C7 0.0385 (11) 0.0360 (11) 0.0409 (11) 0.0031 (9) 0.0088 (9) −0.0005 (9)
C8 0.0448 (12) 0.0543 (14) 0.0470 (12) 0.0011 (11) 0.0175 (10) 0.0064 (11)
C9 0.0432 (13) 0.0758 (18) 0.0407 (12) −0.0032 (12) 0.0072 (10) 0.0061 (12)
C10 0.0418 (12) 0.0613 (16) 0.0393 (11) −0.0063 (11) 0.0004 (9) 0.0113 (11)
C11 0.0406 (12) 0.0648 (16) 0.0580 (14) −0.0129 (12) 0.0121 (11) 0.0088 (12)
C12 0.0416 (14) 0.093 (2) 0.0730 (18) 0.0042 (15) 0.0090 (13) 0.0168 (17)
C13 0.0614 (18) 0.069 (2) 0.108 (3) 0.0143 (17) 0.0027 (17) 0.0073 (19)
N1 0.0493 (11) 0.0454 (11) 0.0393 (9) 0.0019 (9) 0.0125 (8) 0.0025 (8)
N2 0.0386 (10) 0.0493 (12) 0.0416 (10) −0.0025 (9) 0.0046 (8) 0.0033 (8)
N3 0.0370 (10) 0.0562 (12) 0.0403 (10) 0.0008 (8) 0.0091 (8) 0.0102 (8)
N4 0.0369 (10) 0.0568 (12) 0.0465 (10) −0.0022 (9) 0.0099 (8) 0.0112 (9)
N5 0.0423 (11) 0.0519 (12) 0.0523 (12) −0.0010 (9) 0.0101 (9) 0.0095 (9)
O1 0.0495 (10) 0.0493 (10) 0.0636 (11) 0.0033 (8) 0.0104 (8) −0.0040 (8)
O2 0.0524 (12) 0.0665 (14) 0.1163 (19) −0.0084 (10) −0.0001 (11) 0.0061 (12)
O3 0.0461 (11) 0.154 (2) 0.0675 (13) −0.0258 (13) 0.0006 (10) 0.0314 (14)
O4 0.0549 (11) 0.0947 (16) 0.0677 (12) −0.0047 (10) 0.0235 (9) 0.0345 (11)

Geometric parameters (Å, °)

C1—O1 1.436 (3) C7—N4 1.362 (3)
C1—C2 1.508 (4) C8—N1 1.433 (3)
C1—C5 1.510 (3) C8—N3 1.485 (3)
C1—H1 0.9800 C8—H8A 0.9700
C2—C3 1.485 (4) C8—H8B 0.9700
C2—H2A 0.9700 C9—N3 1.469 (3)
C2—H2B 0.9700 C9—C10 1.481 (3)
C3—C4 1.494 (4) C9—H9A 0.9700
C3—H3A 0.9700 C9—H9B 0.9700
C3—H3B 0.9700 C10—C11 1.329 (3)
C4—O1 1.426 (3) C10—O2 1.348 (3)
C4—H4A 0.9700 C11—C12 1.405 (4)
C4—H4B 0.9700 C11—H11 0.9300
C5—N1 1.469 (3) C12—C13 1.309 (4)
C5—H5A 0.9700 C12—H12 0.9300
C5—H5B 0.9700 C13—O2 1.382 (4)
C6—N1 1.436 (3) C13—H13 0.9300
C6—N2 1.467 (3) N2—H2 0.82 (3)
C6—H6A 0.9700 N4—N5 1.335 (3)
C6—H6B 0.9700 N5—O4 1.229 (3)
C7—N2 1.327 (3) N5—O3 1.233 (3)
C7—N3 1.338 (3)
O1—C1—C2 105.2 (2) N1—C8—N3 111.98 (18)
O1—C1—C5 108.15 (18) N1—C8—H8A 109.2
C2—C1—C5 114.1 (2) N3—C8—H8A 109.2
O1—C1—H1 109.7 N1—C8—H8B 109.2
C2—C1—H1 109.7 N3—C8—H8B 109.2
C5—C1—H1 109.7 H8A—C8—H8B 107.9
C3—C2—C1 103.8 (2) N3—C9—C10 112.8 (2)
C3—C2—H2A 111.0 N3—C9—H9A 109.0
C1—C2—H2A 111.0 C10—C9—H9A 109.0
C3—C2—H2B 111.0 N3—C9—H9B 109.0
C1—C2—H2B 111.0 C10—C9—H9B 109.0
H2A—C2—H2B 109.0 H9A—C9—H9B 107.8
C2—C3—C4 104.2 (2) C11—C10—O2 109.6 (2)
C2—C3—H3A 110.9 C11—C10—C9 131.8 (3)
C4—C3—H3A 110.9 O2—C10—C9 118.6 (2)
C2—C3—H3B 110.9 C10—C11—C12 107.4 (3)
C4—C3—H3B 110.9 C10—C11—H11 126.3
H3A—C3—H3B 108.9 C12—C11—H11 126.3
O1—C4—C3 107.4 (2) C13—C12—C11 106.9 (3)
O1—C4—H4A 110.2 C13—C12—H12 126.6
C3—C4—H4A 110.2 C11—C12—H12 126.6
O1—C4—H4B 110.2 C12—C13—O2 109.9 (3)
C3—C4—H4B 110.2 C12—C13—H13 125.1
H4A—C4—H4B 108.5 O2—C13—H13 125.1
N1—C5—C1 111.59 (18) C8—N1—C6 108.15 (19)
N1—C5—H5A 109.3 C8—N1—C5 112.63 (19)
C1—C5—H5A 109.3 C6—N1—C5 113.40 (19)
N1—C5—H5B 109.3 C7—N2—C6 122.69 (19)
C1—C5—H5B 109.3 C7—N2—H2 117.9 (18)
H5A—C5—H5B 108.0 C6—N2—H2 118.7 (18)
N1—C6—N2 111.20 (18) C7—N3—C9 123.22 (18)
N1—C6—H6A 109.4 C7—N3—C8 119.94 (18)
N2—C6—H6A 109.4 C9—N3—C8 116.49 (18)
N1—C6—H6B 109.4 N5—N4—C7 119.09 (19)
N2—C6—H6B 109.4 O4—N5—O3 119.9 (2)
H6A—C6—H6B 108.0 O4—N5—N4 116.1 (2)
N2—C7—N3 118.54 (19) O3—N5—N4 123.98 (19)
N2—C7—N4 127.3 (2) C4—O1—C1 109.54 (19)
N3—C7—N4 114.15 (19) C10—O2—C13 106.2 (2)
O1—C1—C2—C3 29.5 (3) N1—C6—N2—C7 −25.4 (3)
C5—C1—C2—C3 −88.8 (3) N2—C7—N3—C9 175.7 (2)
C1—C2—C3—C4 −30.1 (3) N4—C7—N3—C9 −4.3 (3)
C2—C3—C4—O1 20.2 (3) N2—C7—N3—C8 2.8 (3)
O1—C1—C5—N1 175.01 (18) N4—C7—N3—C8 −177.2 (2)
C2—C1—C5—N1 −68.3 (3) C10—C9—N3—C7 130.5 (2)
N3—C9—C10—C11 110.1 (3) C10—C9—N3—C8 −56.4 (3)
N3—C9—C10—O2 −69.1 (3) N1—C8—N3—C7 28.7 (3)
O2—C10—C11—C12 −0.3 (3) N1—C8—N3—C9 −144.7 (2)
C9—C10—C11—C12 −179.6 (2) N2—C7—N4—N5 −0.1 (4)
C10—C11—C12—C13 0.3 (3) N3—C7—N4—N5 179.9 (2)
C11—C12—C13—O2 −0.2 (4) C7—N4—N5—O4 178.3 (2)
N3—C8—N1—C6 −56.5 (3) C7—N4—N5—O3 −3.5 (4)
N3—C8—N1—C5 69.6 (2) C3—C4—O1—C1 −1.6 (3)
N2—C6—N1—C8 54.5 (2) C2—C1—O1—C4 −17.4 (3)
N2—C6—N1—C5 −71.2 (2) C5—C1—O1—C4 104.8 (2)
C1—C5—N1—C8 144.4 (2) C11—C10—O2—C13 0.2 (3)
C1—C5—N1—C6 −92.4 (2) C9—C10—O2—C13 179.6 (2)
N3—C7—N2—C6 −4.4 (3) C12—C13—O2—C10 0.0 (4)
N4—C7—N2—C6 175.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3 0.82 (3) 1.97 (3) 2.563 (3) 128 (2)
N2—H2···O1i 0.82 (3) 2.43 (3) 3.035 (3) 132 (2)

Symmetry codes: (i) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2064).

References

  1. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci.30, 409–413.
  3. Peter, J. & Ralf, N. (2008). J. Pest. Manag. Sci. A, 64, 1064–1098.
  4. Riley, K. E. Jr & Merz, K. M. (2007). J. Phys. Chem. A, 111, 1688–1694. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tian, Z. Z., Jiang, Z. X., Li, Z., Song, G. H. & Huang, Q. C. (2007). J. Agric. Food Chem.55, 143–147. [DOI] [PubMed]
  7. Tomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem.48, 6016–6024. [DOI] [PubMed]
  8. Zhu, J., Xue, S. J., Wang, H. F., Yang, D. R. & Jin, J. (2010). Chin. J. Struct. Chem.29, 400–406.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036561/zs2064sup1.cif

e-66-o2581-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036561/zs2064Isup2.hkl

e-66-o2581-Isup2.hkl (142.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES