Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 4;66(Pt 10):m1191–m1192. doi: 10.1107/S1600536810033891

Undeca­carbonyl-1κ3 C,2κ4 C,3κ4 C-[tris­(2-chloro­eth­yl) phosphite-1κP]-triangulo-triruthenium(0)

Omar bin Shawkataly a,*,, Syed Sauban Ghani a, Rajabathar Jothiramalingam a, Chin Sing Yeap b,§, Hoong-Kun Fun b,
PMCID: PMC2983316  PMID: 21587355

Abstract

In the title triangulo-triruthenium compound, [Ru3(C6H12Cl3O3P)(CO)11], one equatorial carbonyl ligand is substituted by a monodentate phosphite ligand, leaving one equatorial and two axial carbonyl ligands on one Ru atom. The remaining two Ru atoms each carry two equatorial and two axial terminal carbonyl ligands. In the crystal structure, the mol­ecules are linked into a one-dimensional column along [100] by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a ,b ). For the synthesis, see: Bruce et al. (1987). For related structures, see: Shawkataly et al. (1991, 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-m1191-scheme1.jpg

Experimental

Crystal data

  • [Ru3(C6H12Cl3O3P)(CO)11]

  • M r = 880.80

  • Triclinic, Inline graphic

  • a = 7.8592 (9) Å

  • b = 12.5979 (14) Å

  • c = 14.8393 (17) Å

  • α = 109.442 (3)°

  • β = 93.791 (3)°

  • γ = 90.763 (3)°

  • V = 1381.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 100 K

  • 0.20 × 0.19 × 0.03 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.691, T max = 0.936

  • 32458 measured reflections

  • 11981 independent reflections

  • 9935 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.120

  • S = 1.07

  • 11981 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −1.36 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033891/hy2343sup1.cif

e-66-m1191-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033891/hy2343Isup2.hkl

e-66-m1191-Isup2.hkl (585.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O4i 0.97 2.58 3.297 (4) 131
C17—H17B⋯O5ii 0.97 2.54 3.307 (4) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors gratefully acknowledge funding from the Malaysian Government and Universiti Sains Malaysia (USM) under the University Research Grant 1001/PJJAUH/811115. SSG thanks USM for a post-doctoral fellowship. HKF and CSY thank USM for the Research University Golden Goose Grant 1001/PFIZIK/811012 and CSY also thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Syntheses and structures of substituted triangulo-triruthenium clusters have been of interest to researchers due to observed structural variations and their potential catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L= group 15 ligands), have been reported (Bruce et al., 1985, 1988a,b). As part of our ongoing studies on phosphite substituted triangulo-triruthenium clusters (Shawkataly et al., 1991, 2010), herein we report the structure of the title compound.

In the title compound (Fig. 1), a monodentate phosphite ligand has replaced a single carbonyl ligand of the Ru3 triangle. The monodentate phosphite ligand is bonded equatorially to the Ru1 atoms of the triangulo-triruthenium unit. Thus, the Ru2 and Ru3 atoms each carry two equatorial and two axial terminal carbonyl ligands, while the phosphite-bonded Ru1 atom binds one equatorial and two axial terminal carbonyl ligands.

In the crystal structure, the molecules are linked into a one-dimensional column along [1 0 0] by intermolecular C—H···O hydrogen bonds (Fig. 2, Table 1).

Experimental

All the manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Schlenk techniques. THF was dried over sodium wire and freshly distilled from sodium benzophenone ketyl solution. The title compound was prepared by mixing Ru3(CO)12 (Aldrich) and P(OCH2CH2Cl)3 (Maybridge) in a 1:1 molar ratio in THF at 40°C. Diphenylketyl radical anion initiator of about 0.2 ml (synthesized as per the method of Bruce et al., 1987) was introduced into the reaction mixture under a current of nitrogen. After stirring of 15 min, the solvent was removed under vacuum. Separation of the product in a pure form was done by column chromatography (Florisil, 100–200 mesh; eluant, dichloromethane: hexane). Crystals suitable for X-ray diffraction were grown by slow diffusion of CH3OH into the CH2Cl2 solution.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.36 and -1.36 eÅ-3 were located 1.32 and 0.81 Å from the C8 and Ru3 atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into one-dimensional columns along the a axis.

Crystal data

[Ru3(C6H12Cl3O3P)(CO)11] Z = 2
Mr = 880.80 F(000) = 848
Triclinic, P1 Dx = 2.117 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8592 (9) Å Cell parameters from 9961 reflections
b = 12.5979 (14) Å θ = 2.6–34.9°
c = 14.8393 (17) Å µ = 2.03 mm1
α = 109.442 (3)° T = 100 K
β = 93.791 (3)° Plate, orange
γ = 90.763 (3)° 0.20 × 0.19 × 0.03 mm
V = 1381.4 (3) Å3

Data collection

Bruker APEXII DUO CCD diffractometer 11981 independent reflections
Radiation source: fine-focus sealed tube 9935 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 35.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→11
Tmin = 0.691, Tmax = 0.936 k = −20→20
32458 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0712P)2] where P = (Fo2 + 2Fc2)/3
11981 reflections (Δ/σ)max = 0.001
343 parameters Δρmax = 1.36 e Å3
0 restraints Δρmin = −1.36 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.71803 (3) 0.328125 (16) 0.260791 (13) 0.01152 (5)
Ru2 0.70797 (3) 0.443891 (16) 0.125659 (14) 0.01282 (5)
Ru3 0.90548 (3) 0.247218 (16) 0.093890 (14) 0.01285 (5)
Cl1 1.27297 (12) 0.29528 (8) 0.52857 (7) 0.0393 (2)
Cl2 0.44453 (13) −0.08078 (8) 0.26311 (8) 0.0408 (2)
Cl3 0.87744 (12) 0.12562 (8) 0.59050 (6) 0.03316 (18)
P1 0.81185 (9) 0.19414 (5) 0.32030 (5) 0.01243 (11)
O1 0.4173 (3) 0.1665 (2) 0.15829 (18) 0.0261 (5)
O2 0.4589 (3) 0.4615 (2) 0.39455 (16) 0.0272 (5)
O3 1.0116 (3) 0.48098 (19) 0.38775 (16) 0.0243 (4)
O4 1.0024 (4) 0.6040 (2) 0.24393 (19) 0.0312 (5)
O5 0.4624 (4) 0.6254 (2) 0.2229 (2) 0.0353 (6)
O6 0.4026 (3) 0.2931 (2) 0.01285 (18) 0.0264 (5)
O7 0.8072 (3) 0.4917 (2) −0.05275 (17) 0.0285 (5)
O8 0.6085 (3) 0.0883 (2) −0.02193 (18) 0.0286 (5)
O9 1.0676 (3) 0.03923 (18) 0.11984 (17) 0.0237 (4)
O10 1.2121 (3) 0.3946 (2) 0.21192 (18) 0.0246 (4)
O11 1.0379 (3) 0.2483 (2) −0.09539 (17) 0.0296 (5)
O12 1.0146 (3) 0.20752 (17) 0.34233 (15) 0.0185 (4)
O13 0.7651 (3) 0.06914 (16) 0.25139 (14) 0.0167 (3)
O14 0.7425 (3) 0.18383 (16) 0.41609 (13) 0.0156 (3)
C1 0.5297 (4) 0.2259 (2) 0.1906 (2) 0.0170 (5)
C2 0.5606 (4) 0.4129 (2) 0.34655 (19) 0.0176 (5)
C3 0.9063 (4) 0.4263 (2) 0.33632 (19) 0.0162 (4)
C4 0.8986 (4) 0.5401 (2) 0.2013 (2) 0.0197 (5)
C5 0.5525 (4) 0.5573 (2) 0.1872 (2) 0.0213 (5)
C6 0.5187 (4) 0.3433 (2) 0.0568 (2) 0.0186 (5)
C7 0.7704 (4) 0.4744 (2) 0.0129 (2) 0.0190 (5)
C8 0.7114 (4) 0.1509 (2) 0.0235 (2) 0.0195 (5)
C9 1.0079 (4) 0.1172 (2) 0.1112 (2) 0.0176 (5)
C10 1.0934 (4) 0.3452 (2) 0.1710 (2) 0.0178 (5)
C11 0.9900 (4) 0.2496 (2) −0.0249 (2) 0.0191 (5)
C12 1.1191 (4) 0.1307 (2) 0.3739 (2) 0.0201 (5)
H12A 1.1351 0.0632 0.3201 0.024*
H12B 1.0627 0.1090 0.4217 0.024*
C13 1.2881 (4) 0.1874 (3) 0.4157 (2) 0.0251 (6)
H13A 1.3346 0.2200 0.3715 0.030*
H13B 1.3661 0.1316 0.4238 0.030*
C14 0.7869 (4) −0.0323 (2) 0.2750 (2) 0.0206 (5)
H14A 0.7794 −0.0160 0.3433 0.025*
H14B 0.8982 −0.0619 0.2585 0.025*
C15 0.6486 (4) −0.1176 (2) 0.2195 (2) 0.0241 (6)
H15A 0.6760 −0.1907 0.2237 0.029*
H15B 0.6449 −0.1235 0.1525 0.029*
C16 0.7696 (4) 0.2759 (2) 0.50584 (19) 0.0183 (5)
H16A 0.6951 0.3368 0.5060 0.022*
H16B 0.8869 0.3046 0.5150 0.022*
C17 0.7303 (4) 0.2308 (3) 0.5846 (2) 0.0211 (5)
H17A 0.6149 0.1984 0.5727 0.025*
H17B 0.7374 0.2919 0.6455 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.01204 (9) 0.01129 (8) 0.01162 (8) 0.00113 (6) 0.00190 (6) 0.00414 (6)
Ru2 0.01309 (9) 0.01271 (8) 0.01366 (9) 0.00183 (6) 0.00155 (6) 0.00559 (6)
Ru3 0.01169 (9) 0.01307 (9) 0.01344 (9) 0.00218 (6) 0.00272 (6) 0.00355 (6)
Cl1 0.0261 (4) 0.0352 (4) 0.0420 (5) 0.0005 (3) −0.0078 (4) −0.0045 (4)
Cl2 0.0277 (4) 0.0341 (4) 0.0615 (6) 0.0012 (3) 0.0209 (4) 0.0140 (4)
Cl3 0.0348 (4) 0.0420 (4) 0.0343 (4) 0.0164 (4) 0.0094 (3) 0.0264 (4)
P1 0.0123 (3) 0.0118 (2) 0.0135 (3) 0.0009 (2) 0.0010 (2) 0.0046 (2)
O1 0.0173 (10) 0.0285 (11) 0.0295 (11) −0.0045 (8) −0.0009 (8) 0.0065 (9)
O2 0.0225 (11) 0.0326 (12) 0.0220 (10) 0.0072 (9) 0.0069 (8) 0.0018 (9)
O3 0.0253 (11) 0.0209 (9) 0.0222 (10) −0.0057 (8) −0.0020 (8) 0.0023 (8)
O4 0.0335 (14) 0.0245 (11) 0.0345 (13) −0.0079 (10) −0.0086 (11) 0.0108 (10)
O5 0.0309 (14) 0.0253 (11) 0.0446 (15) 0.0083 (10) 0.0135 (11) 0.0026 (10)
O6 0.0194 (11) 0.0268 (11) 0.0283 (11) −0.0004 (9) −0.0045 (9) 0.0044 (9)
O7 0.0285 (12) 0.0391 (13) 0.0258 (11) 0.0016 (10) 0.0059 (9) 0.0205 (10)
O8 0.0215 (11) 0.0243 (10) 0.0319 (12) 0.0010 (9) 0.0000 (9) −0.0013 (9)
O9 0.0224 (11) 0.0202 (9) 0.0298 (11) 0.0062 (8) 0.0044 (8) 0.0093 (8)
O10 0.0159 (10) 0.0268 (11) 0.0281 (11) −0.0014 (8) 0.0003 (8) 0.0054 (9)
O11 0.0287 (12) 0.0397 (13) 0.0222 (10) 0.0015 (10) 0.0085 (9) 0.0117 (9)
O12 0.0127 (8) 0.0203 (9) 0.0260 (10) 0.0015 (7) 0.0007 (7) 0.0125 (8)
O13 0.0218 (10) 0.0126 (7) 0.0158 (8) −0.0002 (7) 0.0008 (7) 0.0050 (6)
O14 0.0175 (9) 0.0153 (8) 0.0138 (8) −0.0015 (7) 0.0026 (7) 0.0046 (6)
C1 0.0152 (11) 0.0186 (11) 0.0176 (11) 0.0021 (9) 0.0017 (9) 0.0063 (9)
C2 0.0178 (12) 0.0191 (11) 0.0164 (10) 0.0013 (9) 0.0015 (9) 0.0064 (9)
C3 0.0179 (12) 0.0143 (10) 0.0170 (10) −0.0007 (9) 0.0031 (9) 0.0056 (8)
C4 0.0179 (12) 0.0191 (11) 0.0235 (12) 0.0007 (9) −0.0005 (10) 0.0093 (10)
C5 0.0212 (13) 0.0180 (11) 0.0234 (12) 0.0006 (10) 0.0048 (10) 0.0047 (10)
C6 0.0180 (12) 0.0169 (11) 0.0212 (12) 0.0027 (9) 0.0031 (9) 0.0065 (9)
C7 0.0171 (12) 0.0210 (11) 0.0215 (12) 0.0029 (9) 0.0018 (9) 0.0103 (10)
C8 0.0145 (11) 0.0198 (11) 0.0235 (12) 0.0027 (9) 0.0046 (9) 0.0056 (10)
C9 0.0148 (11) 0.0180 (11) 0.0188 (11) 0.0007 (9) 0.0043 (9) 0.0042 (9)
C10 0.0150 (11) 0.0198 (11) 0.0184 (11) 0.0023 (9) 0.0019 (9) 0.0059 (9)
C11 0.0174 (12) 0.0208 (11) 0.0183 (11) 0.0024 (9) 0.0034 (9) 0.0053 (9)
C12 0.0168 (12) 0.0188 (11) 0.0245 (12) 0.0054 (9) −0.0009 (10) 0.0074 (10)
C13 0.0143 (12) 0.0297 (14) 0.0306 (15) 0.0042 (11) 0.0002 (11) 0.0092 (12)
C14 0.0266 (14) 0.0119 (10) 0.0230 (12) 0.0020 (9) −0.0004 (11) 0.0057 (9)
C15 0.0252 (14) 0.0147 (11) 0.0292 (14) 0.0003 (10) 0.0065 (11) 0.0023 (10)
C16 0.0223 (13) 0.0160 (10) 0.0147 (10) 0.0022 (9) 0.0022 (9) 0.0022 (8)
C17 0.0204 (13) 0.0283 (13) 0.0156 (11) 0.0073 (11) 0.0020 (9) 0.0084 (10)

Geometric parameters (Å, °)

Ru1—C2 1.905 (3) O5—C5 1.131 (4)
Ru1—C3 1.945 (3) O6—C6 1.135 (4)
Ru1—C1 1.946 (3) O7—C7 1.120 (4)
Ru1—P1 2.2609 (7) O8—C8 1.135 (4)
Ru1—Ru2 2.8431 (4) O9—C9 1.136 (4)
Ru1—Ru3 2.8610 (4) O10—C10 1.133 (4)
Ru2—C5 1.922 (3) O11—C11 1.130 (4)
Ru2—C7 1.929 (3) O12—C12 1.450 (3)
Ru2—C6 1.936 (3) O13—C14 1.443 (3)
Ru2—C4 1.949 (3) O14—C16 1.446 (3)
Ru2—Ru3 2.8622 (4) C12—C13 1.493 (4)
Ru3—C9 1.919 (3) C12—H12A 0.9700
Ru3—C11 1.934 (3) C12—H12B 0.9700
Ru3—C8 1.945 (3) C13—H13A 0.9700
Ru3—C10 1.950 (3) C13—H13B 0.9700
Cl1—C13 1.784 (3) C14—C15 1.509 (4)
Cl2—C15 1.779 (3) C14—H14A 0.9700
Cl3—C17 1.790 (3) C14—H14B 0.9700
P1—O13 1.589 (2) C15—H15A 0.9700
P1—O14 1.600 (2) C15—H15B 0.9700
P1—O12 1.601 (2) C16—C17 1.507 (4)
O1—C1 1.122 (4) C16—H16A 0.9700
O2—C2 1.148 (4) C16—H16B 0.9700
O3—C3 1.137 (3) C17—H17A 0.9700
O4—C4 1.135 (4) C17—H17B 0.9700
C2—Ru1—C3 90.61 (12) C12—O12—P1 124.95 (18)
C2—Ru1—C1 88.67 (12) C14—O13—P1 126.29 (18)
C3—Ru1—C1 176.82 (11) C16—O14—P1 120.43 (17)
C2—Ru1—P1 106.42 (9) O1—C1—Ru1 173.4 (3)
C3—Ru1—P1 88.17 (8) O2—C2—Ru1 176.4 (3)
C1—Ru1—P1 89.06 (8) O3—C3—Ru1 173.4 (2)
C2—Ru1—Ru2 99.93 (8) O4—C4—Ru2 173.8 (3)
C3—Ru1—Ru2 91.10 (8) O5—C5—Ru2 178.8 (3)
C1—Ru1—Ru2 92.08 (8) O6—C6—Ru2 172.8 (3)
P1—Ru1—Ru2 153.641 (19) O7—C7—Ru2 179.6 (3)
C2—Ru1—Ru3 159.81 (8) O8—C8—Ru3 173.9 (3)
C3—Ru1—Ru3 93.38 (8) O9—C9—Ru3 178.8 (3)
C1—Ru1—Ru3 88.35 (8) O10—C10—Ru3 173.8 (3)
P1—Ru1—Ru3 93.50 (2) O11—C11—Ru3 178.3 (3)
Ru2—Ru1—Ru3 60.236 (9) O12—C12—C13 109.3 (2)
C5—Ru2—C7 106.72 (13) O12—C12—H12A 109.8
C5—Ru2—C6 90.60 (12) C13—C12—H12A 109.8
C7—Ru2—C6 93.05 (12) O12—C12—H12B 109.8
C5—Ru2—C4 89.78 (13) C13—C12—H12B 109.8
C7—Ru2—C4 90.49 (12) H12A—C12—H12B 108.3
C6—Ru2—C4 176.17 (12) C12—C13—Cl1 112.2 (2)
C5—Ru2—Ru1 97.66 (9) C12—C13—H13A 109.2
C7—Ru2—Ru1 155.59 (9) Cl1—C13—H13A 109.2
C6—Ru2—Ru1 87.85 (9) C12—C13—H13B 109.2
C4—Ru2—Ru1 88.32 (9) Cl1—C13—H13B 109.2
C5—Ru2—Ru3 157.76 (9) H13A—C13—H13B 107.9
C7—Ru2—Ru3 95.47 (9) O13—C14—C15 108.5 (2)
C6—Ru2—Ru3 86.84 (8) O13—C14—H14A 110.0
C4—Ru2—Ru3 91.37 (9) C15—C14—H14A 110.0
Ru1—Ru2—Ru3 60.191 (8) O13—C14—H14B 110.0
C9—Ru3—C11 103.01 (12) C15—C14—H14B 110.0
C9—Ru3—C8 88.67 (12) H14A—C14—H14B 108.4
C11—Ru3—C8 90.45 (12) C14—C15—Cl2 112.2 (2)
C9—Ru3—C10 91.35 (12) C14—C15—H15A 109.2
C11—Ru3—C10 92.68 (12) Cl2—C15—H15A 109.2
C8—Ru3—C10 176.78 (12) C14—C15—H15B 109.2
C9—Ru3—Ru1 101.60 (8) Cl2—C15—H15B 109.2
C11—Ru3—Ru1 155.38 (9) H15A—C15—H15B 107.9
C8—Ru3—Ru1 90.80 (9) O14—C16—C17 107.3 (2)
C10—Ru3—Ru1 86.04 (8) O14—C16—H16A 110.2
C9—Ru3—Ru2 161.17 (8) C17—C16—H16A 110.2
C11—Ru3—Ru2 95.82 (9) O14—C16—H16B 110.2
C8—Ru3—Ru2 91.17 (9) C17—C16—H16B 110.2
C10—Ru3—Ru2 87.77 (9) H16A—C16—H16B 108.5
Ru1—Ru3—Ru2 59.573 (8) C16—C17—Cl3 110.5 (2)
O13—P1—O14 98.19 (10) C16—C17—H17A 109.5
O13—P1—O12 108.50 (12) Cl3—C17—H17A 109.5
O14—P1—O12 104.15 (11) C16—C17—H17B 109.5
O13—P1—Ru1 113.83 (8) Cl3—C17—H17B 109.5
O14—P1—Ru1 120.97 (8) H17A—C17—H17B 108.1
O12—P1—Ru1 110.01 (8)
C2—Ru1—Ru2—C5 1.98 (12) C4—Ru2—Ru3—C9 88.2 (3)
C3—Ru1—Ru2—C5 −88.83 (12) Ru1—Ru2—Ru3—C9 0.9 (3)
C1—Ru1—Ru2—C5 91.00 (12) C5—Ru2—Ru3—C11 175.3 (3)
P1—Ru1—Ru2—C5 −176.92 (10) C7—Ru2—Ru3—C11 −1.28 (12)
Ru3—Ru1—Ru2—C5 177.91 (9) C6—Ru2—Ru3—C11 91.49 (12)
C2—Ru1—Ru2—C7 179.0 (2) C4—Ru2—Ru3—C11 −91.90 (12)
C3—Ru1—Ru2—C7 88.2 (2) Ru1—Ru2—Ru3—C11 −179.18 (9)
C1—Ru1—Ru2—C7 −92.0 (2) C5—Ru2—Ru3—C8 84.8 (3)
P1—Ru1—Ru2—C7 0.1 (2) C7—Ru2—Ru3—C8 −91.85 (13)
Ru3—Ru1—Ru2—C7 −5.1 (2) C6—Ru2—Ru3—C8 0.91 (12)
C2—Ru1—Ru2—C6 −88.33 (12) C4—Ru2—Ru3—C8 177.52 (12)
C3—Ru1—Ru2—C6 −179.15 (11) Ru1—Ru2—Ru3—C8 90.24 (9)
C1—Ru1—Ru2—C6 0.68 (11) C5—Ru2—Ru3—C10 −92.2 (3)
P1—Ru1—Ru2—C6 92.76 (9) C7—Ru2—Ru3—C10 91.19 (12)
Ru3—Ru1—Ru2—C6 87.59 (9) C6—Ru2—Ru3—C10 −176.05 (11)
C2—Ru1—Ru2—C4 91.53 (12) C4—Ru2—Ru3—C10 0.56 (12)
C3—Ru1—Ru2—C4 0.72 (11) Ru1—Ru2—Ru3—C10 −86.72 (8)
C1—Ru1—Ru2—C4 −179.46 (12) C5—Ru2—Ru3—Ru1 −5.5 (2)
P1—Ru1—Ru2—C4 −87.38 (10) C7—Ru2—Ru3—Ru1 177.90 (9)
Ru3—Ru1—Ru2—C4 −92.55 (9) C6—Ru2—Ru3—Ru1 −89.33 (9)
C2—Ru1—Ru2—Ru3 −175.93 (9) C4—Ru2—Ru3—Ru1 87.28 (9)
C3—Ru1—Ru2—Ru3 93.26 (8) C2—Ru1—P1—O13 117.48 (13)
C1—Ru1—Ru2—Ru3 −86.91 (8) C3—Ru1—P1—O13 −152.42 (12)
P1—Ru1—Ru2—Ru3 5.17 (4) C1—Ru1—P1—O13 29.15 (12)
C2—Ru1—Ru3—C9 −168.0 (3) Ru2—Ru1—P1—O13 −63.64 (10)
C3—Ru1—Ru3—C9 90.97 (12) Ru3—Ru1—P1—O13 −59.14 (9)
C1—Ru1—Ru3—C9 −86.36 (12) C2—Ru1—P1—O14 0.96 (13)
P1—Ru1—Ru3—C9 2.60 (9) C3—Ru1—P1—O14 91.05 (12)
Ru2—Ru1—Ru3—C9 −179.70 (9) C1—Ru1—P1—O14 −87.38 (12)
C2—Ru1—Ru3—C11 13.7 (3) Ru2—Ru1—P1—O14 179.83 (8)
C3—Ru1—Ru3—C11 −87.4 (2) Ru3—Ru1—P1—O14 −175.67 (9)
C1—Ru1—Ru3—C11 95.3 (2) C2—Ru1—P1—O12 −120.51 (12)
P1—Ru1—Ru3—C11 −175.7 (2) C3—Ru1—P1—O12 −30.41 (12)
Ru2—Ru1—Ru3—C11 2.0 (2) C1—Ru1—P1—O12 151.16 (12)
C2—Ru1—Ru3—C8 −79.2 (3) Ru2—Ru1—P1—O12 58.37 (10)
C3—Ru1—Ru3—C8 179.78 (11) Ru3—Ru1—P1—O12 62.86 (9)
C1—Ru1—Ru3—C8 2.45 (12) O13—P1—O12—C12 −49.8 (2)
P1—Ru1—Ru3—C8 91.41 (9) O14—P1—O12—C12 54.1 (2)
Ru2—Ru1—Ru3—C8 −90.89 (9) Ru1—P1—O12—C12 −174.9 (2)
C2—Ru1—Ru3—C10 101.4 (3) O14—P1—O13—C14 −41.8 (3)
C3—Ru1—Ru3—C10 0.41 (11) O12—P1—O13—C14 66.2 (3)
C1—Ru1—Ru3—C10 −176.92 (11) Ru1—P1—O13—C14 −171.0 (2)
P1—Ru1—Ru3—C10 −87.96 (9) O13—P1—O14—C16 174.3 (2)
Ru2—Ru1—Ru3—C10 89.74 (9) O12—P1—O14—C16 62.8 (2)
C2—Ru1—Ru3—Ru2 11.7 (2) Ru1—P1—O14—C16 −61.5 (2)
C3—Ru1—Ru3—Ru2 −89.33 (8) P1—O12—C12—C13 −162.5 (2)
C1—Ru1—Ru3—Ru2 93.34 (8) O12—C12—C13—Cl1 71.2 (3)
P1—Ru1—Ru3—Ru2 −177.703 (19) P1—O13—C14—C15 148.7 (2)
C5—Ru2—Ru3—C9 −4.6 (4) O13—C14—C15—Cl2 −71.2 (3)
C7—Ru2—Ru3—C9 178.8 (3) P1—O14—C16—C17 −166.17 (19)
C6—Ru2—Ru3—C9 −88.4 (3) O14—C16—C17—Cl3 64.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17B···O4i 0.97 2.58 3.297 (4) 131
C17—H17B···O5ii 0.97 2.54 3.307 (4) 136

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2343).

References

  1. Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem.347, 181–205.
  2. Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem.347, 207–235.
  3. Bruce, M. I., Nicholson, B. K. & Williams, M. L. (1987). Inorg. Synth.26, 273.
  4. Bruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem.287, 127–131.
  5. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  8. Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m223–m224. [DOI] [PMC free article] [PubMed]
  9. Shawkataly, O. bin, Teoh, S. G. & Fun, H.-K. (1991). Z. Kristallogr.194, 193–198.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033891/hy2343sup1.cif

e-66-m1191-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033891/hy2343Isup2.hkl

e-66-m1191-Isup2.hkl (585.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES