Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 18;66(Pt 10):o2585–o2586. doi: 10.1107/S1600536810036664

9-O-Ethyl­berberrubinium iodide monohydrate

Peter Grundt a,*, Jennifer Pernat a, Bogdana Krivogorsky a, Melanie A Halverson a, Steven M Berry a,*
PMCID: PMC2983369  PMID: 21587567

Abstract

In the title compound (systematic name: 9-eth­oxy-10-meth­oxy-5,6-dihydro-1,3-dioxolo[4,5-g]isoquinolino­[3,2-a]isoquin­olin-7-ium iodide monohydrate), 2C21H20NO4 +·2I·H2O, two independent mol­ecules pack in the unit cell, where interactions between the molecules are stabilized by weak inter­molecular π–π stacking inter­actions [centroid–centroid distances in the range 3.571 (4) to 3.815 (4)Å]. Inter­molecular C—H⋯O inter­actions are also observed. The iodide anions are disordered with occupancy ratios of 0.94 (1):0.06 (1) and 0.91 (1):0.09 (1). The cationic molecule is planar in structure with a small torsion resulting from the dihydropyridine ring.

Related literature

For the synthesis of the title compound, see: Iwasa et al. (1997). The title compound is a derivative of the natural product berberine. For the anti-parasitic activity of berberine and its derivatives, see: Nkwengoua et al. (2009); Acero et al. (1995); Ghosh et al. (1985); Wright et al. (2000); Iwasa et al. (1998); Sheng et al. 1997); McCall et al. (1994). For a related structure, see: Chen et al. (2009). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994). graphic file with name e-66-o2585-scheme1.jpg

Experimental

Crystal data

  • 2C21H20NO4 +·2I·H2O

  • M r = 972.61

  • Triclinic, Inline graphic

  • a = 11.036 (3) Å

  • b = 13.449 (4) Å

  • c = 14.086 (4) Å

  • α = 80.442 (6)°

  • β = 71.121 (5)°

  • γ = 76.875 (5)°

  • V = 1916.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 93 K

  • 1.00 × 0.10 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID II image plate diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.469, T max = 0.712

  • 50086 measured reflections

  • 8751 independent reflections

  • 4563 reflections with I > 2.0σ(I)

  • R int = 0.101

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.195

  • S = 0.96

  • 8751 reflections

  • 502 parameters

  • 12 restraints

  • All H-atom parameters refined

  • Δρmax = 1.75 e Å−3

  • Δρmin = −2.26 e Å−3

Data collection: CrystalClear (Rigaku, 2009); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear; program(s) used to solve structure: CrystalStructure (Rigaku, 2009) and SIR2004 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036664/jj2056sup1.cif

e-66-o2585-sup1.cif (28.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036664/jj2056Isup2.hkl

e-66-o2585-Isup2.hkl (437.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9A—H10A⋯O5 0.93 2.47 3.358 (11) 159
C21B—H20B⋯O1Bi 0.96 2.51 3.466 (11) 177

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was supported by the University of Minnesota Undergraduate Research Opportunities Program (UROP) and the NSF (grant CHE-0922366 for the X-ray diffractometer).

supplementary crystallographic information

Comment

The title compound, a derivative of the natural product berberine, is of interest with respect to its anti-parasite activity and biological properties Chen et al. (2009). Of particular interest is the discovery that berberine and its analogs inhibit the growth of strains of the parasites Leishmania (Nkwengoua et al., 2009, Acero et al., 1995, Ghosh et al., 1985), Trypanosoma (Nkwengoua et al., 2009), and Plasmodium (Wright et al., 2000, Iwasa et al., 1998, Sheng et al., 1997, McCall et al., 1994). Based on these findings and in our continued effort to characterize compounds that may inhibit the life cycle of the parasite Toxoplasma gondii we have synthesized the 9-ethyl analog of berberine.

The title compound, 2(C21H20NO4+), 2(I-), H2O, crystallizes in the P-1 space group with two independent molecules in the unit cell. A solvent water molecule occupies the lattice at H-bonding distance from the disordered iodide (1.94 & 0.06) anions [O5—I1A 3.509 (6) and O5—I1B 3.600 (6) Å]. The compound crystallizes with a slightly twisted planar structure due to the dihydropyridine moiety, which results in torsion angles of 17.7 (5)° (C15A/C16A/C11A/C2A) and 6.1 (5)° (C15B/C16B/C11B/C2B) between the planes of the isoquiniline and benzodioxole moieties for molecules A and B respectively. The molecules are layered in the crystal lattice with normal π—π stacking distances between centroids of the rings of molecules A and B of 3.571 (4)Å (rings C6A/C7A/C8A/C9A/C15A/C16A to C2B/C11B/C12B/C13B/C14B/C18B), 3.839 (4)Å (rings N1A/C5A/C10A/C15A/C16A/C17A to N1B/C5B/C10B/C15B/C16B/C17B), and 3.686 (4)Å (rings C2A/C11A/C12A/C13A/C14A/C18A to C6B/C7B/C8B/C9B/C15B/C16B). Identical molecules neighboring each other are located at further stacking distances with the closest controid distance of 3.815 (4)Å between molecules A to A and 3.949 (4)Å between molecules B to B.

Experimental

The title compound was prepared by vacuum pyrolysis of berberine hydrochloride followed by alkylation with ethyl iodide (Iwasa et al., 1997). The crystals suitable for single-crystal X-ray diffraction were grown in DMSO-d6. The crystal was diffracted in the cold stream of an X-Stream 2000 Liquid nitrogen generator with an open-flow nitrogen cryostat with a nominal stability of 0.1 K.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. The ethyl groups on the molecules were found to have some disorder, with the methylene carbon (C20B) demonstrating the largest thermal parameters. The disordered iodide anions were solved with two partially occupied positions. The anisotropic parameters Uxy were restrained for each of the iodide pairs during refinement.

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. H atom labels are omitted from molecule B for clarity.

Fig. 2.

Fig. 2.

The packing diagram of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Crystal data

2C21H20NO4+·2I·H2O Z = 2
Mr = 972.61 F(000) = 972
Triclinic, P1 Dx = 1.685 Mg m3
Hall symbol: -P 1 Melting point: 257 K
a = 11.036 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.449 (4) Å Cell parameters from 50086 reflections
c = 14.086 (4) Å θ = 3–27.5°
α = 80.442 (6)° µ = 1.70 mm1
β = 71.121 (5)° T = 93 K
γ = 76.875 (5)° Needle, yellow
V = 1916.8 (9) Å3 1.00 × 0.10 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID II image plate diffractometer 8751 independent reflections
Radiation source: Mo sealed tube 4563 reflections with I > 2.0σ(I)
graphite Rint = 0.101
Detector resolution: 10 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −14→14
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −17→17
Tmin = 0.469, Tmax = 0.712 l = −18→18
50086 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195 All H-atom parameters refined
S = 0.96 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 4.85 6.23 1.54
8751 reflections (Δ/σ)max = 0.001
502 parameters Δρmax = 1.75 e Å3
12 restraints Δρmin = −2.26 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1A 0.7061 (5) 0.4522 (4) 0.7015 (4) 0.0527
C1A 0.5927 (8) 0.5331 (6) 0.7096 (6) 0.0517
O2A 0.5226 (6) 0.5086 (4) 0.6480 (4) 0.0577
C2A 0.5222 (8) 0.3441 (6) 0.5954 (6) 0.0554
C3A 0.5468 (8) 0.1682 (6) 0.5415 (6) 0.0552
C4A 0.5678 (7) 0.0617 (6) 0.5900 (6) 0.0511
N1A 0.7020 (5) 0.0278 (4) 0.5983 (4) 0.0413
C5A 0.7560 (7) −0.0722 (5) 0.5920 (5) 0.0413
C6A 0.9343 (6) −0.2175 (5) 0.6016 (5) 0.0401
C7A 1.0547 (7) −0.2531 (5) 0.6186 (5) 0.0436
C8A 1.1203 (6) −0.1848 (5) 0.6375 (5) 0.0417
C9A 1.0685 (7) −0.0817 (5) 0.6410 (5) 0.0440
C10A 0.8835 (6) 0.0610 (5) 0.6336 (5) 0.0398
C11A 0.7418 (7) 0.2722 (5) 0.6670 (5) 0.0462
C12A 0.6771 (7) 0.3709 (5) 0.6694 (5) 0.0437
C13A 0.5686 (7) 0.4057 (6) 0.6358 (6) 0.0490
C14A 0.5878 (7) 0.2405 (5) 0.5902 (5) 0.0438
C15A 0.8781 (6) −0.1118 (5) 0.6061 (4) 0.0392
C16A 0.9456 (6) −0.0429 (5) 0.6270 (5) 0.0411
C17A 0.7628 (6) 0.0966 (5) 0.6204 (4) 0.0378
C18A 0.6934 (6) 0.2049 (5) 0.6268 (5) 0.0406
O3A 1.1012 (5) −0.3557 (4) 0.6163 (4) 0.0471
O4A 0.8648 (5) −0.2821 (3) 0.5852 (3) 0.0428
C19A 1.2226 (8) −0.3942 (5) 0.6361 (6) 0.0497
C20A 0.9150 (8) −0.3152 (6) 0.4853 (5) 0.0531
C21A 0.8288 (9) −0.3797 (7) 0.4743 (7) 0.0662
O1B 0.7780 (5) −0.4304 (3) 0.8199 (4) 0.0481
C1B 0.8993 (7) −0.5023 (5) 0.7914 (6) 0.0507
O2B 0.9851 (5) −0.4741 (4) 0.8366 (4) 0.0528
C2B 0.9914 (7) −0.3031 (6) 0.8764 (5) 0.0471
C3B 0.9793 (7) −0.1200 (5) 0.9045 (5) 0.0463
C4B 0.8775 (7) −0.0374 (5) 0.9633 (6) 0.0468
N1B 0.7687 (5) −0.0013 (4) 0.9196 (4) 0.0390
C5B 0.7139 (7) 0.0966 (5) 0.9225 (5) 0.0442
C6B 0.5421 (7) 0.2398 (5) 0.8997 (5) 0.0433
C7B 0.4229 (6) 0.2745 (5) 0.8790 (5) 0.0423
C8B 0.3624 (6) 0.2055 (5) 0.8563 (5) 0.0412
C9B 0.4177 (6) 0.1029 (5) 0.8509 (5) 0.0399
C10B 0.6057 (6) −0.0366 (5) 0.8629 (4) 0.0368
C11B 0.7373 (6) −0.2504 (5) 0.8535 (5) 0.0415
C12B 0.8119 (6) −0.3468 (5) 0.8398 (5) 0.0407
C13B 0.9343 (7) −0.3723 (5) 0.8522 (5) 0.0449
C14B 0.9186 (6) −0.2035 (5) 0.8885 (5) 0.0433
C15B 0.5975 (6) 0.1356 (5) 0.8969 (5) 0.0399
C16B 0.5391 (6) 0.0654 (5) 0.8706 (4) 0.0363
C17B 0.7212 (6) −0.0725 (5) 0.8861 (4) 0.0371
C18B 0.7938 (6) −0.1769 (5) 0.8779 (5) 0.0400
O4B 0.6121 (5) 0.3048 (4) 0.9131 (4) 0.0498
O3B 0.3732 (5) 0.3765 (4) 0.8823 (4) 0.0489
C19B 0.2472 (8) 0.4115 (6) 0.8666 (7) 0.0569
C20B 0.5681 (9) 0.3468 (11) 1.0051 (8) 0.0893
C21B 0.6740 (9) 0.3896 (8) 1.0199 (6) 0.0634
O5 1.2817 (6) 0.0700 (5) 0.6183 (4) 0.0635
I1A 1.02838 (5) 0.19860 (3) 0.80552 (4) 0.0447 0.9379
I1A' 1.1037 (7) 0.1783 (5) 0.7437 (6) 0.0447 0.0621
I1B 1.39483 (6) −0.16491 (4) 0.75430 (5) 0.0520 0.9057
I1B' 1.4616 (6) −0.1882 (4) 0.7030 (5) 0.0520 0.0943
H1A 0.6187 0.5993 0.6853 0.0619*
H2A 0.5380 0.5327 0.7790 0.0618*
H3A 0.4499 0.3682 0.5718 0.0661*
H4A 0.5966 0.1695 0.4707 0.0661*
H5A 0.4542 0.1889 0.5483 0.0663*
H6A 0.5042 0.0590 0.6571 0.0612*
H7A 0.5560 0.0157 0.5490 0.0607*
H8A 0.7107 −0.1157 0.5775 0.0495*
H9A 1.2018 −0.2098 0.6474 0.0498*
H10A 1.1145 −0.0368 0.6524 0.0527*
H11A 0.9261 0.1064 0.6479 0.0480*
H12A 0.8143 0.2501 0.6909 0.0558*
H13A 1.2430 −0.4679 0.6357 0.0750*
H14A 1.2168 −0.3759 0.7007 0.0748*
H15A 1.2896 −0.3646 0.5852 0.0749*
H16A 1.0021 −0.3568 0.4784 0.0636*
H17A 0.9200 −0.2562 0.4342 0.0642*
H18A 0.8548 −0.3958 0.4057 0.0992*
H19A 0.8354 −0.4422 0.5184 0.0988*
H20A 0.7397 −0.3432 0.4928 0.0989*
H1B 0.8849 −0.5716 0.8167 0.0610*
H2B 0.9354 −0.4972 0.7183 0.0609*
H3B 1.0747 −0.3211 0.8837 0.0571*
H4B 1.0408 −0.1494 0.9427 0.0559*
H5B 1.0244 −0.0878 0.8384 0.0558*
H6B 0.8441 −0.0668 1.0323 0.0558*
H7B 0.9172 0.0200 0.9622 0.0559*
H8B 0.7535 0.1410 0.9415 0.0528*
H9B 0.2816 0.2301 0.8448 0.0488*
H10B 0.3754 0.0586 0.8342 0.0478*
H11B 0.5706 −0.0817 0.8411 0.0439*
H12B 0.6540 −0.2340 0.8465 0.0500*
H13B 0.2236 0.4843 0.8700 0.0849*
H14B 0.1834 0.3776 0.9178 0.0848*
H15B 0.2506 0.3966 0.8011 0.0848*
H16B 0.5428 0.2942 1.0590 0.1070*
H17B 0.4937 0.4011 1.0052 0.1071*
H18B 0.6422 0.4194 1.0829 0.0951*
H19B 0.7468 0.3356 1.0206 0.0951*
H20B 0.6997 0.4413 0.9653 0.0949*
H21 1.2190 0.0950 0.6740 0.0941*
H22 1.2916 0.0105 0.6502 0.0944*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.058 (3) 0.040 (2) 0.063 (3) −0.006 (2) −0.024 (2) −0.005 (2)
C1A 0.055 (4) 0.042 (3) 0.061 (4) −0.003 (3) −0.022 (3) −0.010 (3)
O2A 0.065 (3) 0.045 (3) 0.069 (3) 0.000 (2) −0.028 (3) −0.019 (2)
C2A 0.059 (4) 0.055 (4) 0.062 (4) −0.004 (3) −0.033 (4) −0.015 (3)
C3A 0.055 (4) 0.059 (4) 0.059 (4) −0.011 (3) −0.022 (3) −0.013 (3)
C4A 0.044 (3) 0.053 (4) 0.065 (4) −0.019 (3) −0.024 (3) −0.002 (3)
N1A 0.045 (3) 0.043 (3) 0.041 (3) −0.013 (2) −0.016 (2) −0.006 (2)
C5A 0.048 (3) 0.045 (3) 0.038 (3) −0.018 (3) −0.017 (3) −0.004 (2)
C6A 0.048 (3) 0.038 (3) 0.040 (3) −0.011 (3) −0.015 (3) −0.009 (2)
C7A 0.052 (4) 0.042 (3) 0.041 (3) −0.012 (3) −0.017 (3) −0.005 (2)
C8A 0.043 (3) 0.046 (3) 0.041 (3) −0.010 (3) −0.018 (3) −0.003 (3)
C9A 0.052 (4) 0.048 (3) 0.041 (3) −0.018 (3) −0.018 (3) −0.009 (3)
C10A 0.041 (3) 0.044 (3) 0.041 (3) −0.006 (3) −0.020 (3) −0.010 (2)
C11A 0.055 (4) 0.041 (3) 0.050 (4) −0.017 (3) −0.022 (3) −0.001 (3)
C12A 0.051 (4) 0.045 (3) 0.038 (3) −0.016 (3) −0.014 (3) −0.004 (2)
C13A 0.052 (4) 0.048 (4) 0.050 (4) −0.004 (3) −0.018 (3) −0.013 (3)
C14A 0.044 (3) 0.043 (3) 0.048 (3) −0.006 (3) −0.016 (3) −0.011 (3)
C15A 0.048 (3) 0.042 (3) 0.032 (3) −0.013 (3) −0.013 (2) −0.006 (2)
C16A 0.047 (3) 0.046 (3) 0.033 (3) −0.015 (3) −0.013 (3) −0.003 (2)
C17A 0.041 (3) 0.042 (3) 0.035 (3) −0.009 (2) −0.014 (2) −0.007 (2)
C18A 0.042 (3) 0.046 (3) 0.037 (3) −0.010 (3) −0.015 (3) −0.006 (2)
O3A 0.053 (3) 0.040 (2) 0.055 (3) −0.007 (2) −0.024 (2) −0.008 (2)
O4A 0.051 (3) 0.041 (2) 0.044 (2) −0.016 (2) −0.017 (2) −0.0088 (18)
C19A 0.058 (4) 0.038 (3) 0.058 (4) −0.002 (3) −0.027 (3) −0.008 (3)
C20A 0.054 (4) 0.068 (5) 0.046 (4) −0.016 (3) −0.016 (3) −0.019 (3)
C21A 0.067 (5) 0.075 (5) 0.066 (5) −0.034 (4) −0.009 (4) −0.027 (4)
O1B 0.046 (2) 0.033 (2) 0.071 (3) −0.0049 (19) −0.026 (2) −0.011 (2)
C1B 0.046 (4) 0.038 (3) 0.068 (4) 0.000 (3) −0.021 (3) −0.011 (3)
O2B 0.056 (3) 0.039 (2) 0.070 (3) 0.001 (2) −0.026 (3) −0.020 (2)
C2B 0.045 (3) 0.054 (4) 0.046 (3) −0.002 (3) −0.017 (3) −0.017 (3)
C3B 0.042 (3) 0.050 (4) 0.053 (4) −0.006 (3) −0.019 (3) −0.015 (3)
C4B 0.050 (4) 0.043 (3) 0.058 (4) −0.004 (3) −0.030 (3) −0.013 (3)
N1B 0.035 (2) 0.044 (3) 0.047 (3) −0.010 (2) −0.021 (2) −0.007 (2)
C5B 0.049 (4) 0.041 (3) 0.050 (3) −0.014 (3) −0.020 (3) −0.007 (3)
C6B 0.047 (3) 0.039 (3) 0.048 (3) −0.011 (3) −0.017 (3) −0.008 (3)
C7B 0.042 (3) 0.041 (3) 0.044 (3) −0.006 (3) −0.012 (3) −0.010 (3)
C8B 0.042 (3) 0.042 (3) 0.043 (3) −0.005 (3) −0.017 (3) −0.008 (2)
C9B 0.042 (3) 0.044 (3) 0.042 (3) −0.012 (3) −0.020 (3) −0.008 (2)
C10B 0.040 (3) 0.039 (3) 0.039 (3) −0.010 (2) −0.018 (2) −0.008 (2)
C11B 0.044 (3) 0.034 (3) 0.050 (3) −0.008 (2) −0.019 (3) −0.003 (2)
C12B 0.042 (3) 0.035 (3) 0.049 (3) −0.012 (2) −0.015 (3) −0.005 (2)
C13B 0.049 (4) 0.042 (3) 0.047 (3) −0.002 (3) −0.020 (3) −0.009 (3)
C14B 0.042 (3) 0.051 (4) 0.044 (3) −0.011 (3) −0.017 (3) −0.012 (3)
C15B 0.044 (3) 0.041 (3) 0.040 (3) −0.012 (3) −0.016 (3) −0.007 (2)
C16B 0.033 (3) 0.042 (3) 0.037 (3) −0.009 (2) −0.010 (2) −0.009 (2)
C17B 0.039 (3) 0.042 (3) 0.037 (3) −0.011 (2) −0.016 (2) −0.008 (2)
C18B 0.043 (3) 0.041 (3) 0.041 (3) −0.010 (3) −0.017 (3) −0.006 (2)
O4B 0.054 (3) 0.045 (2) 0.055 (3) −0.017 (2) −0.012 (2) −0.017 (2)
O3B 0.053 (3) 0.036 (2) 0.062 (3) −0.004 (2) −0.024 (2) −0.008 (2)
C19B 0.062 (5) 0.045 (4) 0.071 (5) 0.001 (3) −0.035 (4) −0.010 (3)
C20B 0.062 (5) 0.154 (11) 0.070 (6) −0.041 (6) −0.002 (4) −0.068 (7)
C21B 0.062 (5) 0.092 (6) 0.049 (4) −0.036 (5) −0.019 (4) −0.010 (4)
O5 0.060 (3) 0.081 (4) 0.054 (3) −0.023 (3) −0.017 (3) −0.006 (3)
I1A 0.0507 (3) 0.0426 (2) 0.0484 (3) −0.01080 (19) −0.0248 (2) −0.00267 (18)
I1A' 0.0507 (3) 0.0426 (2) 0.0484 (3) −0.01080 (19) −0.0248 (2) −0.00267 (18)
I1B 0.0614 (3) 0.0476 (3) 0.0631 (3) −0.0168 (2) −0.0366 (3) −0.0039 (2)
I1B' 0.0614 (3) 0.0476 (3) 0.0631 (3) −0.0168 (2) −0.0366 (3) −0.0039 (2)

Geometric parameters (Å, °)

O1A—C1A 1.446 (9) O1B—C12B 1.358 (7)
O1A—C12A 1.386 (8) C1B—O2B 1.441 (9)
C1A—O2A 1.450 (9) C1B—H1B 0.971
C1A—H1A 0.972 C1B—H2B 0.972
C1A—H2A 0.968 O2B—C13B 1.382 (8)
O2A—C13A 1.381 (9) C2B—C13B 1.374 (10)
C2A—C13A 1.345 (10) C2B—C14B 1.404 (10)
C2A—C14A 1.419 (10) C2B—H3B 0.930
C2A—H3A 0.934 C3B—C4B 1.523 (10)
C3A—C4A 1.483 (11) C3B—C14B 1.511 (9)
C3A—C14A 1.497 (10) C3B—H4B 0.975
C3A—H4A 0.969 C3B—H5B 0.982
C3A—H5A 0.974 C4B—N1B 1.472 (8)
C4A—N1A 1.485 (9) C4B—H6B 0.971
C4A—H6A 0.978 C4B—H7B 0.967
C4A—H7A 0.967 N1B—C5B 1.319 (8)
N1A—C5A 1.347 (9) N1B—C17B 1.398 (7)
N1A—C17A 1.383 (8) C5B—C15B 1.409 (9)
C5A—C15A 1.396 (9) C5B—H8B 0.932
C5A—H8A 0.935 C6B—C7B 1.399 (9)
C6A—C7A 1.390 (9) C6B—C15B 1.398 (9)
C6A—C15A 1.420 (9) C6B—O4B 1.362 (8)
C6A—O4A 1.370 (7) C7B—C8B 1.388 (9)
C7A—C8A 1.396 (9) C7B—O3B 1.359 (8)
C7A—O3A 1.360 (8) C8B—C9B 1.379 (9)
C8A—C9A 1.376 (10) C8B—H9B 0.934
C8A—H9A 0.933 C9B—C16B 1.420 (8)
C9A—C16A 1.403 (9) C9B—H10B 0.934
C9A—H10A 0.933 C10B—C16B 1.406 (8)
C10A—C16A 1.414 (9) C10B—C17B 1.379 (8)
C10A—C17A 1.371 (8) C10B—H11B 0.925
C10A—H11A 0.930 C11B—C12B 1.375 (9)
C11A—C12A 1.357 (10) C11B—C18B 1.419 (8)
C11A—C18A 1.418 (9) C11B—H12B 0.930
C11A—H12A 0.935 C12B—C13B 1.377 (9)
C12A—C13A 1.383 (10) C14B—C18B 1.393 (9)
C14A—C18A 1.381 (9) C15B—C16B 1.410 (8)
C15A—C16A 1.429 (8) C17B—C18B 1.452 (9)
C17A—C18A 1.486 (9) O4B—C20B 1.395 (9)
O3A—C19A 1.421 (9) O3B—C19B 1.439 (9)
O4A—C20A 1.441 (8) C19B—H13B 0.959
C19A—H13A 0.966 C19B—H14B 0.966
C19A—H14A 0.960 C19B—H15B 0.963
C19A—H15A 0.957 C20B—C21B 1.497 (11)
C20A—C21A 1.481 (10) C20B—H16B 0.963
C20A—H16A 0.980 C20B—H17B 0.967
C20A—H17A 0.978 C21B—H18B 0.961
C21A—H18A 0.962 C21B—H19B 0.955
C21A—H19A 0.962 C21B—H20B 0.962
C21A—H20A 0.967 O5—H21 0.916
O1B—C1B 1.443 (8) O5—H22 0.852
C1A—O1A—C12A 105.6 (5) O1B—C1B—O2B 106.1 (5)
O1A—C1A—O2A 105.9 (5) O1B—C1B—H1B 109.9
O1A—C1A—H1A 110.5 O2B—C1B—H1B 110.5
O2A—C1A—H1A 110.8 O1B—C1B—H2B 109.9
O1A—C1A—H2A 109.7 O2B—C1B—H2B 110.6
O2A—C1A—H2A 109.2 H1B—C1B—H2B 109.7
H1A—C1A—H2A 110.6 C1B—O2B—C13B 104.1 (5)
C1A—O2A—C13A 105.2 (5) C13B—C2B—C14B 116.8 (6)
C13A—C2A—C14A 117.2 (7) C13B—C2B—H3B 121.8
C13A—C2A—H3A 121.7 C14B—C2B—H3B 121.4
C14A—C2A—H3A 121.1 C4B—C3B—C14B 111.8 (6)
C4A—C3A—C14A 111.6 (6) C4B—C3B—H4B 107.8
C4A—C3A—H4A 109.2 C14B—C3B—H4B 109.7
C14A—C3A—H4A 109.2 C4B—C3B—H5B 108.5
C4A—C3A—H5A 107.5 C14B—C3B—H5B 108.9
C14A—C3A—H5A 109.6 H4B—C3B—H5B 110.2
H4A—C3A—H5A 109.8 C3B—C4B—N1B 111.1 (5)
C3A—C4A—N1A 112.0 (6) C3B—C4B—H6B 108.1
C3A—C4A—H6A 108.0 N1B—C4B—H6B 109.0
N1A—C4A—H6A 110.1 C3B—C4B—H7B 109.5
C3A—C4A—H7A 108.9 N1B—C4B—H7B 109.1
N1A—C4A—H7A 107.2 H6B—C4B—H7B 110.0
H6A—C4A—H7A 110.7 C4B—N1B—C5B 117.3 (5)
C4A—N1A—C5A 117.7 (5) C4B—N1B—C17B 119.2 (5)
C4A—N1A—C17A 119.8 (6) C5B—N1B—C17B 123.3 (5)
C5A—N1A—C17A 122.2 (6) N1B—C5B—C15B 121.7 (6)
N1A—C5A—C15A 121.4 (6) N1B—C5B—H8B 119.1
N1A—C5A—H8A 119.0 C15B—C5B—H8B 119.2
C15A—C5A—H8A 119.6 C7B—C6B—C15B 118.8 (6)
C7A—C6A—C15A 119.2 (6) C7B—C6B—O4B 122.5 (6)
C7A—C6A—O4A 122.1 (6) C15B—C6B—O4B 118.5 (6)
C15A—C6A—O4A 118.7 (6) C6B—C7B—C8B 119.7 (6)
C6A—C7A—C8A 120.0 (6) C6B—C7B—O3B 116.6 (6)
C6A—C7A—O3A 116.2 (6) C8B—C7B—O3B 123.7 (6)
C8A—C7A—O3A 123.8 (6) C7B—C8B—C9B 122.1 (6)
C7A—C8A—C9A 121.9 (6) C7B—C8B—H9B 118.2
C7A—C8A—H9A 118.8 C9B—C8B—H9B 119.8
C9A—C8A—H9A 119.3 C8B—C9B—C16B 119.6 (5)
C8A—C9A—C16A 120.0 (6) C8B—C9B—H10B 120.1
C8A—C9A—H10A 120.7 C16B—C9B—H10B 120.3
C16A—C9A—H10A 119.3 C16B—C10B—C17B 122.9 (5)
C16A—C10A—C17A 122.2 (6) C16B—C10B—H11B 118.5
C16A—C10A—H11A 118.6 C17B—C10B—H11B 118.6
C17A—C10A—H11A 119.2 C12B—C11B—C18B 117.0 (6)
C12A—C11A—C18A 116.5 (6) C12B—C11B—H12B 121.4
C12A—C11A—H12A 121.4 C18B—C11B—H12B 121.5
C18A—C11A—H12A 122.1 C11B—C12B—O1B 128.0 (6)
O1A—C12A—C11A 128.2 (6) C11B—C12B—C13B 121.7 (6)
O1A—C12A—C13A 109.0 (6) O1B—C12B—C13B 110.1 (6)
C11A—C12A—C13A 122.8 (6) O2B—C13B—C12B 109.4 (6)
C12A—C13A—O2A 110.2 (6) O2B—C13B—C2B 127.9 (6)
C12A—C13A—C2A 122.0 (7) C12B—C13B—C2B 122.6 (6)
O2A—C13A—C2A 127.8 (7) C3B—C14B—C2B 120.1 (6)
C3A—C14A—C2A 120.7 (6) C3B—C14B—C18B 118.4 (6)
C3A—C14A—C18A 118.5 (6) C2B—C14B—C18B 121.3 (6)
C2A—C14A—C18A 120.8 (6) C5B—C15B—C6B 120.5 (6)
C6A—C15A—C5A 121.7 (6) C5B—C15B—C16B 117.5 (6)
C6A—C15A—C16A 120.2 (6) C6B—C15B—C16B 122.0 (6)
C5A—C15A—C16A 118.2 (6) C9B—C16B—C15B 117.9 (6)
C15A—C16A—C10A 117.8 (6) C9B—C16B—C10B 123.8 (5)
C15A—C16A—C9A 118.7 (6) C15B—C16B—C10B 118.3 (5)
C10A—C16A—C9A 123.4 (6) N1B—C17B—C10B 116.0 (5)
N1A—C17A—C10A 118.1 (6) N1B—C17B—C18B 119.4 (5)
N1A—C17A—C18A 117.6 (5) C10B—C17B—C18B 124.6 (5)
C10A—C17A—C18A 124.3 (6) C17B—C18B—C11B 118.4 (6)
C17A—C18A—C11A 118.5 (6) C17B—C18B—C14B 121.0 (6)
C17A—C18A—C14A 120.8 (6) C11B—C18B—C14B 120.5 (6)
C11A—C18A—C14A 120.7 (6) C6B—O4B—C20B 117.1 (6)
C7A—O3A—C19A 117.2 (5) C7B—O3B—C19B 116.7 (5)
C6A—O4A—C20A 113.4 (5) O3B—C19B—H13B 108.7
O3A—C19A—H13A 109.4 O3B—C19B—H14B 109.9
O3A—C19A—H14A 109.1 H13B—C19B—H14B 109.9
H13A—C19A—H14A 110.2 O3B—C19B—H15B 109.9
O3A—C19A—H15A 109.5 H13B—C19B—H15B 109.2
H13A—C19A—H15A 109.3 H14B—C19B—H15B 109.2
H14A—C19A—H15A 109.3 O4B—C20B—C21B 110.0 (7)
O4A—C20A—C21A 108.7 (6) O4B—C20B—H16B 109.3
O4A—C20A—H16A 107.8 C21B—C20B—H16B 109.6
C21A—C20A—H16A 109.0 O4B—C20B—H17B 109.0
O4A—C20A—H17A 110.6 C21B—C20B—H17B 109.4
C21A—C20A—H17A 110.7 H16B—C20B—H17B 109.5
H16A—C20A—H17A 109.9 C20B—C21B—H18B 109.3
C20A—C21A—H18A 109.8 C20B—C21B—H19B 109.1
C20A—C21A—H19A 109.2 H18B—C21B—H19B 109.7
H18A—C21A—H19A 109.5 C20B—C21B—H20B 109.1
C20A—C21A—H20A 109.4 H18B—C21B—H20B 109.8
H18A—C21A—H20A 109.9 H19B—C21B—H20B 109.7
H19A—C21A—H20A 109.1 H21—O5—H22 90.7
C1B—O1B—C12B 104.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9A—H10A···O5 0.93 2.47 3.358 (11) 159
C21B—H20B···O1Bi 0.96 2.51 3.466 (11) 177

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2056).

References

  1. Acero, M. E. J., Avila, T. A., Granobles, P. L., Torres de Young, S. & Nicholls, S. (1995). Rev. Colomb. Quím.24, 55–64.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  4. Chen, Z., Li, X.-G., Xie, Y.-S. & Ye, X.-L. (2009). Acta Cryst. E65, o1370. [DOI] [PMC free article] [PubMed]
  5. Ghosh, A. K., Bhattacharyya, F. K. & Ghosh, D. K. (1985). Exp. Parasitol.60, 404–413. [DOI] [PubMed]
  6. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  7. Iwasa, K., Kamigauchi, M., Sugiura, M. & Nanba, H. (1997). Planta Med.63, 196–198. [DOI] [PubMed]
  8. Iwasa, K., Kim, H.-S., Wataya, Y. & Lee, D.-U. (1998). Eur. J. Med. Chem.33, 65–69.
  9. McCall, D. L. C., Alexander, J., Barber, J., Jaouhari, R. G., Satoskar, A. & Waigh, R. D. (1994). Bioorg. Med. Chem. Lett.4, 1663–1666.
  10. Nkwengoua, E. T., Ngantchou, I., Nyasse, B., Denier, C., Blonski, C. & Schneider, B. (2009). Nat. Prod. Res.23, 1144–1150. [DOI] [PubMed]
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  13. Rigaku (2009). CrystalClear and CrystalStructure Rigaku Corporation, Tokyo, Japan, and Rigaku Americas Corporation, The Woodlands, Texas, USA.
  14. Sheng, W. D., Jiddawi, M. S., Hong, X. Q. & Abdulla, S. M. (1997). East Afr. Med. J.74, 283–284. [PubMed]
  15. Watkin, D. (1994). Acta Cryst. A50, 411–437.
  16. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  17. Wright, C. W., Marshall, S. J., Russell, P. F., Anderson, M. M., Phillipson, J. D., Kirby, G. C., Warhurst, D. C. & Schiff, P. L. (2000). J. Nat. Prod.63, 1638–1640. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036664/jj2056sup1.cif

e-66-o2585-sup1.cif (28.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036664/jj2056Isup2.hkl

e-66-o2585-Isup2.hkl (437.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES