Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):o2615. doi: 10.1107/S1600536810037311

3,3′-Dimethyl-4,4′-(hexane-1,6-di­yl)bis­[1H-1,2,4-triazol-5(4H)-one]

Reşat Ustabaş a, Ufuk Çoruh b,*, Dilek Ünlüer c, Tuncer Hökelek d, Emel Ermiş e
PMCID: PMC2983399  PMID: 21587590

Abstract

The title compound, C12H20N6O2, has a centre of symmetry. The mol­ecule consists of two triazole rings joined by an aliphatic –(CH2)6– chain. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds and by π–π stacking inter­actions between the triazole rings of inversion-related mol­ecules [centroid–centroid distance = 3.277 (8) Å].

Related literature

For background information including pharmacological studies, see: Chiu & Huskey (1998); Clemons et al. (2004); Dalloul & Boyle (2006); Eliott et al. (1986); Griffin & Mannion (1986); Santen (2003); Tanaka (1974); Zamani et al. (2003). Related structures have been reported by Ustabaş et al. (2006, 2007, 2009); Ünver et al. (2008, 2009); Çoruh et al. (2003).graphic file with name e-66-o2615-scheme1.jpg

Experimental

Crystal data

  • C12H20N6O2

  • M r = 280.34

  • Triclinic, Inline graphic

  • a = 6.3641 (2) Å

  • b = 7.3034 (2) Å

  • c = 7.7774 (2) Å

  • α = 93.299 (2)°

  • β = 109.578 (2)°

  • γ = 94.707 (2)°

  • V = 338.05 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 101 K

  • 0.40 × 0.16 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.962, T max = 0.988

  • 6074 measured reflections

  • 1673 independent reflections

  • 1309 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.112

  • S = 1.03

  • 1673 reflections

  • 131 parameters

  • All H-atom parameters refined

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037311/pk2267sup1.cif

e-66-o2615-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037311/pk2267Isup2.hkl

e-66-o2615-Isup2.hkl (80.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.90 (2) 1.89 (2) 2.7707 (15) 167 (2)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The 1,2,4-triazole compounds possess important pharmacological activities that include antifungal and antiviral properties. Examples of compounds bearing the 1,2,4-triazole group are fluconazole, the powerful azole antifungal agent as well as the potent antiviral N– nucleoside ribavirin (Ünver et al., 2008; Ünver et al., 2009). Furthermore, various 1,2,4-triazole derivatives have been reported as fungicidal (Zamani et al., 2003), insecticidal (Tanaka, 1974), antimicrobial (Griffin & Mannion, 1986), and some showed antitumor activity as well as having anticonvulsant (Dalloul & Boyle, 2006), antidepressant (Chiu & Huskey, 1998) and plant growth regulator anticoagulant activity (Eliott et al., 1986). It was reported that compounds having triazole moieties, such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatase inhibitors and can be useful for preventing breast cancer (Santen, 2003; Clemons et al., 2004).

The molecular structure of the compound is shown in Fig.1. The molecule consists of two triazole rings, joined by an aliphatic —(CH2)6— chain connected to nitrogen atoms of the rings. The molecule has an inversion center in the middle of the chain, that connects the triazole rings. The length of the N═C [N2═C5= 1.3031 (17) Å] bond in the triazole ring is close to the those similar structures in the literature [1.296 (3)Å in C14H16N6O2S (Ustabaş et al., 2007); 1.288 (2)Å in C16H28N6O2 (Çoruh et al., 2003)]. The bond length of O═C [O1═C1= 1.2421 (16) Å] is in conformity with the values mentioned before[1.218 (3)Å in C16H20N6O2S (Ustabaş et al., 2006); 1.220 (2)Å in C24H20N4O2S (Ustabaş et al., 2009)]. The triazole ring is very close to planarity, with a maximum deviation from the least-squares plane of -0.014 (13)Å for atom C1.

In the crystal structure of the compound, there is a strong intermolecular N3—H3···O1 hydrogen-bonding interaction (Table 1). The compound also exhibits π-π stacking interactions between triazole rings (Cg1···Cg1= 3.277 (8) Å; symmetry code: –X, 2-Y, –Z).

Experimental

The synthesis of 4,4'-(hexane-1,6-diyl)bis (5-ethyl-2H-1,2,4-triazol-3(4H)-one) to a solution of ethyl 2 (1-ethoxyethylidene)hydrazinecarboxylate (0.02 mol) in 50 ml water hexane-1,6-diamine (0.01 mol) was added. Having refluxed this mixture for 4 h the precipitate formed was filtered off. The solid product was washed with water and crystallized from ethanol/water (1/3)(yield 73.25%) to afford the desired compound.

Refinement

All H atoms were located in a difference synthesis and refined [N—H = 0.902 (19) Å; ethylene C—H = 0.945 (18) Å-1.017 (18) Å; and methylene C—H= 0.952 Å-1.00 (2) Å].

Figures

Fig. 1.

Fig. 1.

An ellipsoid plot of the title compound, with the atom numbering scheme. Atoms with primed labels are related via an inversion center (1-x, 1-y, 1-z). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram, viewed along b.

Crystal data

C12H20N6O2 Z = 1
Mr = 280.34 F(000) = 150
Triclinic, P1 Dx = 1.377 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.3641 (2) Å Cell parameters from 1309 reflections
b = 7.3034 (2) Å θ = 2.8–28.3°
c = 7.7774 (2) Å µ = 0.10 mm1
α = 93.299 (2)° T = 101 K
β = 109.578 (2)° Rod-shaped, colorless
γ = 94.707 (2)° 0.40 × 0.16 × 0.12 mm
V = 338.05 (2) Å3

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer 1673 independent reflections
Radiation source: fine-focus sealed tube 1309 reflections with I > 2σ(I)
graphite Rint = 0.033
φ and ω scans θmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −8→8
Tmin = 0.962, Tmax = 0.988 k = −9→9
6074 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.062P)2 + 0.0594P] where P = (Fo2 + 2Fc2)/3
1673 reflections (Δ/σ)max < 0.001
131 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.49741 (15) 0.02539 (13) 0.76514 (13) 0.0199 (3)
N1 0.84928 (18) 0.18555 (15) 0.81036 (15) 0.0159 (3)
N2 0.98018 (18) 0.22436 (15) 1.11442 (15) 0.0183 (3)
N3 0.76344 (18) 0.13460 (15) 1.04956 (15) 0.0173 (3)
C1 0.6815 (2) 0.10507 (17) 0.86549 (18) 0.0162 (3)
C2 0.8354 (2) 0.1878 (2) 0.61861 (18) 0.0189 (3)
C3 0.7642 (2) 0.36813 (19) 0.54057 (19) 0.0202 (3)
C4 0.5280 (2) 0.40487 (19) 0.53108 (19) 0.0193 (3)
C5 1.0248 (2) 0.25341 (17) 0.96590 (18) 0.0166 (3)
C6 1.2408 (2) 0.3456 (2) 0.9639 (2) 0.0207 (3)
H21 0.981 (3) 0.163 (2) 0.609 (2) 0.019 (4)*
H61 1.220 (3) 0.461 (3) 0.914 (2) 0.030 (4)*
H32 0.772 (3) 0.361 (2) 0.415 (2) 0.025 (4)*
H41 0.512 (3) 0.397 (2) 0.655 (2) 0.018 (4)*
H31 0.876 (3) 0.476 (2) 0.614 (2) 0.028 (4)*
H42 0.414 (3) 0.309 (2) 0.446 (2) 0.022 (4)*
H22 0.732 (3) 0.087 (2) 0.551 (2) 0.025 (4)*
H3 0.696 (3) 0.089 (2) 1.125 (3) 0.036 (5)*
H62 1.310 (3) 0.273 (3) 0.887 (3) 0.035 (5)*
H63 1.348 (3) 0.368 (3) 1.093 (3) 0.041 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0140 (5) 0.0240 (5) 0.0184 (5) −0.0042 (4) 0.0030 (4) 0.0004 (4)
N1 0.0126 (6) 0.0162 (6) 0.0181 (6) 0.0005 (4) 0.0043 (5) 0.0024 (4)
N2 0.0123 (6) 0.0186 (6) 0.0213 (6) −0.0005 (4) 0.0028 (5) 0.0012 (4)
N3 0.0127 (6) 0.0192 (6) 0.0183 (6) −0.0006 (4) 0.0035 (5) 0.0026 (4)
C1 0.0134 (6) 0.0150 (6) 0.0197 (7) 0.0028 (5) 0.0047 (5) 0.0025 (5)
C2 0.0156 (7) 0.0230 (7) 0.0169 (7) −0.0009 (6) 0.0049 (5) −0.0001 (5)
C3 0.0163 (7) 0.0237 (7) 0.0202 (7) −0.0017 (6) 0.0065 (6) 0.0039 (6)
C4 0.0160 (7) 0.0213 (7) 0.0184 (7) −0.0029 (5) 0.0039 (6) 0.0035 (5)
C5 0.0130 (6) 0.0153 (6) 0.0198 (7) 0.0033 (5) 0.0028 (5) 0.0018 (5)
C6 0.0131 (7) 0.0208 (7) 0.0261 (8) −0.0005 (5) 0.0045 (6) 0.0021 (6)

Geometric parameters (Å, °)

O1—C1 1.2421 (16) C3—C4 1.5271 (19)
N1—C5 1.3751 (17) C3—H32 0.991 (16)
N1—C1 1.3794 (16) C3—H31 1.017 (18)
N1—C2 1.4653 (16) C4—C4i 1.528 (3)
N2—C5 1.3031 (17) C4—H41 1.007 (15)
N2—N3 1.3907 (15) C4—H42 1.000 (17)
N3—C1 1.3467 (18) C5—C6 1.4856 (19)
N3—H3 0.902 (19) C6—H61 0.952 (18)
C2—C3 1.521 (2) C6—H62 1.006 (18)
C2—H21 0.985 (15) C6—H63 1.00 (2)
C2—H22 0.945 (18)
C5—N1—C1 107.39 (11) C2—C3—H31 110.3 (10)
C5—N1—C2 128.60 (11) C4—C3—H31 109.3 (9)
C1—N1—C2 123.98 (11) H32—C3—H31 107.2 (13)
C5—N2—N3 103.79 (11) C3—C4—C4i 112.27 (14)
C1—N3—N2 112.63 (11) C3—C4—H41 110.2 (9)
C1—N3—H3 124.9 (12) C4i—C4—H41 108.2 (8)
N2—N3—H3 122.0 (12) C3—C4—H42 110.5 (9)
O1—C1—N3 128.98 (12) C4i—C4—H42 109.0 (9)
O1—C1—N1 126.86 (12) H41—C4—H42 106.5 (13)
N3—C1—N1 104.16 (11) N2—C5—N1 111.99 (11)
N1—C2—C3 112.31 (11) N2—C5—C6 124.26 (13)
N1—C2—H21 108.9 (9) N1—C5—C6 123.74 (12)
C3—C2—H21 111.3 (9) C5—C6—H61 110.6 (10)
N1—C2—H22 107.6 (10) C5—C6—H62 113.5 (10)
C3—C2—H22 110.7 (10) H61—C6—H62 105.9 (14)
H21—C2—H22 105.8 (13) C5—C6—H63 108.9 (11)
C2—C3—C4 114.14 (11) H61—C6—H63 108.3 (15)
C2—C3—H32 106.5 (9) H62—C6—H63 109.6 (14)
C4—C3—H32 109.1 (9)
C5—N2—N3—C1 1.87 (14) N1—C2—C3—C4 −64.04 (15)
N2—N3—C1—O1 178.11 (12) C2—C3—C4—C4i 174.64 (14)
N2—N3—C1—N1 −2.33 (14) N3—N2—C5—N1 −0.58 (14)
C5—N1—C1—O1 −178.57 (12) N3—N2—C5—C6 −179.47 (12)
C2—N1—C1—O1 −0.5 (2) C1—N1—C5—N2 −0.81 (15)
C5—N1—C1—N3 1.86 (13) C2—N1—C5—N2 −178.77 (12)
C2—N1—C1—N3 179.93 (11) C1—N1—C5—C6 178.09 (12)
C5—N1—C2—C3 −84.62 (16) C2—N1—C5—C6 0.1 (2)
C1—N1—C2—C3 97.73 (14)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1ii 0.90 (2) 1.89 (2) 2.7707 (15) 167 (2)

Symmetry codes: (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2267).

References

  1. Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chiu, S.-H. L. & Huskey, S. E. W. (1998). Drug Metabol. Dispos.26, 838–847. [PubMed]
  3. Clemons, M., Colemon, R. E. & Verma, S. (2004). Cancer Treat. Rev.30, 325–332. [DOI] [PubMed]
  4. Çoruh, U., Ustabaş, R., Sancak, K., Şaşmaz, S., Ağar, E. & Kim, Y. (2003). Acta Cryst. E59, o1277–o1279.
  5. Dalloul, H. & Boyle, P. (2006). Turk. J. Chem.30, 119–124.
  6. Eliott, R., Sunley, R. L. & Griffin, D. A. (1986). UK Patent Appl. GB 2, 175.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Griffin, D. A. & Mannion, S. K. (1986). Eur. Patent Appl. EP 199, 474.
  10. Santen, J. R. (2003). Steroids, 68, 559–567. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Tanaka, G. (1974). Japan Kokai, 973, 7495.
  13. Ünver, Y., Düğdu, E., Sancak, K., Er, M. & Karaoğlu, Ş. A. (2008). Turk. J. Chem.32, 441–455.
  14. Ünver, Y., Düğdu, E., Sancak, K., Er, M. & Karaoğlu, Ş. A. (2009). Turk. J. Chem.33, 135–147.
  15. Ustabaş, R., Çoruh, U., Sancak, K. & Demirkan, E. (2007). Acta Cryst. E63, o3443.
  16. Ustabaş, R., Çoruh, U., Sancak, K., Düg~dü, E. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o4265–o4267.
  17. Ustabaş, R., Ünver, Y., Suleymanoğlu, N., Çoruh, U. & Sancak, K. (2009). Acta Cryst. E65, o1006–o1007. [DOI] [PMC free article] [PubMed]
  18. Zamani, K., Faghihi, K., Reza Sangi, M. & Zolgharnein, J. (2003). Turk. J. Chem.27, 119–126.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037311/pk2267sup1.cif

e-66-o2615-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037311/pk2267Isup2.hkl

e-66-o2615-Isup2.hkl (80.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES