Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 27;66(Pt 3):o706. doi: 10.1107/S1600536810006823

5-Chloro-2-(4-chloro­phen­yl)-7-methyl-3-methyl­sulfinyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2983503  PMID: 21580444

Abstract

In the title compound, C16H12Cl2O2S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane through the benzofuran fragment. The 4-chloro­phenyl ring is rotated out of the benzofuran plane, as indicated by the dihedral angle of 15.91 (4)°. In the crystal, mol­ecules are linked into chains along the b axis by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of similar 2-(4-fluoro­phen­yl)-5-halo-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009, 2010a ,b ). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).graphic file with name e-66-0o706-scheme1.jpg

Experimental

Crystal data

  • C16H12Cl2O2S

  • M r = 339.22

  • Triclinic, Inline graphic

  • a = 7.538 (2) Å

  • b = 9.734 (2) Å

  • c = 11.277 (3) Å

  • α = 72.525 (2)°

  • β = 88.846 (3)°

  • γ = 70.058 (2)°

  • V = 738.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 173 K

  • 0.50 × 0.50 × 0.45 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.760, T max = 0.780

  • 6331 measured reflections

  • 3170 independent reflections

  • 2879 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.089

  • S = 1.03

  • 3170 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006823/hg2648sup1.cif

e-66-0o706-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006823/hg2648Isup2.hkl

e-66-0o706-Isup2.hkl (155.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.96 2.52 3.216 (2) 130

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Compounds containing benzofuran skeleton display significant biological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) properties. These compounds are widely occurring in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2009, 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran and the 4-chlorophenyl ring is 15.91 (4)°. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the methyl H atom and the oxygen of the S═O unit, with a C15—H15A···O2i (Table 1).

Experimental

77% 3-Chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 5-chloro-2-(4-chlorophenyl)-7-methyl-3-methylsulfanyl-1-benzofuran (323 mg, 1.0 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 79%, m.p. 456–457 K; Rf = 0.62 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: i) x, y - 1, z; ii) x, y + 1, z.]

Crystal data

C16H12Cl2O2S Z = 2
Mr = 339.22 F(000) = 348
Triclinic, P1 Dx = 1.525 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.538 (2) Å Cell parameters from 5112 reflections
b = 9.734 (2) Å θ = 2.3–27.5°
c = 11.277 (3) Å µ = 0.58 mm1
α = 72.525 (2)° T = 173 K
β = 88.846 (3)° Block, colourless
γ = 70.058 (2)° 0.50 × 0.50 × 0.45 mm
V = 738.8 (3) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3170 independent reflections
Radiation source: Rotating Anode 2879 reflections with I > 2σ(I)
Bruker HELIOS graded multilayer optics Rint = 0.017
Detector resolution: 10.0 pixels mm-1 θmax = 27.0°, θmin = 2.3°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −12→12
Tmin = 0.760, Tmax = 0.780 l = −14→14
6331 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: difference Fourier map
wR(F2) = 0.089 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.4419P] where P = (Fo2 + 2Fc2)/3
3170 reflections (Δ/σ)max < 0.001
192 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.54735 (6) 0.25715 (5) 1.03989 (4) 0.03540 (12)
Cl2 −0.06257 (7) 0.78823 (6) −0.05751 (4) 0.04700 (14)
S 0.19164 (6) 0.77859 (5) 0.56104 (4) 0.03206 (12)
O2 0.3263 (2) 0.78670 (16) 0.65093 (15) 0.0479 (4)
O1 0.31330 (15) 0.36506 (12) 0.52197 (10) 0.0257 (2)
C1 0.2500 (2) 0.58258 (17) 0.57346 (15) 0.0256 (3)
C2 0.3368 (2) 0.45451 (18) 0.68431 (15) 0.0251 (3)
C3 0.3874 (2) 0.43701 (19) 0.80827 (15) 0.0276 (3)
H3 0.3628 0.5210 0.8373 0.033*
C4 0.4757 (2) 0.28803 (19) 0.88482 (15) 0.0276 (3)
C5 0.5149 (2) 0.15889 (18) 0.84399 (15) 0.0277 (3)
H5 0.5761 0.0613 0.8998 0.033*
C6 0.4640 (2) 0.17381 (18) 0.72181 (15) 0.0259 (3)
C7 0.3749 (2) 0.32444 (18) 0.64609 (14) 0.0240 (3)
C8 0.2391 (2) 0.52362 (17) 0.47881 (15) 0.0251 (3)
C9 0.1655 (2) 0.58997 (18) 0.34785 (15) 0.0260 (3)
C10 0.0411 (2) 0.7420 (2) 0.29918 (16) 0.0320 (4)
H10 0.0039 0.8025 0.3516 0.038*
C11 −0.0275 (2) 0.8040 (2) 0.17491 (16) 0.0336 (4)
H11 −0.1079 0.9060 0.1432 0.040*
C12 0.0253 (2) 0.7123 (2) 0.09853 (16) 0.0321 (4)
C13 0.1472 (2) 0.5606 (2) 0.14326 (17) 0.0340 (4)
H13 0.1808 0.5003 0.0905 0.041*
C14 0.2181 (2) 0.50046 (19) 0.26736 (16) 0.0295 (3)
H14 0.3016 0.3994 0.2978 0.035*
C15 0.4973 (3) 0.03952 (19) 0.67375 (17) 0.0342 (4)
H15A 0.3806 0.0217 0.6680 0.051*
H15B 0.5895 −0.0505 0.7299 0.051*
H15C 0.5430 0.0616 0.5926 0.051*
C16 −0.0290 (3) 0.8027 (2) 0.63063 (19) 0.0402 (4)
H16A −0.0092 0.7243 0.7099 0.060*
H16B −0.1193 0.7945 0.5767 0.060*
H16C −0.0764 0.9021 0.6424 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0418 (2) 0.0380 (2) 0.0257 (2) −0.01599 (18) −0.00416 (16) −0.00618 (17)
Cl2 0.0449 (3) 0.0568 (3) 0.0281 (2) −0.0095 (2) −0.00846 (19) −0.0063 (2)
S 0.0416 (2) 0.0211 (2) 0.0340 (2) −0.01348 (17) 0.00087 (18) −0.00631 (16)
O2 0.0564 (9) 0.0358 (7) 0.0589 (9) −0.0222 (6) −0.0092 (7) −0.0175 (7)
O1 0.0296 (6) 0.0221 (5) 0.0243 (5) −0.0094 (4) −0.0009 (4) −0.0053 (4)
C1 0.0278 (7) 0.0208 (7) 0.0280 (8) −0.0102 (6) 0.0006 (6) −0.0052 (6)
C2 0.0253 (7) 0.0227 (7) 0.0289 (8) −0.0111 (6) 0.0017 (6) −0.0070 (6)
C3 0.0320 (8) 0.0257 (8) 0.0276 (8) −0.0131 (6) −0.0001 (6) −0.0082 (6)
C4 0.0273 (8) 0.0315 (8) 0.0248 (8) −0.0137 (6) 0.0000 (6) −0.0059 (6)
C5 0.0257 (7) 0.0241 (8) 0.0296 (8) −0.0088 (6) 0.0000 (6) −0.0028 (6)
C6 0.0244 (7) 0.0225 (7) 0.0303 (8) −0.0095 (6) 0.0019 (6) −0.0061 (6)
C7 0.0241 (7) 0.0250 (7) 0.0245 (7) −0.0112 (6) 0.0009 (6) −0.0069 (6)
C8 0.0240 (7) 0.0215 (7) 0.0289 (8) −0.0091 (6) 0.0012 (6) −0.0052 (6)
C9 0.0247 (7) 0.0277 (8) 0.0262 (8) −0.0125 (6) 0.0020 (6) −0.0057 (6)
C10 0.0319 (8) 0.0309 (8) 0.0301 (8) −0.0074 (7) 0.0007 (7) −0.0094 (7)
C11 0.0298 (8) 0.0307 (8) 0.0325 (9) −0.0066 (7) −0.0017 (7) −0.0031 (7)
C12 0.0272 (8) 0.0420 (10) 0.0241 (8) −0.0136 (7) −0.0016 (6) −0.0041 (7)
C13 0.0346 (9) 0.0372 (9) 0.0308 (9) −0.0114 (7) 0.0008 (7) −0.0128 (7)
C14 0.0299 (8) 0.0272 (8) 0.0303 (8) −0.0101 (6) −0.0003 (6) −0.0071 (7)
C15 0.0419 (9) 0.0230 (8) 0.0351 (9) −0.0088 (7) 0.0016 (7) −0.0082 (7)
C16 0.0454 (10) 0.0299 (9) 0.0426 (10) −0.0085 (8) 0.0067 (8) −0.0131 (8)

Geometric parameters (Å, °)

Cl1—C4 1.7468 (17) C8—C9 1.457 (2)
Cl2—C12 1.7358 (17) C9—C10 1.399 (2)
S—O2 1.4862 (14) C9—C14 1.402 (2)
S—C1 1.7672 (16) C10—C11 1.380 (2)
S—C16 1.797 (2) C10—H10 0.9300
O1—C7 1.3782 (19) C11—C12 1.380 (3)
O1—C8 1.3794 (18) C11—H11 0.9300
C1—C8 1.371 (2) C12—C13 1.387 (3)
C1—C2 1.444 (2) C13—C14 1.383 (2)
C2—C7 1.395 (2) C13—H13 0.9300
C2—C3 1.401 (2) C14—H14 0.9300
C3—C4 1.380 (2) C15—H15A 0.9600
C3—H3 0.9300 C15—H15B 0.9600
C4—C5 1.403 (2) C15—H15C 0.9600
C5—C6 1.389 (2) C16—H16A 0.9600
C5—H5 0.9300 C16—H16B 0.9600
C6—C7 1.389 (2) C16—H16C 0.9600
C6—C15 1.504 (2)
O2—S—C1 107.20 (8) C10—C9—C8 121.71 (15)
O2—S—C16 106.67 (10) C14—C9—C8 119.94 (14)
C1—S—C16 97.03 (8) C11—C10—C9 121.30 (16)
C7—O1—C8 106.66 (12) C11—C10—H10 119.3
C8—C1—C2 107.57 (14) C9—C10—H10 119.3
C8—C1—S 126.90 (12) C10—C11—C12 118.87 (16)
C2—C1—S 125.25 (12) C10—C11—H11 120.6
C7—C2—C3 119.54 (14) C12—C11—H11 120.6
C7—C2—C1 104.68 (14) C11—C12—C13 121.64 (16)
C3—C2—C1 135.77 (14) C11—C12—Cl2 119.29 (14)
C4—C3—C2 116.18 (14) C13—C12—Cl2 119.07 (14)
C4—C3—H3 121.9 C14—C13—C12 119.06 (16)
C2—C3—H3 121.9 C14—C13—H13 120.5
C3—C4—C5 123.34 (15) C12—C13—H13 120.5
C3—C4—Cl1 118.85 (13) C13—C14—C9 120.76 (16)
C5—C4—Cl1 117.80 (12) C13—C14—H14 119.6
C6—C5—C4 121.32 (15) C9—C14—H14 119.6
C6—C5—H5 119.3 C6—C15—H15A 109.5
C4—C5—H5 119.3 C6—C15—H15B 109.5
C7—C6—C5 114.60 (14) H15A—C15—H15B 109.5
C7—C6—C15 121.71 (15) C6—C15—H15C 109.5
C5—C6—C15 123.68 (14) H15A—C15—H15C 109.5
O1—C7—C6 124.10 (14) H15B—C15—H15C 109.5
O1—C7—C2 110.89 (13) S—C16—H16A 109.5
C6—C7—C2 125.01 (15) S—C16—H16B 109.5
C1—C8—O1 110.18 (14) H16A—C16—H16B 109.5
C1—C8—C9 134.67 (15) S—C16—H16C 109.5
O1—C8—C9 115.15 (13) H16A—C16—H16C 109.5
C10—C9—C14 118.35 (15) H16B—C16—H16C 109.5
O2—S—C1—C8 −144.91 (15) C1—C2—C7—O1 −1.46 (17)
C16—S—C1—C8 105.17 (16) C3—C2—C7—C6 −1.0 (2)
O2—S—C1—C2 28.29 (16) C1—C2—C7—C6 178.09 (15)
C16—S—C1—C2 −81.64 (15) C2—C1—C8—O1 0.14 (17)
C8—C1—C2—C7 0.79 (17) S—C1—C8—O1 174.32 (11)
S—C1—C2—C7 −173.51 (12) C2—C1—C8—C9 178.83 (16)
C8—C1—C2—C3 179.69 (17) S—C1—C8—C9 −7.0 (3)
S—C1—C2—C3 5.4 (3) C7—O1—C8—C1 −1.03 (16)
C7—C2—C3—C4 0.8 (2) C7—O1—C8—C9 180.00 (12)
C1—C2—C3—C4 −177.97 (17) C1—C8—C9—C10 −16.6 (3)
C2—C3—C4—C5 0.0 (2) O1—C8—C9—C10 162.01 (14)
C2—C3—C4—Cl1 178.74 (12) C1—C8—C9—C14 163.90 (17)
C3—C4—C5—C6 −0.7 (2) O1—C8—C9—C14 −17.5 (2)
Cl1—C4—C5—C6 −179.45 (12) C14—C9—C10—C11 −0.7 (2)
C4—C5—C6—C7 0.5 (2) C8—C9—C10—C11 179.83 (15)
C4—C5—C6—C15 −178.23 (15) C9—C10—C11—C12 1.4 (3)
C8—O1—C7—C6 −177.99 (14) C10—C11—C12—C13 −1.0 (3)
C8—O1—C7—C2 1.57 (16) C10—C11—C12—Cl2 179.16 (13)
C5—C6—C7—O1 179.82 (13) C11—C12—C13—C14 −0.3 (3)
C15—C6—C7—O1 −1.4 (2) Cl2—C12—C13—C14 179.60 (13)
C5—C6—C7—C2 0.3 (2) C12—C13—C14—C9 1.1 (3)
C15—C6—C7—C2 179.10 (15) C10—C9—C14—C13 −0.6 (2)
C3—C2—C7—O1 179.43 (13) C8—C9—C14—C13 178.90 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15A···O2i 0.96 2.52 3.216 (2) 130

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2648).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2649. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o44. [DOI] [PMC free article] [PubMed]
  7. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o104. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  10. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006823/hg2648sup1.cif

e-66-0o706-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006823/hg2648Isup2.hkl

e-66-0o706-Isup2.hkl (155.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES