Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 4;66(Pt 10):o2499. doi: 10.1107/S160053681003504X

3-[(2E)-2-(Butan-2-yl­idene)hydrazin­yl]-6-chloro­pyridazine

Abdul Qayyum Ather a,b, M Nawaz Tahir c,*, Misbahul Ain Khan a, Muhammad Makshoof Athar d
PMCID: PMC2983409  PMID: 21587496

Abstract

The asymmetric unit of the title compound, C8H11ClN4, contains two independent mol­ecules (A and B) with slightly different conformations: the dihedral angles between the 3-chloro-6-hydrazinylpyridazine units and butyl side chains are 4.5 (2) and 11.98 (16)°. In the crystal, the A and B mol­ecules are linked by a pair of N—H⋯N hydogen bonds, generating an R 2 2(8) loop.

Related literature

For related structures, see: Ather et al. (2009, 2010). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-66-o2499-scheme1.jpg

Experimental

Crystal data

  • C8H11ClN4

  • M r = 198.66

  • Triclinic, Inline graphic

  • a = 8.0623 (4) Å

  • b = 11.6768 (5) Å

  • c = 12.1314 (5) Å

  • α = 113.858 (1)°

  • β = 91.370 (2)°

  • γ = 104.880 (2)°

  • V = 998.85 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.25 × 0.15 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.982, T max = 0.988

  • 14983 measured reflections

  • 3585 independent reflections

  • 2652 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.099

  • S = 1.05

  • 3585 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003504X/hb5623sup1.cif

e-66-o2499-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003504X/hb5623Isup2.hkl

e-66-o2499-Isup2.hkl (172.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N6i 0.86 2.30 3.0674 (15) 148
N7—H7⋯N2i 0.86 2.24 3.0689 (15) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

In continuation of our studies of pyrazolylpyridazine derivatives (Ather et al., 2009, 2010), the title compound (I, Fig. 1) is being reported here.

The title compound (I), consists of two independent molecules. In one molecule, the 3-chloro-6-hydrazinylpyridazine moiety A (C1—C4/N1—N4/CL1) and the butane group B (C5—C8) is planar with r. m. s. deviation of 0.0217 and 0.0130 Å. The dihedral angle between A/B is 4.53 (24)°. In second molecule, the 3-chloro-6-hydrazinylpyridazine moiety C (C9—C12/N5—N8/CL2) and the butane group D (C13—C16) is planar with r. m. s. deviation of 0.0453 and 0.0446 Å. The dihedral angle between C/D is 11.98 (16)°. The title compound consists of dimers due to N—H···N type of H-bonding (Table 1, Fig. 2) with R22(8) ring motif (Bernstein et al., 1995).

Experimental

3-Chloro-6-hydrazinylpyridazine (0.5 g, 3.46 mmol), dissolved in ethyl-methylketone was refluxed for 30 min. The unreacted ethyl-methylketone was distilled off yielding the crude material. The product was re-crystallized in alcohol to affoard colorless needles of (I).

Refinement

The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

Two independent molecules of (I) with 50% probability displacement ellipsoids. Dashed lines denote intermolecular hydrogen bonds, forming a dimer: the N6 moleucle shown is generated by the symmetry operation (1–x, 1–y, –z) from the asymmetric atoms.

Crystal data

C8H11ClN4 Z = 4
Mr = 198.66 F(000) = 416
Triclinic, P1 Dx = 1.321 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.0623 (4) Å Cell parameters from 2652 reflections
b = 11.6768 (5) Å θ = 2.1–25.3°
c = 12.1314 (5) Å µ = 0.34 mm1
α = 113.858 (1)° T = 296 K
β = 91.370 (2)° Needle, colorless
γ = 104.880 (2)° 0.25 × 0.15 × 0.14 mm
V = 998.85 (8) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 3585 independent reflections
Radiation source: fine-focus sealed tube 2652 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 8.10 pixels mm-1 θmax = 25.3°, θmin = 2.1°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −13→13
Tmin = 0.982, Tmax = 0.988 l = −14→11
14983 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.1867P] where P = (Fo2 + 2Fc2)/3
3585 reflections (Δ/σ)max = 0.001
239 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.56878 (7) 1.01144 (5) 0.14461 (4) 0.0711 (2)
N1 0.65078 (7) 0.81818 (4) −0.01826 (4) 0.0494 (5)
N2 0.69138 (9) 0.70411 (6) −0.06328 (4) 0.0477 (5)
N3 0.73568 (11) 0.52631 (8) −0.04789 (4) 0.0485 (5)
N4 0.75811 (18) 0.46292 (14) 0.02371 (12) 0.0446 (5)
C1 0.6218 (2) 0.86549 (17) 0.09480 (15) 0.0457 (6)
C2 0.6309 (2) 0.80724 (18) 0.17388 (15) 0.0482 (6)
C3 0.6692 (2) 0.69257 (17) 0.12939 (14) 0.0456 (6)
C4 0.6972 (2) 0.64155 (16) 0.00695 (14) 0.0403 (6)
C5 0.8018 (2) 0.35764 (18) −0.02463 (16) 0.0446 (6)
C6 0.8294 (3) 0.29374 (19) 0.05683 (17) 0.0546 (7)
C7 0.8037 (3) 0.3631 (2) 0.18693 (18) 0.0706 (9)
C8 0.8324 (3) 0.29472 (19) −0.15401 (16) 0.0571 (7)
Cl2 0.61890 (8) 0.92216 (5) 0.55956 (5) 0.0741 (2)
N5 0.4684 (2) 0.70148 (16) 0.37821 (14) 0.0577 (6)
N6 0.3743 (2) 0.57428 (16) 0.32230 (13) 0.0577 (6)
N7 0.2290 (2) 0.38112 (15) 0.32596 (13) 0.0557 (6)
N8 0.1391 (2) 0.31693 (16) 0.38987 (13) 0.0527 (6)
C9 0.4960 (2) 0.75931 (18) 0.49629 (16) 0.0499 (6)
C10 0.4326 (3) 0.69965 (19) 0.57130 (16) 0.0572 (7)
C11 0.3386 (3) 0.57264 (19) 0.51703 (16) 0.0560 (7)
C12 0.3135 (2) 0.51037 (18) 0.38917 (15) 0.0461 (6)
C13 0.0646 (3) 0.19453 (19) 0.33475 (16) 0.0514 (7)
C14 −0.0380 (3) 0.1305 (2) 0.40720 (18) 0.0656 (8)
C15 −0.0180 (3) 0.2152 (2) 0.5419 (2) 0.0842 (10)
C16 0.06718 (9) 0.10973 (7) 0.20380 (5) 0.0690 (8)
H2 0.61145 0.84592 0.25415 0.0578*
H3 0.67676 0.64881 0.17770 0.0547*
H3A 0.74569 0.49409 −0.12405 0.0582*
H6A 0.75051 0.20566 0.02287 0.0655*
H6B 0.94655 0.28638 0.05598 0.0655*
H7A 0.88583 0.44865 0.22347 0.1059*
H7B 0.68809 0.37098 0.18942 0.1059*
H7C 0.82074 0.31382 0.23104 0.1059*
H8A 0.72987 0.27583 −0.20780 0.0858*
H8B 0.92751 0.35314 −0.16869 0.0858*
H8C 0.85936 0.21485 −0.16845 0.0858*
H7 0.23145 0.34080 0.24923 0.0668*
H10 0.45400 0.74553 0.65567 0.0687*
H11 0.29214 0.52778 0.56265 0.0673*
H14A −0.00369 0.05316 0.39609 0.0787*
H14B −0.15974 0.10162 0.37404 0.0787*
H15A 0.10043 0.23887 0.57731 0.1264*
H15B −0.09207 0.16776 0.57958 0.1264*
H15C −0.04957 0.29300 0.55442 0.1264*
H16A −0.00022 0.13112 0.15265 0.1035*
H16B 0.01880 0.01944 0.18790 0.1035*
H16C 0.18459 0.12428 0.18693 0.1035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1018 (5) 0.0565 (3) 0.0605 (3) 0.0378 (3) 0.0197 (3) 0.0210 (3)
N1 0.0617 (10) 0.0490 (9) 0.0437 (8) 0.0192 (8) 0.0131 (7) 0.0235 (7)
N2 0.0627 (10) 0.0477 (9) 0.0393 (8) 0.0201 (8) 0.0144 (7) 0.0222 (7)
N3 0.0670 (10) 0.0479 (9) 0.0362 (7) 0.0190 (8) 0.0112 (7) 0.0219 (7)
N4 0.0485 (9) 0.0478 (9) 0.0427 (8) 0.0109 (7) 0.0063 (7) 0.0261 (7)
C1 0.0480 (11) 0.0428 (10) 0.0437 (10) 0.0106 (8) 0.0075 (8) 0.0173 (8)
C2 0.0534 (11) 0.0505 (11) 0.0360 (9) 0.0100 (9) 0.0095 (8) 0.0167 (8)
C3 0.0521 (11) 0.0494 (11) 0.0367 (9) 0.0091 (9) 0.0078 (8) 0.0230 (8)
C4 0.0404 (10) 0.0420 (10) 0.0373 (9) 0.0066 (8) 0.0055 (7) 0.0188 (8)
C5 0.0414 (10) 0.0454 (11) 0.0467 (10) 0.0070 (8) 0.0060 (8) 0.0228 (9)
C6 0.0529 (12) 0.0582 (12) 0.0621 (12) 0.0144 (10) 0.0074 (9) 0.0358 (10)
C7 0.0867 (16) 0.0831 (16) 0.0590 (12) 0.0271 (13) 0.0127 (11) 0.0454 (12)
C8 0.0663 (13) 0.0581 (12) 0.0506 (11) 0.0227 (10) 0.0131 (9) 0.0236 (10)
Cl2 0.0911 (4) 0.0514 (3) 0.0707 (4) 0.0066 (3) 0.0057 (3) 0.0259 (3)
N5 0.0740 (12) 0.0536 (10) 0.0461 (9) 0.0099 (9) 0.0093 (8) 0.0269 (8)
N6 0.0790 (12) 0.0537 (10) 0.0401 (8) 0.0104 (9) 0.0088 (8) 0.0249 (8)
N7 0.0760 (11) 0.0497 (10) 0.0379 (8) 0.0079 (8) 0.0112 (8) 0.0213 (7)
N8 0.0610 (10) 0.0546 (10) 0.0466 (9) 0.0123 (8) 0.0115 (7) 0.0282 (8)
C9 0.0580 (12) 0.0459 (11) 0.0482 (10) 0.0162 (9) 0.0093 (9) 0.0215 (9)
C10 0.0795 (14) 0.0535 (13) 0.0373 (10) 0.0183 (11) 0.0123 (9) 0.0185 (9)
C11 0.0786 (14) 0.0534 (12) 0.0409 (10) 0.0169 (11) 0.0182 (9) 0.0256 (9)
C12 0.0540 (11) 0.0488 (11) 0.0394 (9) 0.0147 (9) 0.0086 (8) 0.0225 (9)
C13 0.0534 (12) 0.0540 (12) 0.0493 (10) 0.0128 (10) 0.0069 (9) 0.0261 (10)
C14 0.0692 (14) 0.0642 (14) 0.0642 (13) 0.0077 (11) 0.0132 (10) 0.0349 (11)
C15 0.1004 (19) 0.0848 (18) 0.0671 (15) 0.0104 (14) 0.0291 (13) 0.0410 (13)
C16 0.0818 (16) 0.0572 (13) 0.0572 (12) 0.0078 (11) 0.0125 (11) 0.0212 (10)

Geometric parameters (Å, °)

Cl1—C1 1.734 (2) C6—H6B 0.9700
Cl2—C9 1.733 (2) C6—H6A 0.9700
N1—N2 1.3504 (9) C7—H7A 0.9600
N1—C1 1.3075 (17) C7—H7C 0.9600
N2—C4 1.3345 (19) C7—H7B 0.9600
N3—N4 1.3843 (18) C8—H8A 0.9600
N3—C4 1.360 (2) C8—H8C 0.9600
N4—C5 1.276 (3) C8—H8B 0.9600
N3—H3A 0.8600 C9—C10 1.388 (3)
N5—C9 1.297 (2) C10—C11 1.348 (3)
N5—N6 1.350 (3) C11—C12 1.405 (2)
N6—C12 1.333 (3) C13—C16 1.4981 (19)
N7—N8 1.381 (2) C13—C14 1.505 (3)
N7—C12 1.357 (3) C14—C15 1.508 (3)
N8—C13 1.272 (3) C10—H10 0.9300
N7—H7 0.8600 C11—H11 0.9300
C1—C2 1.392 (3) C14—H14A 0.9700
C2—C3 1.347 (3) C14—H14B 0.9700
C3—C4 1.408 (2) C15—H15A 0.9600
C5—C8 1.498 (3) C15—H15B 0.9600
C5—C6 1.501 (3) C15—H15C 0.9600
C6—C7 1.503 (3) C16—H16A 0.9600
C2—H2 0.9300 C16—H16B 0.9600
C3—H3 0.9300 C16—H16C 0.9600
N2—N1—C1 118.43 (10) H8A—C8—H8C 109.00
N1—N2—C4 119.67 (8) C5—C8—H8A 109.00
N4—N3—C4 117.38 (10) H8B—C8—H8C 109.00
N3—N4—C5 118.39 (13) H8A—C8—H8B 109.00
C4—N3—H3A 121.00 C5—C8—H8C 109.00
N4—N3—H3A 121.00 C5—C8—H8B 109.00
N6—N5—C9 119.09 (18) Cl2—C9—C10 119.98 (14)
N5—N6—C12 119.53 (15) Cl2—C9—N5 115.69 (16)
N8—N7—C12 117.28 (14) N5—C9—C10 124.3 (2)
N7—N8—C13 119.01 (15) C9—C10—C11 117.37 (17)
N8—N7—H7 121.00 C10—C11—C12 117.67 (19)
C12—N7—H7 121.00 N7—C12—C11 122.28 (19)
N1—C1—C2 124.75 (16) N6—C12—N7 115.75 (15)
Cl1—C1—C2 119.92 (13) N6—C12—C11 121.96 (19)
Cl1—C1—N1 115.33 (13) N8—C13—C14 116.84 (17)
C1—C2—C3 117.28 (16) N8—C13—C16 125.68 (18)
C2—C3—C4 117.42 (17) C14—C13—C16 117.47 (17)
N2—C4—N3 114.99 (12) C13—C14—C15 115.48 (19)
N3—C4—C3 122.59 (16) C9—C10—H10 121.00
N2—C4—C3 122.41 (16) C11—C10—H10 121.00
C6—C5—C8 117.44 (18) C10—C11—H11 121.00
N4—C5—C8 125.76 (19) C12—C11—H11 121.00
N4—C5—C6 116.78 (16) C13—C14—H14A 108.00
C5—C6—C7 115.54 (19) C13—C14—H14B 108.00
C3—C2—H2 121.00 C15—C14—H14A 108.00
C1—C2—H2 121.00 C15—C14—H14B 108.00
C4—C3—H3 121.00 H14A—C14—H14B 107.00
C2—C3—H3 121.00 C14—C15—H15A 109.00
C5—C6—H6A 108.00 C14—C15—H15B 109.00
C7—C6—H6B 108.00 C14—C15—H15C 109.00
C5—C6—H6B 108.00 H15A—C15—H15B 110.00
H6A—C6—H6B 107.00 H15A—C15—H15C 109.00
C7—C6—H6A 108.00 H15B—C15—H15C 110.00
H7A—C7—H7B 110.00 C13—C16—H16A 109.00
H7A—C7—H7C 109.00 C13—C16—H16B 109.00
C6—C7—H7C 109.00 C13—C16—H16C 109.00
H7B—C7—H7C 109.00 H16A—C16—H16B 109.00
C6—C7—H7B 109.00 H16A—C16—H16C 109.00
C6—C7—H7A 109.00 H16B—C16—H16C 109.00
C1—N1—N2—C4 1.45 (15) N8—N7—C12—C11 12.0 (3)
N2—N1—C1—Cl1 −179.47 (8) N7—N8—C13—C16 1.2 (3)
N2—N1—C1—C2 0.5 (2) N7—N8—C13—C14 −177.43 (18)
N1—N2—C4—N3 178.67 (10) N1—C1—C2—C3 −1.3 (3)
N1—N2—C4—C3 −2.6 (2) Cl1—C1—C2—C3 178.68 (14)
C4—N3—N4—C5 −176.95 (15) C1—C2—C3—C4 0.2 (3)
N4—N3—C4—N2 174.58 (12) C2—C3—C4—N2 1.8 (3)
N4—N3—C4—C3 −4.1 (2) C2—C3—C4—N3 −179.62 (16)
N3—N4—C5—C6 178.44 (15) N4—C5—C6—C7 −0.6 (3)
N3—N4—C5—C8 0.2 (3) C8—C5—C6—C7 177.78 (19)
C9—N5—N6—C12 −0.8 (3) Cl2—C9—C10—C11 −179.66 (18)
N6—N5—C9—Cl2 179.70 (14) N5—C9—C10—C11 1.1 (3)
N6—N5—C9—C10 −1.0 (3) C9—C10—C11—C12 0.6 (3)
N5—N6—C12—N7 −176.31 (16) C10—C11—C12—N6 −2.3 (3)
N5—N6—C12—C11 2.5 (3) C10—C11—C12—N7 176.4 (2)
C12—N7—N8—C13 −176.99 (19) N8—C13—C14—C15 −8.9 (3)
N8—N7—C12—N6 −169.24 (16) C16—C13—C14—C15 172.35 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N6i 0.86 2.30 3.0674 (15) 148
N7—H7···N2i 0.86 2.24 3.0689 (15) 161

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5623).

References

  1. Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628. [DOI] [PMC free article] [PubMed]
  2. Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010). Acta Cryst. E66, o2441. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003504X/hb5623sup1.cif

e-66-o2499-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003504X/hb5623Isup2.hkl

e-66-o2499-Isup2.hkl (172.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES