Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 24;66(Pt 3):m322. doi: 10.1107/S1600536810006422

Bis{N-[bis­(pyrrolidin-1-yl)phosphor­yl]-2,2,2-trichloro­acetamide}di­nitrato­dioxidouranium(VI)

Kateryna O Znovjyak a,*, Vladimir A Ovchynnikov a, Olesia V Moroz a, Svitlana V Shishkina b, Vladimir M Amirkhanov a
PMCID: PMC2983502  PMID: 21580260

Abstract

The crystal structure of the title compound, [U(NO3)2O2(C10H17Cl3N3O2P)2], is composed of centrosymmetric [UO2(L)2(NO3)2] mol­ecules {L is N-[bis­(pyrrolidin-1-yl)phosphor­yl]-2,2,2-trichloro­acetamide, C10H17Cl3N3O2P}. The UVI ion, located on an inversion center, is eight-coordinated with axial oxido ligands and six equatorial oxygen atoms of the phosphoryl and nitrate groups in a slightly distorted hexa­gonal-bipyramidal geometry. One of the pyrrolidine fragments in the ligand is disordered over two conformation (occupancy ratio 0.58:0.42). Intra­molecular N—H⋯O hydrogen bonds between the amine and nitrate groups are found.

Related literature

For the synthesis and coordination properties of the ligand L, see: Znovjyak et al. (2009). For a structural investigation of L, see: Gholivand et al. (2006). For the synthesis and structural investigation of a uranium(IV)-containing complex with a similar ligand, see: Amirkhanov et al. (1997).graphic file with name e-66-0m322-scheme1.jpg

Experimental

Crystal data

  • [U(NO3)2O2(C10H17Cl3N3O2P)2]

  • M r = 1091.22

  • Triclinic, Inline graphic

  • a = 9.8292 (7) Å

  • b = 10.3436 (8) Å

  • c = 10.4475 (6) Å

  • α = 71.905 (6)°

  • β = 84.391 (5)°

  • γ = 71.475 (6)°

  • V = 957.34 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.80 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.250, T max = 0.447

  • 22849 measured reflections

  • 5523 independent reflections

  • 5486 reflections with I > 2σ(I)

  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.085

  • S = 0.98

  • 5523 reflections

  • 260 parameters

  • 56 restraints

  • H-atom parameters constrained

  • Δρmax = 1.93 e Å−3

  • Δρmin = −1.68 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Burnett & Johnson, 1996; Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006422/dn2539sup1.cif

e-66-0m322-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006422/dn2539Isup2.hkl

e-66-0m322-Isup2.hkl (264.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.86 2.13 2.877 (4) 145

supplementary crystallographic information

Comment

As a part of our study of coordination compounds based on carbacylamidophosphates with C(O)NHP(O) structural fragment we obtained the title compound UO2(L)2(NO3)2 (L = 2,2,2-trichloro- N-[di(1-pyrrolidinyl)phosphoryl]acetamide) (1), and solved its crystal structure. It was shown previously that L is able to form complexes with lanthanides (Znovjyak et al., 2009).

The crystal structure of 1 is made of centrosymmetric molecules UO2(L)2(NO3)2 and uranium is located on an inversion center. The analysis of the bond lengths and angles of 1 indicates that the coordination polyhedra of the uranium ions are slightly distorted hexagonal bipyramids. The axial vertices are occupied by two oxido ligands while six oxygen atoms of monodentate coordinated L ligands and bidentate coordinated nitrate groups lie in the equatorial plane. The nitrate groups additionally form intramolecular hydrogen bonding with the hydrogen atoms of the N—H groups of the L ligands (Table 1). In the crystal structure of the complex, the phosphoryl and carbonyl groups are in the trans position to each other which was early observed in the structure of the free L (Gholivand et al., 2006) and similar complex with uranium ion (Amirkhanov et al., 1997). It was shown that 2,2,2-trichloro-N-[di(1-pyrrolidinyl)phosphoryl]acetamide aggregates into non-centrosymmetric dimers (L)2, therefore in the following will be given two values of bond lengths due to comparison of non-coordinated and coordinated L.

The planar four-membered metalocycle UONO is characterised by an average angle U—O—N equal to 98.1 °. Bond length U—O(oxido ligand) is equal to 1.754 (3) Å while U—O(NO3) and U—O(PO) are 2.523 (3)-2.573 (3) Å and 2.334 (3) Å, respectively. The O—N—O angle of the chelate ring (114.3 (3) °) are shorter as compared to other angles O—N—O (122.3 (4)-123.3 (4) °). N—O(non-coordinated) and N—O(coordinated) distances fall in the range of 1.204 (5) Å and 1.265 (4)-1.270 (5) Å, respectively. In the coordinated L ligand the P—O bond length is slightly increased upon coordination (1.492 (3) Å). In the case of the non-coordinated molecule L they are 1.479 Å and 1.469 Å. The P—N bond distances between phosphorus atoms and nitrogen atoms of the pyrrolidine substituents are shortened with respect to observed values in L (1.613 (4)-1.625 (4) Å) and fall in the range 1.605 (3)-1.613 (4) Å, that can be explained by increasing π-donor bonding in the (Npyr)2P(O) fragment due to coordination. In 1, the P—N(NH) bond length (1.695 (3) Å) is shortened as compared to (L)2 (1.697 and 1.707 Å). The C—N distance is increased while C—O distance do not change upon ligand coordination and are equal to 1.359 (4) Å and 1.196 (5) Å, respectively. Angles in the fragment C(O)NHP(O) are slightly changed upon coordination in the range of 2-3°.

Experimental

The synthesis of L was carried out according to the procedure described previously (Znovjyak et al., 2009).

Hydrated nitrate UO2(NO3)22H2O (1 mmol) was solved upon heating in a CH3CN (10 ml). The solution was dehydrated by HC(OC2H5)3 (2 mmol), then heated to the boiling point and cooled down. The resulting solution was added to the solution of L (2 mmol) in CH3OH (10 ml) and was left in a vacuum desiccator over CaCl2 at room temperature. After 1 day, the yellow crystals were filtered off and washed with cold isopropanol and dried on the air (yield 80%). IR (KBr, cm-1): 3280 ν(NH), 2990 ν(CH), 2890 ν(CH), 1730 ν(CO), 1530, 1440 ν(CN), 1380, 1275, 1215, 1145 ν(PO), 1085, 1030, 940, 890, 820, 680 ν(CCl).

Refinement

All H atoms were placed at calculated positions and treated as riding on their parent atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N)]. In one pyrrolidine group, atoms C3—C6 were treated as disordered between two orientations A and B, respectively, with the occupancies to 0.58 and 0.42.

Figures

Fig. 1.

Fig. 1.

View of the centrosymmetric molecule of 1 with atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. Hydrogen atoms not involved in hydrogen bonding omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1]

Crystal data

[U(NO3)2O2(C10H17Cl3N3O2P)2] Z = 1
Mr = 1091.22 F(000) = 530
Triclinic, P1 Dx = 1.893 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.8292 (7) Å Cell parameters from 35271 reflections
b = 10.3436 (8) Å θ = 3.0–40.8°
c = 10.4475 (6) Å µ = 4.80 mm1
α = 71.905 (6)° T = 293 K
β = 84.391 (5)° Block, yellow
γ = 71.475 (6)° 0.40 × 0.30 × 0.20 mm
V = 957.34 (11) Å3

Data collection

Oxford Diffraction Xcalibur3 diffractometer 5523 independent reflections
Radiation source: fine-focus sealed tube 5486 reflections with I > 2σ(I)
graphite Rint = 0.090
Detector resolution: 16.1827 pixels mm-1 θmax = 30.0°, θmin = 3.0°
ω–scans h = −13→13
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) k = −14→14
Tmin = 0.250, Tmax = 0.447 l = −14→14
22849 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0645P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max = 0.001
5523 reflections Δρmax = 1.93 e Å3
260 parameters Δρmin = −1.68 e Å3
56 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0164 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
U 0.5000 0.5000 0.5000 0.03209 (7)
Cl1 1.08718 (12) 0.15464 (16) 0.42224 (11) 0.0674 (3)
Cl2 1.27581 (13) −0.08470 (15) 0.60993 (14) 0.0711 (3)
Cl3 1.23459 (15) 0.1967 (2) 0.6270 (2) 0.0834 (4)
P1 0.74992 (8) 0.19775 (8) 0.75384 (8) 0.03262 (14)
O1 0.6348 (3) 0.2904 (3) 0.6531 (3) 0.0474 (6)
O2 1.0554 (3) −0.0118 (4) 0.8039 (3) 0.0613 (9)
O3 0.5489 (3) 0.6026 (4) 0.5826 (3) 0.0526 (6)
O4 0.6361 (3) 0.5934 (3) 0.2862 (3) 0.0520 (7)
O5 0.7579 (3) 0.4078 (4) 0.4326 (3) 0.0588 (8)
O6 0.8601 (4) 0.4932 (4) 0.2460 (4) 0.0688 (10)
N1 0.8984 (3) 0.1713 (3) 0.6561 (3) 0.0373 (5)
H1 0.8905 0.2245 0.5738 0.045*
N3 0.7074 (3) 0.0571 (3) 0.8365 (3) 0.0420 (6)
N4 0.7559 (3) 0.4981 (4) 0.3181 (3) 0.0432 (6)
C1 1.0286 (3) 0.0743 (4) 0.6952 (3) 0.0383 (6)
C2 1.1511 (4) 0.0847 (4) 0.5899 (4) 0.0445 (7)
N2 0.7919 (3) 0.2608 (4) 0.8625 (4) 0.0450 (6)
C3A 0.6874 (16) 0.2992 (18) 0.9673 (15) 0.056 (4) 0.58
H3A1 0.7145 0.2300 1.0549 0.067* 0.58
H3A2 0.5915 0.3050 0.9453 0.067* 0.58
C4A 0.6950 (10) 0.4427 (12) 0.9649 (15) 0.072 (3) 0.58
H4A1 0.6628 0.4628 1.0494 0.086* 0.58
H4A2 0.6384 0.5183 0.8917 0.086* 0.58
C5A 0.8571 (12) 0.4237 (17) 0.9427 (18) 0.084 (4) 0.58
H5A1 0.8771 0.5144 0.9155 0.101* 0.58
H5A2 0.9129 0.3609 1.0223 0.101* 0.58
C6A 0.884 (2) 0.355 (2) 0.828 (2) 0.066 (6) 0.58
H6A1 0.8564 0.4270 0.7415 0.079* 0.58
H6A2 0.9840 0.3007 0.8241 0.079* 0.58
C3B 0.692 (3) 0.282 (3) 0.974 (2) 0.075 (7) 0.42
H3B1 0.5935 0.3271 0.9419 0.090* 0.42
H3B2 0.6979 0.1919 1.0426 0.090* 0.42
C4B 0.743 (2) 0.377 (2) 1.0253 (19) 0.096 (5) 0.42
H4B1 0.8132 0.3208 1.0961 0.115* 0.42
H4B2 0.6634 0.4393 1.0611 0.115* 0.42
C5B 0.810 (3) 0.4639 (19) 0.904 (3) 0.096 (6) 0.42
H5B1 0.7379 0.5434 0.8473 0.116* 0.42
H5B2 0.8789 0.4995 0.9322 0.116* 0.42
C6B 0.885 (3) 0.352 (3) 0.831 (3) 0.072 (8) 0.42
H6B1 0.8895 0.3961 0.7349 0.086* 0.42
H6B2 0.9811 0.2988 0.8655 0.086* 0.42
C7 0.6093 (4) 0.0065 (5) 0.7792 (4) 0.0497 (8)
H7A 0.6362 0.0058 0.6875 0.060*
H7B 0.5109 0.0666 0.7797 0.060*
C8 0.6270 (8) −0.1427 (7) 0.8705 (8) 0.0852 (18)
H8A 0.5426 −0.1457 0.9265 0.102*
H8B 0.6408 −0.2085 0.8180 0.102*
C9 0.7537 (12) −0.1812 (7) 0.9542 (8) 0.109 (3)
H9A 0.8378 −0.2340 0.9145 0.131*
H9B 0.7402 −0.2411 1.0435 0.131*
C10 0.7735 (5) −0.0494 (5) 0.9627 (4) 0.0582 (10)
H10A 0.8744 −0.0588 0.9669 0.070*
H10B 0.7250 −0.0240 1.0409 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
U 0.02715 (9) 0.02741 (9) 0.03229 (10) −0.00624 (5) −0.00343 (5) 0.00313 (5)
Cl1 0.0505 (5) 0.0857 (9) 0.0435 (5) −0.0017 (5) 0.0060 (4) −0.0091 (5)
Cl2 0.0527 (6) 0.0636 (7) 0.0744 (7) 0.0138 (5) 0.0040 (5) −0.0225 (6)
Cl3 0.0579 (6) 0.0868 (10) 0.1247 (13) −0.0366 (7) 0.0060 (7) −0.0446 (10)
P1 0.0271 (3) 0.0258 (3) 0.0332 (3) −0.0036 (2) −0.0009 (2) 0.0033 (3)
O1 0.0287 (10) 0.0412 (13) 0.0442 (12) 0.0003 (9) −0.0008 (9) 0.0152 (10)
O2 0.0430 (14) 0.067 (2) 0.0440 (14) 0.0099 (13) −0.0099 (11) 0.0004 (14)
O3 0.0576 (16) 0.0518 (17) 0.0555 (16) −0.0269 (13) −0.0045 (12) −0.0136 (13)
O4 0.0400 (12) 0.0461 (15) 0.0446 (13) −0.0036 (11) 0.0033 (10) 0.0110 (11)
O5 0.0386 (13) 0.0545 (18) 0.0472 (14) 0.0013 (11) 0.0060 (11) 0.0173 (12)
O6 0.0469 (15) 0.072 (2) 0.0606 (18) −0.0101 (15) 0.0194 (14) 0.0037 (16)
N1 0.0283 (11) 0.0379 (14) 0.0335 (12) −0.0001 (9) −0.0020 (9) −0.0032 (10)
N3 0.0400 (13) 0.0332 (14) 0.0412 (14) −0.0116 (11) −0.0122 (11) 0.0093 (11)
N4 0.0355 (13) 0.0411 (15) 0.0393 (14) −0.0073 (11) 0.0042 (10) 0.0016 (11)
C1 0.0307 (13) 0.0410 (17) 0.0385 (14) −0.0019 (11) −0.0061 (11) −0.0124 (13)
C2 0.0318 (14) 0.0473 (19) 0.0478 (18) −0.0044 (13) −0.0006 (12) −0.0124 (15)
N2 0.0428 (14) 0.0428 (16) 0.0518 (16) −0.0165 (12) 0.0106 (12) −0.0170 (14)
C3A 0.052 (6) 0.067 (7) 0.056 (6) −0.023 (5) 0.034 (6) −0.035 (6)
C4A 0.049 (4) 0.071 (6) 0.106 (8) −0.009 (4) 0.013 (5) −0.054 (6)
C5A 0.054 (5) 0.094 (9) 0.141 (11) −0.028 (6) 0.021 (6) −0.087 (9)
C6A 0.055 (10) 0.064 (10) 0.107 (12) −0.043 (8) 0.032 (9) −0.049 (9)
C3B 0.073 (13) 0.066 (11) 0.082 (14) −0.011 (8) −0.019 (9) −0.024 (9)
C4B 0.112 (13) 0.102 (13) 0.096 (11) −0.030 (10) 0.004 (9) −0.064 (10)
C5B 0.109 (16) 0.059 (9) 0.134 (14) −0.019 (9) 0.002 (11) −0.055 (9)
C6B 0.055 (14) 0.066 (15) 0.100 (15) −0.006 (10) −0.007 (9) −0.042 (12)
C7 0.0418 (17) 0.052 (2) 0.054 (2) −0.0214 (16) −0.0004 (14) −0.0055 (17)
C8 0.089 (4) 0.058 (3) 0.110 (5) −0.046 (3) −0.009 (3) 0.000 (3)
C9 0.171 (8) 0.042 (3) 0.102 (5) −0.043 (4) −0.060 (5) 0.024 (3)
C10 0.059 (2) 0.048 (2) 0.0467 (19) −0.0157 (18) −0.0118 (16) 0.0179 (16)

Geometric parameters (Å, °)

U—O3 1.754 (3) C4A—C5A 1.546 (12)
U—O3i 1.754 (3) C4A—H4A1 0.9700
U—O1 2.334 (2) C4A—H4A2 0.9700
U—O1i 2.334 (2) C5A—C6A 1.538 (13)
U—O5 2.523 (3) C5A—H5A1 0.9700
U—O5i 2.523 (3) C5A—H5A2 0.9700
U—O4i 2.571 (3) C6A—H6A1 0.9700
U—O4 2.571 (3) C6A—H6A2 0.9700
Cl1—C2 1.768 (4) C3B—C4B 1.482 (16)
Cl2—C2 1.753 (4) C3B—H3B1 0.9700
Cl3—C2 1.764 (4) C3B—H3B2 0.9700
P1—O1 1.491 (2) C4B—C5B 1.542 (18)
P1—N3 1.604 (3) C4B—H4B1 0.9700
P1—N2 1.615 (3) C4B—H4B2 0.9700
P1—N1 1.696 (3) C5B—C6B 1.531 (15)
O2—C1 1.197 (5) C5B—H5B1 0.9700
O4—N4 1.267 (4) C5B—H5B2 0.9700
O5—N4 1.265 (4) C6B—H6B1 0.9700
O6—N4 1.208 (4) C6B—H6B2 0.9700
N1—C1 1.357 (4) C7—C8 1.507 (8)
N1—H1 0.8600 C7—H7A 0.9700
N3—C10 1.478 (5) C7—H7B 0.9700
N3—C7 1.481 (5) C8—C9 1.468 (10)
C1—C2 1.556 (5) C8—H8A 0.9700
N2—C6B 1.460 (14) C8—H8B 0.9700
N2—C6A 1.475 (8) C9—C10 1.467 (8)
N2—C3B 1.473 (14) C9—H9A 0.9700
N2—C3A 1.484 (7) C9—H9B 0.9700
C3A—C4A 1.502 (13) C10—H10A 0.9700
C3A—H3A1 0.9700 C10—H10B 0.9700
C3A—H3A2 0.9700
O3—U—O3i 180.00 (13) C4A—C3A—H3A2 111.1
O3—U—O1 90.47 (14) H3A1—C3A—H3A2 109.0
O3i—U—O1 89.53 (14) C3A—C4A—C5A 101.7 (8)
O3—U—O1i 89.53 (14) C3A—C4A—H4A1 111.4
O3i—U—O1i 90.47 (14) C5A—C4A—H4A1 111.4
O1—U—O1i 180.0 C3A—C4A—H4A2 111.4
O3—U—O5 90.00 (14) C5A—C4A—H4A2 111.4
O3i—U—O5 90.00 (14) H4A1—C4A—H4A2 109.3
O1—U—O5 65.33 (9) C6A—C5A—C4A 99.5 (10)
O1i—U—O5 114.67 (9) C6A—C5A—H5A1 111.9
O3—U—O5i 90.00 (14) C4A—C5A—H5A1 111.9
O3i—U—O5i 90.00 (14) C6A—C5A—H5A2 111.9
O1—U—O5i 114.67 (9) C4A—C5A—H5A2 111.9
O1i—U—O5i 65.33 (9) H5A1—C5A—H5A2 109.6
O5—U—O5i 180.0 N2—C6A—C5A 103.7 (8)
O3—U—O4i 88.35 (13) N2—C6A—H6A1 111.0
O3i—U—O4i 91.65 (13) C5A—C6A—H6A1 111.0
O1—U—O4i 65.33 (8) N2—C6A—H6A2 111.0
O1i—U—O4i 114.67 (8) C5A—C6A—H6A2 111.0
O5—U—O4i 130.60 (9) H6A1—C6A—H6A2 109.0
O5i—U—O4i 49.40 (9) C4B—C3B—N2 102.4 (11)
O3—U—O4 91.65 (13) C4B—C3B—H3B1 111.3
O3i—U—O4 88.35 (13) N2—C3B—H3B1 111.3
O1—U—O4 114.67 (8) C4B—C3B—H3B2 111.3
O1i—U—O4 65.33 (8) N2—C3B—H3B2 111.3
O5—U—O4 49.40 (9) H3B1—C3B—H3B2 109.2
O5i—U—O4 130.60 (9) C3B—C4B—C5B 105.9 (13)
O4i—U—O4 180.0 C3B—C4B—H4B1 110.6
O1—P1—N3 108.41 (16) C5B—C4B—H4B1 110.6
O1—P1—N2 119.57 (19) C3B—C4B—H4B2 110.6
N3—P1—N2 107.23 (17) C5B—C4B—H4B2 110.6
O1—P1—N1 102.49 (14) H4B1—C4B—H4B2 108.7
N3—P1—N1 115.72 (16) C6B—C5B—C4B 101.6 (13)
N2—P1—N1 103.76 (15) C6B—C5B—H5B1 111.5
P1—O1—U 157.1 (2) C4B—C5B—H5B1 111.5
N4—O4—U 96.89 (19) C6B—C5B—H5B2 111.5
N4—O5—U 99.3 (2) C4B—C5B—H5B2 111.5
C1—N1—P1 126.3 (2) H5B1—C5B—H5B2 109.3
C1—N1—H1 116.9 N2—C6B—C5B 102.6 (11)
P1—N1—H1 116.9 N2—C6B—H6B1 111.2
C10—N3—C7 110.9 (3) C5B—C6B—H6B1 111.2
C10—N3—P1 127.0 (3) N2—C6B—H6B2 111.2
C7—N3—P1 121.4 (2) C5B—C6B—H6B2 111.2
O6—N4—O5 122.5 (3) H6B1—C6B—H6B2 109.2
O6—N4—O4 123.1 (3) N3—C7—C8 104.1 (4)
O5—N4—O4 114.4 (3) N3—C7—H7A 110.9
O2—C1—N1 125.1 (3) C8—C7—H7A 110.9
O2—C1—C2 119.3 (3) N3—C7—H7B 110.9
N1—C1—C2 115.5 (3) C8—C7—H7B 110.9
C1—C2—Cl2 109.9 (3) H7A—C7—H7B 108.9
C1—C2—Cl3 105.5 (2) C9—C8—C7 106.4 (4)
Cl2—C2—Cl3 109.3 (2) C9—C8—H8A 110.4
C1—C2—Cl1 112.6 (2) C7—C8—H8A 110.4
Cl2—C2—Cl1 108.7 (2) C9—C8—H8B 110.4
Cl3—C2—Cl1 110.8 (2) C7—C8—H8B 110.4
C6B—N2—C6A 1(2) H8A—C8—H8B 108.6
C6B—N2—C3B 113.4 (9) C8—C9—C10 108.4 (5)
C6A—N2—C3B 113.9 (9) C8—C9—H9A 110.0
C6B—N2—C3A 109.0 (9) C10—C9—H9A 110.0
C6A—N2—C3A 109.3 (6) C8—C9—H9B 110.0
C3B—N2—C3A 6.4 (17) C10—C9—H9B 110.0
C6B—N2—P1 123.2 (10) H9A—C9—H9B 108.4
C6A—N2—P1 122.1 (7) C9—C10—N3 103.0 (4)
C3B—N2—P1 118.4 (8) C9—C10—H10A 111.2
C3A—N2—P1 120.3 (6) N3—C10—H10A 111.2
N2—C3A—C4A 103.5 (7) C9—C10—H10B 111.2
N2—C3A—H3A1 111.1 N3—C10—H10B 111.2
C4A—C3A—H3A1 111.1 H10A—C10—H10B 109.1
N2—C3A—H3A2 111.1

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O5 0.86 2.13 2.877 (4) 145

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2539).

References

  1. Amirkhanov, V., Sieler, J., Trush, V., Ovchynnikov, V. & Domasevitch, K. (1997). Z. Naturforsch. Teil B, 52, 1194–1198.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEP-III. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Gholivand, K., Alizadehgan, A., Arshadi, S. & Firooz, A. (2006). J. Mol. Struct.791, 193–200.
  6. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Znovjyak, K., Moroz, O., Ovchynnikov, V., Sliva, T., Shishkina, S. & Amirkhanov, V. (2009). Polyhedron, 28, 3731–3738.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006422/dn2539sup1.cif

e-66-0m322-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006422/dn2539Isup2.hkl

e-66-0m322-Isup2.hkl (264.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES