Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 11;66(Pt 10):o2548–o2549. doi: 10.1107/S1600536810036056

N-[(2-Chloro-3-quinol­yl)meth­yl]-4-fluoro­aniline

Jerry P Jasinski a,*, Albert E Pek a, C S Chidan Kumar b, H S Yathirajan b, Suresh Kumar c
PMCID: PMC2983417  PMID: 21587537

Abstract

In the title compound, C16H12ClFN2, the dihedral angle between the quinoline ring system and the flourophenyl ring is 86.70 (4)°. In the crystal, mol­ecules are linked into chains along the a axis by N—H⋯N hydrogen bonds. In addition, C—H⋯π inter­actions involving the two benzene rings are observed.

Related literature

For general background, properties and the biological activity of quinolines, see: Campbell et al. (1988); Dutta et al. (2002); Markees et al. (1970); Meth-Cohn et al. (1981); Michael et al. (1997); Morimoto et al. (1991); Padwa et al. (1999); Rajendran & Karavembu (2002); Robert & Meunier et al. (1998). For the synthesis of quinolines, see: Kouznetsov et al. (2005). For related structures, see: Butcher et al. 2007); Lynch et al. (2001); Subashini et al. (2009); Yathirajan et al. (2007); Wu et al. (2009); Khan et al. (2010). For bond-length data, see: Allen et al. (1987) .graphic file with name e-66-o2548-scheme1.jpg

Experimental

Crystal data

  • C16H12ClFN2

  • M r = 286.73

  • Triclinic, Inline graphic

  • a = 7.3661 (8) Å

  • b = 8.8967 (9) Å

  • c = 11.5129 (12) Å

  • α = 68.704 (1)°

  • β = 74.468 (1)°

  • γ = 75.445 (1)°

  • V = 667.25 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.55 × 0.50 × 0.25 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.858, T max = 0.932

  • 8162 measured reflections

  • 3930 independent reflections

  • 3633 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.094

  • S = 1.03

  • 3930 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036056/ci5158sup1.cif

e-66-o2548-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036056/ci5158Isup2.hkl

e-66-o2548-Isup2.hkl (192.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H18⋯N1i 0.86 2.30 3.1353 (12) 165
C4—H4⋯Cg2ii 0.93 2.91 3.7494 (13) 151
C10—H10ACg1iii 0.97 2.62 3.5365 (12) 157
C10—H10BCg2iv 0.97 2.98 3.8083 (11) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by the Ohio Board of Regents grant CAP-491, and by YSU. CSC thanks the University of Mysore for research facilities and HSY thanks the University of Mysore for sabbatical leave.

supplementary crystallographic information

Comment

Quinoline derivatives represent a major class of heterocycles, and a number of preparations using them have been known since the late 1800s. Quinolines are found in natural products (Morimoto et al., 1991; Michael et al., 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Several quinoline derivatives have been evaluated in vitro against a number of parasites of HTLV-1 transformed cells. 2-Chloro substituted quinolines are vital synthetic intermediates in the construction of a large number of linearly fused tri- and tetra- cyclic quinolines studied for the DNA intercalating properties (Meth-Cohn et al., 1981; Rajendran & Karavembu, 2002; Dutta et al., 2002). A review on recent progress in the synthesis of quinolines (Kouznetsov et al. 2005) has been described. The crystal structure studies of 8-chloro-2-methylquinoline (Wu et al., 2009), 2-chloro-4-methylquinoline (Lynch et al., 2001), 4-chloro-8-(trifluoromethyl)quinoline (Yathirajan et al., 2007), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and 2-chloro-7-methylquinoline-3-carbaldehyde (Subashini et al., 2009) have been reported. In view of the importance of quinolines, the paper reports the synthesis and crystal structure of the title compound.

In the title molecule (Fig. 1), the 2-chloroquinoline ring system and 4-fluoroaniline ring are bonded to a methane carbon, C10. The dihedral angle between the mean planes of the planar chloroquinoline ring system (dihedral angle between rings = 0.92 (5)°) and the flourophenyl ring is 86.70 (4)°. Bond distances (Allen et al., 1987) and angles are in normal ranges.

The molecules are linked into chains along the a axis by N—H···N hydrogen bonds (Fig. 2). In addition, C—H···π interactions involving the two benzene rings (Table 1) influence crystal packing in the unit cell.

Experimental

In a mixture of 3-(chloromethyl)-2-chloroquinoline (0.003 mol) and substituted phenyl amine (0.003 mol) in 20 ml of absolute ethanol, 1 ml of triethylamine (TEA) was added and refluxed for 12–15 hrs (Fig. 3). After completion of the reaction, content of the flask was reduced to half and left overnight. The crystalline mass obtained was filtered off, washed with water, dried and re-crystallized from ethanol to give N-[(2-chloroquinolin-3-yl)methyl]-4-fluoroaniline. X-ray quality crystals were obtained by slow evaporation of a methanol solution (m.p. 413–415 K).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93 Å (CH), 0.97 Å (CH2) or 0.86 Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, viewed down the b axis. Dashed lines indicate weak N—H···N hydrogen bonds.

Fig. 3.

Fig. 3.

Reaction scheme for the title compound.

Crystal data

C16H12ClFN2 Z = 2
Mr = 286.73 F(000) = 296
Triclinic, P1 Dx = 1.427 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3661 (8) Å Cell parameters from 5222 reflections
b = 8.8967 (9) Å θ = 2.5–31.0°
c = 11.5129 (12) Å µ = 0.29 mm1
α = 68.704 (1)° T = 100 K
β = 74.468 (1)° Plate, colourless
γ = 75.445 (1)° 0.55 × 0.50 × 0.25 mm
V = 667.25 (12) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 3930 independent reflections
Radiation source: fine-focus sealed tube 3633 reflections with I > 2σ(I)
graphite Rint = 0.014
ω scans θmax = 31.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.858, Tmax = 0.932 k = −12→12
8162 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.2404P] where P = (Fo2 + 2Fc2)/3
3930 reflections (Δ/σ)max = 0.001
181 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.15120 (4) −0.21591 (3) 0.79554 (2) 0.02245 (8)
N1 1.24567 (12) 0.03932 (10) 0.60973 (8) 0.01634 (16)
N2 0.55793 (12) 0.03799 (11) 0.74940 (8) 0.01744 (17)
H18 0.4905 0.0291 0.7025 0.021*
F1 0.24347 (10) 0.46529 (9) 1.02706 (7) 0.02663 (16)
C7 1.09918 (14) −0.03020 (11) 0.67819 (9) 0.01494 (17)
C1 1.02460 (14) 0.25805 (11) 0.49326 (9) 0.01455 (17)
C10 0.74539 (14) −0.05999 (12) 0.75411 (9) 0.01625 (18)
H10A 0.7513 −0.1557 0.7308 0.020*
H10B 0.7657 −0.0977 0.8407 0.020*
C8 0.90473 (13) 0.03112 (11) 0.66692 (9) 0.01406 (17)
C5 1.36831 (15) 0.26375 (13) 0.44050 (10) 0.01949 (19)
H5 1.4913 0.2165 0.4552 0.023*
C6 1.21153 (14) 0.18553 (12) 0.51570 (9) 0.01520 (17)
C9 0.87191 (13) 0.17731 (12) 0.57294 (9) 0.01522 (17)
H9 0.7474 0.2240 0.5615 0.018*
C14 0.21346 (15) 0.33659 (13) 0.88812 (10) 0.0206 (2)
H14 0.0879 0.3910 0.8882 0.025*
C11 0.48346 (14) 0.14581 (12) 0.81816 (9) 0.01552 (18)
C2 0.99836 (15) 0.40819 (12) 0.39406 (9) 0.01792 (19)
H17 0.8764 0.4568 0.3777 0.022*
C13 0.32377 (16) 0.36116 (12) 0.95720 (10) 0.01941 (19)
C3 1.15214 (16) 0.48201 (13) 0.32212 (10) 0.01972 (19)
H3 1.1338 0.5806 0.2572 0.024*
C12 0.59034 (14) 0.17592 (12) 0.88891 (9) 0.01760 (18)
H12 0.7166 0.1235 0.8889 0.021*
C4 1.33828 (16) 0.40979 (13) 0.34565 (10) 0.0210 (2)
H4 1.4413 0.4616 0.2965 0.025*
C15 0.29365 (14) 0.22899 (13) 0.81854 (10) 0.01916 (19)
H15 0.2208 0.2116 0.7714 0.023*
C16 0.50987 (15) 0.28339 (13) 0.95926 (10) 0.01933 (19)
H16 0.5809 0.3021 1.0068 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01931 (13) 0.01748 (12) 0.02433 (13) −0.00220 (9) −0.00775 (9) 0.00240 (9)
N1 0.0150 (4) 0.0161 (4) 0.0176 (4) −0.0027 (3) −0.0047 (3) −0.0039 (3)
N2 0.0128 (4) 0.0214 (4) 0.0208 (4) −0.0023 (3) −0.0036 (3) −0.0099 (3)
F1 0.0308 (4) 0.0241 (3) 0.0268 (3) −0.0030 (3) −0.0011 (3) −0.0146 (3)
C7 0.0154 (4) 0.0129 (4) 0.0162 (4) −0.0015 (3) −0.0049 (3) −0.0037 (3)
C1 0.0149 (4) 0.0143 (4) 0.0149 (4) −0.0024 (3) −0.0030 (3) −0.0052 (3)
C10 0.0139 (4) 0.0152 (4) 0.0183 (4) −0.0028 (3) −0.0019 (3) −0.0045 (3)
C8 0.0137 (4) 0.0142 (4) 0.0148 (4) −0.0028 (3) −0.0028 (3) −0.0049 (3)
C5 0.0159 (4) 0.0216 (5) 0.0208 (5) −0.0063 (4) −0.0028 (3) −0.0050 (4)
C6 0.0147 (4) 0.0157 (4) 0.0161 (4) −0.0033 (3) −0.0033 (3) −0.0054 (3)
C9 0.0134 (4) 0.0156 (4) 0.0164 (4) −0.0016 (3) −0.0037 (3) −0.0049 (3)
C14 0.0181 (4) 0.0211 (5) 0.0200 (5) −0.0001 (4) −0.0030 (4) −0.0063 (4)
C11 0.0152 (4) 0.0152 (4) 0.0143 (4) −0.0044 (3) −0.0012 (3) −0.0025 (3)
C2 0.0197 (4) 0.0159 (4) 0.0169 (4) −0.0022 (3) −0.0044 (3) −0.0035 (3)
C13 0.0242 (5) 0.0161 (4) 0.0165 (4) −0.0047 (4) −0.0001 (4) −0.0054 (3)
C3 0.0239 (5) 0.0166 (4) 0.0174 (4) −0.0054 (4) −0.0037 (4) −0.0029 (3)
C12 0.0165 (4) 0.0180 (4) 0.0180 (4) −0.0051 (3) −0.0030 (3) −0.0043 (3)
C4 0.0210 (5) 0.0212 (5) 0.0202 (5) −0.0088 (4) −0.0012 (4) −0.0043 (4)
C15 0.0165 (4) 0.0220 (5) 0.0196 (4) −0.0016 (4) −0.0051 (3) −0.0073 (4)
C16 0.0221 (5) 0.0199 (4) 0.0175 (4) −0.0077 (4) −0.0037 (4) −0.0050 (4)

Geometric parameters (Å, °)

Cl1—C7 1.7434 (10) C5—H5 0.93
N1—C7 1.3016 (13) C9—H9 0.93
N1—C6 1.3732 (12) C14—C13 1.3792 (15)
N2—C11 1.3792 (12) C14—C15 1.3878 (14)
N2—C10 1.4388 (13) C14—H14 0.93
N2—H18 0.86 C11—C12 1.4011 (14)
F1—C13 1.3661 (12) C11—C15 1.4077 (14)
C7—C8 1.4217 (13) C2—C3 1.3700 (14)
C1—C9 1.4133 (13) C2—H17 0.93
C1—C6 1.4149 (13) C13—C16 1.3737 (15)
C1—C2 1.4164 (13) C3—C4 1.4128 (15)
C10—C8 1.5161 (13) C3—H3 0.93
C10—H10A 0.97 C12—C16 1.3936 (14)
C10—H10B 0.97 C12—H12 0.93
C8—C9 1.3714 (13) C4—H4 0.93
C5—C4 1.3726 (15) C15—H15 0.93
C5—C6 1.4136 (13) C16—H16 0.93
C7—N1—C6 117.48 (8) C13—C14—C15 118.66 (10)
C11—N2—C10 121.76 (8) C13—C14—H14 120.7
C11—N2—H18 119.1 C15—C14—H14 120.7
C10—N2—H18 119.1 N2—C11—C12 122.23 (9)
N1—C7—C8 126.51 (9) N2—C11—C15 119.59 (9)
N1—C7—Cl1 115.47 (7) C12—C11—C15 118.18 (9)
C8—C7—Cl1 118.01 (7) C3—C2—C1 120.15 (9)
C9—C1—C6 117.92 (9) C3—C2—H17 119.9
C9—C1—C2 123.09 (9) C1—C2—H17 119.9
C6—C1—C2 118.98 (9) F1—C13—C16 119.13 (9)
N2—C10—C8 113.32 (8) F1—C13—C14 118.49 (9)
N2—C10—H10A 108.9 C16—C13—C14 122.38 (10)
C8—C10—H10A 108.9 C2—C3—C4 120.64 (9)
N2—C10—H10B 108.9 C2—C3—H3 119.7
C8—C10—H10B 108.9 C4—C3—H3 119.7
H10A—C10—H10B 107.7 C16—C12—C11 120.86 (9)
C9—C8—C7 115.61 (8) C16—C12—H12 119.6
C9—C8—C10 122.70 (8) C11—C12—H12 119.6
C7—C8—C10 121.69 (8) C5—C4—C3 120.52 (9)
C4—C5—C6 119.71 (9) C5—C4—H4 119.7
C4—C5—H5 120.1 C3—C4—H4 119.7
C6—C5—H5 120.1 C14—C15—C11 121.05 (9)
N1—C6—C5 118.51 (9) C14—C15—H15 119.5
N1—C6—C1 121.50 (9) C11—C15—H15 119.5
C5—C6—C1 119.99 (9) C13—C16—C12 118.87 (9)
C8—C9—C1 120.95 (9) C13—C16—H16 120.6
C8—C9—H9 119.5 C12—C16—H16 120.6
C1—C9—H9 119.5
C6—N1—C7—C8 −0.94 (15) C6—C1—C9—C8 −1.63 (14)
C6—N1—C7—Cl1 179.70 (7) C2—C1—C9—C8 179.30 (9)
C11—N2—C10—C8 −82.06 (11) C10—N2—C11—C12 4.96 (14)
N1—C7—C8—C9 0.82 (15) C10—N2—C11—C15 −174.83 (9)
Cl1—C7—C8—C9 −179.83 (7) C9—C1—C2—C3 178.48 (9)
N1—C7—C8—C10 −178.91 (9) C6—C1—C2—C3 −0.58 (15)
Cl1—C7—C8—C10 0.43 (13) C15—C14—C13—F1 −179.04 (9)
N2—C10—C8—C9 −14.02 (13) C15—C14—C13—C16 0.18 (16)
N2—C10—C8—C7 165.69 (9) C1—C2—C3—C4 0.04 (16)
C7—N1—C6—C5 179.69 (9) N2—C11—C12—C16 −178.83 (9)
C7—N1—C6—C1 −0.29 (14) C15—C11—C12—C16 0.96 (14)
C4—C5—C6—N1 179.83 (9) C6—C5—C4—C3 −0.37 (16)
C4—C5—C6—C1 −0.19 (15) C2—C3—C4—C5 0.44 (16)
C9—C1—C6—N1 1.53 (14) C13—C14—C15—C11 0.14 (16)
C2—C1—C6—N1 −179.36 (9) N2—C11—C15—C14 179.10 (9)
C9—C1—C6—C5 −178.45 (9) C12—C11—C15—C14 −0.70 (15)
C2—C1—C6—C5 0.65 (14) F1—C13—C16—C12 179.30 (9)
C7—C8—C9—C1 0.55 (14) C14—C13—C16—C12 0.08 (16)
C10—C8—C9—C1 −179.73 (8) C11—C12—C16—C13 −0.67 (15)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···A D—H H···A D···A D—H···A
N2—H18···N1i 0.86 2.30 3.1353 (12) 165
C4—H4···Cg2ii 0.93 2.91 3.7494 (13) 151
C10—H10A···Cg1iii 0.97 2.62 3.5365 (12) 157
C10—H10B···Cg2iv 0.97 2.98 3.8083 (11) 145

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y, −z+1; (iv) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5158).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA
  3. Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.
  4. Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem.31, 1031–1035. [DOI] [PubMed]
  5. Dutta, N. J., Khunt, R. C. & Parikh, A. R. (2002). Indian J. Chem. Sect. B, 41, 433–435.
  6. Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o201. [DOI] [PMC free article] [PubMed]
  7. Kouznetsov, V. V., Vargas Mendez, L. Y. & Melendez Gomez, C. M. (2005). Curr. Org. Chem.9, 141–161.
  8. Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. E57, o54–o55. [DOI] [PubMed]
  9. Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem.13, 324–326. [DOI] [PubMed]
  10. Meth-Cohn, O., Tarnowski, B., Hayear, R., Keyzad, A. & Rhouti, S. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 2509–2517.
  11. Michael, J. P. (1997). Nat. Prod. Rep.14, 605–608.
  12. Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  13. Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem.64, 3595–3607. [DOI] [PubMed]
  14. Rajendran, P. & Karavembu, R. (2002). Indian J. Chem. Sect. B, 41, 222–224.
  15. Robert, A. & Meunier, B. (1998). Chem. Soc. Rev.27, 273–279.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Subashini, R., Khan, F. N., Kumar, R., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2721. [DOI] [PMC free article] [PubMed]
  19. Wu, T.-Q., Wang, J.-H., Shen, F. & Hu, A.-X. (2009). Acta Cryst. E65, o1463. [DOI] [PMC free article] [PubMed]
  20. Yathirajan, H. S., Sreevidya, T. V., Prathap, M., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o763–o765.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036056/ci5158sup1.cif

e-66-o2548-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036056/ci5158Isup2.hkl

e-66-o2548-Isup2.hkl (192.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES