Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):m1302. doi: 10.1107/S1600536810036986

Poly[(acetato-κ2 O,O′)aqua­(μ4-1H-benzimidazole-5,6-dicarboxyl­ato-κ5 N 3:O 5,O 5′:O 5,O 6:O 6′)praseodymium(III)]

Zi-Yu Pan a, Jin-Hua Chen a, Jian-Fen Lin a, Xuan Xu a,*, Yi-Fan Luo a
PMCID: PMC2983355  PMID: 21587441

Abstract

In the title complex, [Pr(C9H4N2O4)(C2H3O2)(H2O)]n, the PrIII ion is coordinated by five O atoms and one N atom from four benzimidazole-5,6-dicarboxyl­ate ligands, two O atoms from an acetate ligand and one water mol­ecule, giving a tricapped trigonal-prismatic geometry. The benzimidazole-5,6-dicarboxyl­ate and acetate ligands connect the PrIII ions, forming a layer in the ac plane; the layers are further linked by N—H⋯O and O—H⋯O hydrogen bonding and π–π stacking inter­actions between neighboring pyridine rings [the centroid–centroid distance is 3.467 (1) Å], assembling a three-dimensional supra­molecular network. The acetate methyl group is disordered over two positions with site-occupancy factors of 0.75 and 0.25.

Related literature

For related structures, see: Gao et al. (2008); Lo et al. (2007); Wang et al. (2009); Wei et al. (2008); Yao et al. (2008); Zhai (2009).graphic file with name e-66-m1302-scheme1.jpg

Experimental

Crystal data

  • [Pr(C9H4N2O4)(C2H3O2)(H2O)]

  • M r = 422.11

  • Triclinic, Inline graphic

  • a = 7.4284 (5) Å

  • b = 9.0109 (7) Å

  • c = 9.7239 (7) Å

  • α = 87.075 (1)°

  • β = 86.498 (1)°

  • γ = 84.274 (1)°

  • V = 645.77 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.81 mm−1

  • T = 296 K

  • 0.26 × 0.22 × 0.19 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.386, T max = 0.485

  • 3963 measured reflections

  • 2327 independent reflections

  • 2184 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.072

  • S = 1.04

  • 2327 reflections

  • 199 parameters

  • 22 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.45 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036986/pk2264sup1.cif

e-66-m1302-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036986/pk2264Isup2.hkl

e-66-m1302-Isup2.hkl (112.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.85 (2) 1.90 (3) 2.712 (5) 159 (5)
O1W—H1W⋯O2ii 0.83 (2) 2.06 (3) 2.854 (4) 159 (6)
O1W—H2W⋯O5iii 0.84 (2) 1.96 (2) 2.794 (4) 176 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the Natural Science Foundation of Guangdong Province (No. 9151063101000037) for supporting this work.

supplementary crystallographic information

Comment

In recent years, studies of coordination polymers built using metals and multifunctional organic ligands, has been a rapidly expanding field. This has been due to their intriguing structural motifs and functional properties, such as molecular adsorption, magnetism, and luminescence. Benzimidazole-5,6-dicarboxylic acid (H2L) is such a multifuctional ligand with both nitrogen and oxygen donor atoms (Gao et al., 2008; Lo et al., 2007; Wang et al., 2009; Wei et al., 2008; Yao et al., 2008; Zhai et al., 2009). For example, Yao and co-workers have successfully synthesized six novel two-dimensional coordination polymers based on this ligand, namely, [MnL]n (1), {[Ni2L2(H2O)4].(H2O)3}n (2), {[Tb(L)(HL)(H2O)].(H2O)}n (3) and {[Ln2L2(HL)2(H2O)2]}n (Ln=Ho (4), Er (5), Lu (6)) (Yao et al., 2008). Wei et al. also obtained a novel five coordinated Mn(II) polymer ([Mn(HL)])n possessing abundant hydrogen bonds and π-π stacking interactions (Wei et al., 2008). Herein, we report the hydrothermal synthesis, structure of the novel coordination polymer.

In the structure of the title compound (Fig. 1), each PrIII centre is nine-coordinated by five oxygen atoms and one N atom from four benzimidazole-5,6-dicarboxylato ligands, two oxygen atoms from an acetate ligand, and one water molecule. The structure can described as having a bicapped trigonal prismatic geometry with Pr···O distances and O···Pr···O angles ranging from 2.373 (3) Å to 2.645 (3) Å and 69.84 (9) ° to 152.88 (1) °, respectively. The benzimidazole-5,6-dicarboxylate and acetate ligands, act as bridging ligands, linking the PrIII metal centres into a layer parallel to the ac plane (Fig. 2). Those layers are further connected via O—H···O and N—H···O hydrogen bonding interactions (Table 1) to form a three-dimensional supramolecular motif, which is stabilized by π-π stacking interactions between neighboring pyridyl rings (the centroid···centroid distance is 3.467 (1) Å).

Experimental

A mixture of Pr6O11 (0.170 g; 0.17 mmol), benzimidazole-5,6-dicarboxylic acid (0.206 g; 1 mmol), acetic acid (0.06 g; 1 mmol), water (10 ml) was stirred vigorously for 30 min and then sealed in a teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated and maintained at 423 K for 3 days, and then cooled to room temperature at 5 K h-1, which produced colorless block-shaped crystals.

Refinement

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.35 Å, and with Uiso(H) = 1.5 Ueq(O). The H atom bound to the N1 nitrogen atom was refined with distance restraints of N–H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(O). All other H atoms were placed at calculated positions and treated as riding on the parent atoms, with C—H = 0.93 Å or 0.96 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, together with some symmetry related atoms to complete the coordination units. Displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (#1) x, y, -1+z; (#2) -x, 1-y, -z; (#3) 1-x, 1-y, -z.]

Fig. 2.

Fig. 2.

A view of the layers parallel to the ac plane.

Crystal data

[Pr(C9H4N2O4)(C2H3O2)(H2O)] Z = 2
Mr = 422.11 F(000) = 408
Triclinic, P1 Dx = 2.171 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4284 (5) Å Cell parameters from 2989 reflections
b = 9.0109 (7) Å θ = 2.3–28.4°
c = 9.7239 (7) Å µ = 3.81 mm1
α = 87.075 (1)° T = 296 K
β = 86.498 (1)° Block, colourless
γ = 84.274 (1)° 0.26 × 0.22 × 0.19 mm
V = 645.77 (8) Å3

Data collection

Bruker SMART APEX CCD diffractometer 2327 independent reflections
Radiation source: fine-focus sealed tube 2184 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −8→8
Tmin = 0.386, Tmax = 0.485 k = −10→10
3963 measured reflections l = −7→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0394P)2 + 1.0511P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2327 reflections Δρmax = 1.23 e Å3
199 parameters Δρmin = −1.45 e Å3
22 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0091 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pr1 0.35344 (3) 0.35784 (2) −0.10574 (2) 0.01137 (13)
O1 0.1245 (4) 0.2800 (3) 0.0551 (3) 0.0171 (6)
O1W 0.6206 (5) 0.2207 (4) 0.0136 (4) 0.0286 (8)
H1W 0.713 (5) 0.260 (5) 0.032 (6) 0.034*
H2W 0.626 (7) 0.135 (3) 0.051 (6) 0.034*
O2 −0.1348 (4) 0.4123 (3) 0.1093 (3) 0.0187 (7)
O3 0.5275 (4) 0.4696 (4) 0.2957 (3) 0.0229 (7)
O4 0.3620 (4) 0.4864 (3) 0.1165 (3) 0.0169 (6)
O5 0.3704 (4) 0.0699 (3) −0.1295 (3) 0.0213 (7)
O6 0.5234 (4) 0.2005 (3) −0.2842 (3) 0.0222 (7)
N1 −0.1290 (5) 0.2444 (4) 0.6358 (4) 0.0197 (8)
H1 −0.237 (4) 0.219 (6) 0.642 (6) 0.024*
N2 0.1301 (5) 0.3045 (4) 0.7108 (4) 0.0183 (8)
C1 0.0176 (5) 0.3514 (4) 0.1395 (4) 0.0124 (8)
C2 0.0663 (5) 0.3516 (4) 0.2883 (4) 0.0128 (8)
C3 −0.0669 (6) 0.3032 (5) 0.3815 (5) 0.0179 (9)
H3 −0.1780 0.2820 0.3522 0.021*
C4 −0.0292 (5) 0.2876 (5) 0.5200 (5) 0.0158 (9)
C5 0.1336 (5) 0.3240 (4) 0.5684 (4) 0.0137 (8)
C6 0.2660 (5) 0.3744 (4) 0.4746 (4) 0.0138 (8)
H6 0.3747 0.3995 0.5056 0.017*
C7 0.2352 (5) 0.3872 (4) 0.3345 (4) 0.0121 (8)
C8 0.3828 (5) 0.4492 (4) 0.2436 (4) 0.0117 (8)
C9 −0.0292 (6) 0.2583 (5) 0.7442 (5) 0.0191 (9)
H9 −0.0696 0.2371 0.8348 0.023*
C10 0.4743 (7) 0.0768 (5) −0.2356 (6) 0.0304 (9)
C11 0.5650 (11) −0.0621 (7) −0.2989 (8) 0.0304 (9) 0.75
H11A 0.6777 −0.0907 −0.2569 0.046* 0.75
H11B 0.5877 −0.0431 −0.3961 0.046* 0.75
H11C 0.4876 −0.1412 −0.2840 0.046* 0.75
C11' 0.477 (3) −0.055 (2) −0.332 (2) 0.0304 (9) 0.25
H11D 0.5368 −0.1430 −0.2891 0.046* 0.25
H11E 0.5413 −0.0309 −0.4178 0.046* 0.25
H11F 0.3551 −0.0717 −0.3491 0.046* 0.25

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pr1 0.01163 (17) 0.01259 (17) 0.00993 (17) −0.00185 (9) 0.00044 (10) −0.00098 (10)
O1 0.0192 (15) 0.0188 (15) 0.0137 (16) −0.0041 (12) 0.0014 (12) −0.0035 (12)
O1W 0.0286 (18) 0.0164 (16) 0.042 (2) −0.0047 (14) −0.0170 (16) 0.0049 (15)
O2 0.0167 (15) 0.0199 (15) 0.0190 (17) 0.0033 (12) −0.0052 (13) −0.0022 (13)
O3 0.0175 (16) 0.0315 (18) 0.0207 (18) −0.0097 (13) −0.0023 (13) 0.0039 (14)
O4 0.0200 (15) 0.0180 (15) 0.0131 (16) −0.0055 (12) 0.0002 (12) 0.0008 (12)
O5 0.0240 (16) 0.0159 (15) 0.0239 (18) −0.0040 (12) 0.0013 (14) −0.0006 (13)
O6 0.0206 (16) 0.0198 (16) 0.0252 (18) −0.0003 (12) 0.0048 (13) −0.0019 (13)
N1 0.0150 (18) 0.029 (2) 0.016 (2) −0.0078 (15) 0.0018 (15) 0.0025 (16)
N2 0.0203 (19) 0.0214 (18) 0.0130 (19) −0.0036 (15) 0.0017 (15) −0.0006 (15)
C1 0.0136 (19) 0.0106 (18) 0.013 (2) −0.0035 (15) 0.0002 (16) 0.0017 (16)
C2 0.0128 (19) 0.0126 (19) 0.013 (2) −0.0012 (15) −0.0005 (16) −0.0008 (16)
C3 0.014 (2) 0.022 (2) 0.018 (2) −0.0019 (17) −0.0023 (17) −0.0015 (18)
C4 0.013 (2) 0.019 (2) 0.015 (2) −0.0007 (16) 0.0010 (17) −0.0014 (17)
C5 0.015 (2) 0.0135 (19) 0.012 (2) −0.0001 (15) 0.0013 (16) −0.0017 (16)
C6 0.0109 (19) 0.0138 (19) 0.017 (2) −0.0015 (15) 0.0002 (16) −0.0017 (17)
C7 0.0126 (19) 0.0108 (18) 0.013 (2) −0.0006 (15) 0.0012 (16) −0.0015 (16)
C8 0.015 (2) 0.0105 (18) 0.010 (2) −0.0011 (15) −0.0008 (16) −0.0011 (15)
C9 0.022 (2) 0.025 (2) 0.010 (2) −0.0049 (18) 0.0024 (17) 0.0032 (18)
C10 0.037 (2) 0.0221 (19) 0.031 (2) 0.0040 (18) 0.0026 (19) −0.0054 (17)
C11 0.037 (2) 0.0221 (19) 0.031 (2) 0.0040 (18) 0.0026 (19) −0.0054 (17)
C11' 0.037 (2) 0.0221 (19) 0.031 (2) 0.0040 (18) 0.0026 (19) −0.0054 (17)

Geometric parameters (Å, °)

Pr1—O1 2.373 (3) N2—C9 1.310 (6)
Pr1—O6 2.498 (3) N2—C5 1.386 (6)
Pr1—O2i 2.501 (3) N2—Pr1iv 2.603 (4)
Pr1—O4 2.511 (3) C1—C2 1.512 (6)
Pr1—O3ii 2.528 (3) C2—C3 1.389 (6)
Pr1—O1W 2.541 (3) C2—C7 1.429 (6)
Pr1—N2iii 2.603 (4) C3—C4 1.389 (6)
Pr1—O5 2.606 (3) C3—H3 0.9300
Pr1—O4ii 2.646 (3) C4—C5 1.399 (6)
Pr1—C8ii 2.963 (4) C5—C6 1.394 (6)
O1—C1 1.261 (5) C6—C7 1.393 (6)
O1W—H1W 0.833 (19) C6—H6 0.9300
O1W—H2W 0.836 (19) C7—C8 1.499 (6)
O2—C1 1.253 (5) C8—Pr1ii 2.963 (4)
O2—Pr1i 2.501 (3) C9—H9 0.9300
O3—C8 1.250 (5) C10—C11 1.503 (8)
O3—Pr1ii 2.528 (3) C10—C11' 1.55 (2)
O4—C8 1.278 (5) C11—H11A 0.9600
O4—Pr1ii 2.646 (3) C11—H11B 0.9600
O5—C10 1.253 (6) C11—H11C 0.9600
O6—C10 1.267 (6) C11'—H11D 0.9600
N1—C9 1.342 (6) C11'—H11E 0.9600
N1—C4 1.372 (6) C11'—H11F 0.9600
N1—H1 0.85 (2)
O1—Pr1—O6 125.76 (10) C10—O6—Pr1 96.4 (3)
O1—Pr1—O2i 79.97 (10) C9—N1—C4 107.0 (4)
O6—Pr1—O2i 135.37 (10) C9—N1—H1 125 (4)
O1—Pr1—O4 69.81 (9) C4—N1—H1 128 (4)
O6—Pr1—O4 147.25 (10) C9—N2—C5 104.1 (4)
O2i—Pr1—O4 70.88 (10) C9—N2—Pr1iv 122.6 (3)
O1—Pr1—O3ii 152.91 (11) C5—N2—Pr1iv 133.1 (3)
O6—Pr1—O3ii 72.06 (11) O2—C1—O1 123.2 (4)
O2i—Pr1—O3ii 73.82 (11) O2—C1—C2 117.7 (4)
O4—Pr1—O3ii 106.94 (10) O1—C1—C2 118.8 (3)
O1—Pr1—O1W 96.60 (11) C3—C2—C7 120.7 (4)
O6—Pr1—O1W 74.37 (12) C3—C2—C1 113.5 (4)
O2i—Pr1—O1W 145.00 (11) C7—C2—C1 125.7 (4)
O4—Pr1—O1W 75.25 (11) C2—C3—C4 118.0 (4)
O3ii—Pr1—O1W 108.74 (11) C2—C3—H3 121.0
O1—Pr1—N2iii 84.24 (11) C4—C3—H3 121.0
O6—Pr1—N2iii 71.46 (11) N1—C4—C3 132.5 (4)
O2i—Pr1—N2iii 76.78 (11) N1—C4—C5 104.9 (4)
O4—Pr1—N2iii 141.25 (11) C3—C4—C5 122.5 (4)
O3ii—Pr1—N2iii 83.25 (11) N2—C5—C6 130.8 (4)
O1W—Pr1—N2iii 137.92 (11) N2—C5—C4 109.9 (4)
O1—Pr1—O5 75.84 (10) C6—C5—C4 119.3 (4)
O6—Pr1—O5 50.87 (10) C7—C6—C5 119.8 (4)
O2i—Pr1—O5 141.76 (10) C7—C6—H6 120.1
O4—Pr1—O5 125.30 (10) C5—C6—H6 120.1
O3ii—Pr1—O5 122.16 (11) C6—C7—C2 119.7 (4)
O1W—Pr1—O5 67.81 (10) C6—C7—C8 115.3 (3)
N2iii—Pr1—O5 71.75 (11) C2—C7—C8 124.8 (4)
O1—Pr1—O4ii 139.88 (10) O3—C8—O4 119.5 (4)
O6—Pr1—O4ii 86.63 (10) O3—C8—C7 118.6 (4)
O2i—Pr1—O4ii 92.78 (10) O4—C8—C7 121.9 (3)
O4—Pr1—O4ii 70.53 (11) O3—C8—Pr1ii 57.8 (2)
O3ii—Pr1—O4ii 49.85 (9) O4—C8—Pr1ii 63.2 (2)
O1W—Pr1—O4ii 67.41 (10) C7—C8—Pr1ii 165.0 (3)
N2iii—Pr1—O4ii 132.75 (10) N2—C9—N1 114.0 (4)
O5—Pr1—O4ii 124.59 (9) N2—C9—H9 123.0
O1—Pr1—C8ii 159.06 (10) N1—C9—H9 123.0
O6—Pr1—C8ii 75.06 (10) O5—C10—O6 121.2 (4)
O2i—Pr1—C8ii 85.58 (10) O5—C10—C11 121.3 (5)
O4—Pr1—C8ii 91.20 (10) O6—C10—C11 117.1 (5)
O3ii—Pr1—C8ii 24.71 (10) O5—C10—C11' 115.5 (10)
O1W—Pr1—C8ii 86.57 (11) O6—C10—C11' 119.2 (10)
N2iii—Pr1—C8ii 107.21 (11) C10—C11—H11A 109.5
O5—Pr1—C8ii 124.02 (10) C10—C11—H11B 109.5
O4ii—Pr1—C8ii 25.55 (10) H11A—C11—H11B 109.5
C1—O1—Pr1 131.7 (3) C10—C11—H11C 109.5
Pr1—O1W—H1W 124 (3) H11A—C11—H11C 109.5
Pr1—O1W—H2W 127 (3) H11B—C11—H11C 109.5
H1W—O1W—H2W 108 (3) C10—C11'—H11D 109.5
C1—O2—Pr1i 148.2 (3) C10—C11'—H11E 109.5
C8—O3—Pr1ii 97.5 (2) H11D—C11'—H11E 109.5
C8—O4—Pr1 137.6 (3) C10—C11'—H11F 109.5
C8—O4—Pr1ii 91.2 (2) H11D—C11'—H11F 109.5
Pr1—O4—Pr1ii 109.47 (11) H11E—C11'—H11F 109.5
C10—O5—Pr1 91.6 (3)
O6—Pr1—O1—C1 −171.8 (3) O2—C1—C2—C3 49.4 (5)
O2i—Pr1—O1—C1 −32.1 (3) O1—C1—C2—C3 −124.8 (4)
O4—Pr1—O1—C1 41.1 (3) O2—C1—C2—C7 −134.6 (4)
O3ii—Pr1—O1—C1 −46.8 (5) O1—C1—C2—C7 51.3 (6)
O1W—Pr1—O1—C1 112.7 (4) C7—C2—C3—C4 −1.4 (6)
N2iii—Pr1—O1—C1 −109.6 (4) C1—C2—C3—C4 174.8 (4)
O5—Pr1—O1—C1 177.8 (4) C9—N1—C4—C3 −176.2 (5)
O4ii—Pr1—O1—C1 50.3 (4) C9—N1—C4—C5 1.1 (5)
C8ii—Pr1—O1—C1 15.0 (5) C2—C3—C4—N1 179.5 (4)
O1—Pr1—O4—C8 58.8 (4) C2—C3—C4—C5 2.5 (6)
O6—Pr1—O4—C8 −66.6 (4) C9—N2—C5—C6 178.5 (4)
O2i—Pr1—O4—C8 144.9 (4) Pr1iv—N2—C5—C6 3.1 (7)
O3ii—Pr1—O4—C8 −149.6 (4) C9—N2—C5—C4 0.0 (5)
O1W—Pr1—O4—C8 −44.1 (4) Pr1iv—N2—C5—C4 −175.3 (3)
N2iii—Pr1—O4—C8 109.9 (4) N1—C4—C5—N2 −0.7 (5)
O5—Pr1—O4—C8 4.3 (4) C3—C4—C5—N2 177.0 (4)
O4ii—Pr1—O4—C8 −114.9 (4) N1—C4—C5—C6 −179.3 (4)
C8ii—Pr1—O4—C8 −130.2 (3) C3—C4—C5—C6 −1.7 (6)
O1—Pr1—O4—Pr1ii 173.75 (13) N2—C5—C6—C7 −178.6 (4)
O6—Pr1—O4—Pr1ii 48.4 (2) C4—C5—C6—C7 −0.3 (6)
O2i—Pr1—O4—Pr1ii −100.20 (12) C5—C6—C7—C2 1.3 (6)
O3ii—Pr1—O4—Pr1ii −34.66 (13) C5—C6—C7—C8 177.3 (4)
O1W—Pr1—O4—Pr1ii 70.84 (12) C3—C2—C7—C6 −0.4 (6)
N2iii—Pr1—O4—Pr1ii −135.22 (14) C1—C2—C7—C6 −176.2 (4)
O5—Pr1—O4—Pr1ii 119.17 (11) C3—C2—C7—C8 −176.0 (4)
O4ii—Pr1—O4—Pr1ii 0.0 C1—C2—C7—C8 8.2 (6)
C8ii—Pr1—O4—Pr1ii −15.29 (12) Pr1ii—O3—C8—O4 14.5 (4)
O1—Pr1—O5—C10 169.4 (3) Pr1ii—O3—C8—C7 −163.1 (3)
O6—Pr1—O5—C10 0.2 (3) Pr1—O4—C8—O3 107.5 (4)
O2i—Pr1—O5—C10 117.0 (3) Pr1ii—O4—C8—O3 −13.7 (4)
O4—Pr1—O5—C10 −138.6 (3) Pr1—O4—C8—C7 −75.0 (5)
O3ii—Pr1—O5—C10 11.5 (3) Pr1ii—O4—C8—C7 163.8 (3)
O1W—Pr1—O5—C10 −87.3 (3) Pr1—O4—C8—Pr1ii 121.2 (3)
N2iii—Pr1—O5—C10 80.8 (3) C6—C7—C8—O3 7.4 (5)
O4ii—Pr1—O5—C10 −49.0 (3) C2—C7—C8—O3 −176.9 (4)
C8ii—Pr1—O5—C10 −18.0 (3) C6—C7—C8—O4 −170.1 (4)
O1—Pr1—O6—C10 −13.2 (3) C2—C7—C8—O4 5.6 (6)
O2i—Pr1—O6—C10 −128.3 (3) C6—C7—C8—Pr1ii −64.3 (11)
O4—Pr1—O6—C10 96.2 (3) C2—C7—C8—Pr1ii 111.4 (10)
O3ii—Pr1—O6—C10 −170.2 (3) C5—N2—C9—N1 0.7 (5)
O1W—Pr1—O6—C10 73.6 (3) Pr1iv—N2—C9—N1 176.7 (3)
N2iii—Pr1—O6—C10 −81.4 (3) C4—N1—C9—N2 −1.2 (5)
O5—Pr1—O6—C10 −0.2 (3) Pr1—O5—C10—O6 −0.4 (5)
O4ii—Pr1—O6—C10 141.1 (3) Pr1—O5—C10—C11 171.3 (5)
C8ii—Pr1—O6—C10 164.2 (3) Pr1—O5—C10—C11' −157.3 (10)
Pr1i—O2—C1—O1 −128.3 (5) Pr1—O6—C10—O5 0.4 (5)
Pr1i—O2—C1—C2 57.8 (7) Pr1—O6—C10—C11 −171.7 (5)
Pr1—O1—C1—O2 88.8 (5) Pr1—O6—C10—C11' 156.5 (11)
Pr1—O1—C1—C2 −97.4 (4)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z; (iii) x, y, z−1; (iv) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O6v 0.85 (2) 1.90 (3) 2.712 (5) 159 (5)
O1W—H1W···O2vi 0.83 (2) 2.06 (3) 2.854 (4) 159 (6)
O1W—H2W···O5vii 0.84 (2) 1.96 (2) 2.794 (4) 176 (5)

Symmetry codes: (v) x−1, y, z+1; (vi) x+1, y, z; (vii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2264).

References

  1. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928. [DOI] [PMC free article] [PubMed]
  3. Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wang, H., Song, W.-D., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m1258. [DOI] [PMC free article] [PubMed]
  6. Wei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des.8, 2087–2089.
  7. Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des.8, 2299–2306.
  8. Zhai, H. (2009). Acta Cryst. E65, m1483. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036986/pk2264sup1.cif

e-66-m1302-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036986/pk2264Isup2.hkl

e-66-m1302-Isup2.hkl (112.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES