Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 20;66(Pt 3):o655. doi: 10.1107/S1600536810006057

3-(2,3,5,6,7,8-Hexahydro-1H-cyclo­penta­[b]quinolin-9-yl)-1,5-bis­(4-methoxy­phen­yl)biuret

Kaori Sakurai a,*, Keiichi Noguchi a, Koichiro Nishibe a
PMCID: PMC2983504  PMID: 21580406

Abstract

Ipidacrine (2,3,5,6,7,8-hexa­hydro-1H-cyclo­penta­[b]quinolin-9-amine) was reacted with 4-methoxy­phenyl isocyanate to give the title compound, C28H30N4O4. An intra­molecular N—H⋯O hydrogen bond results in an essentially planar [r.m.s. deviation from the mean plane is 0.126 (1) Å] conformation for the biuret unit. The central ring of the quinoline unit is twisted by 78.2 (1)° with respect to the biuret mean plane, whereas the two 4-methoxy­benzene rings are twisted out of this plane by 24.3 (1)° and 48.5 (1)°, resulting in an overall propeller-like structure. An inter­molecular N—H⋯N hydrogen bond between the biuret NH atom and the quinoline ring nitro­gen defines the crystal packing.

Related literature

For related structures, see: Roh & Jeong (2000); Harrison (2007).graphic file with name e-66-0o655-scheme1.jpg

Experimental

Crystal data

  • C28H30N4O4

  • M r = 486.56

  • Monoclinic, Inline graphic

  • a = 22.4514 (4) Å

  • b = 12.7128 (2) Å

  • c = 8.83183 (16) Å

  • β = 105.526 (1)°

  • V = 2428.80 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 193 K

  • 0.45 × 0.25 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999) T min = 0.754, T max = 0.929

  • 19342 measured reflections

  • 2235 independent reflections

  • 2168 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.072

  • S = 1.09

  • 2235 reflections

  • 328 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006057/fj2281sup1.cif

e-66-0o655-sup1.cif (25.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006057/fj2281Isup2.hkl

e-66-0o655-Isup2.hkl (107.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.88 1.97 2.623 (3) 130
N4—H4⋯N3i 0.88 2.26 2.961 (2) 137

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was funded by the Japan Science and Technology Agency (JST). Ipidacrine was generously provided by Professor Kazuo Nagasawa.

supplementary crystallographic information

Comment

The title compound (I) (Fig. 1) was obtained as a side product in the synthesis of ipidacrine urea derivatives.

In the biuret moiety of (I), there are two types of C—N bonds, both of which display a partial double bond character. Their bond lengths are between 1.47 Å (for typical C—N bonds) and 1.28 Å (for C═N bonds) (Allen et al. 1987). The terminal C1—N2 and C21—N4 bonds are shorter (1.340 (3) and 1.343 (3) Å) than the internal C1—N1 and C21–N1 bonds (1.429 (2) and 1.415 (3) Å). O3 is involved in the hydrogen bonding with H2, forming a six-membered ring, which is consistent with solid state structures of other biuret compounds (Harrison, 2007; Roh and Jeong, 2000). However, the biuret moiety of (I) is not completely planar as the dihedral angle for O3–C21–N1–C1 is 8.8 (3)°.

Due to the partial double bond character of the terminal biuret C—N bonds, A1,3 strain is incurred between the buiret carbonyl groups and the bulky p-methoxyphenyl rings. These interactions cause the p-methoxyphenyl rings to twist out of plane with respect to the biuret moiety by approximately 24.3 (1)° and 48.5 (1)°. The bulkier quinoline moiety is substituted at N1, which forms a partial double bond with both C1 and C2. It develops A1,3 strain with two groups, one with p-methoxyphenylamino group, the other with one of the biuret carbonyl group. As a consequence, it is twisted close to perpendicular (78.2 (1)°) to the buiret plane. The steric congestion among the three aromatic substituents around the biuret moiety drives (I) to adopt an overall propeller-like structure.

In the present crystal structure for the title compound (I), these two p-methoxyphenyl rings are not geometrically equivalent. However, the 1H NMR spectrum of (I) shows only one set of peaks for the protons of a p-methoxyphenyl group. This observation suggests that the hydrogen bonds for O1···H4 and O3···H2 are in fast exchange in solution and that the rotational barrier around the internal C—N bond of the biuret group is not significant under ambient condition. Since the biuret moiety deviates slightly from a planar conformation, there is helicity along the biuret backbone (N2—C1—N2—C21—N4). The interconversion of the two hydrogen bonding pairs (between O1···H4 and O3···H2) represents the interconversion of two corresponding helical conformations of (I), making the molecule dynamically racemic in solution.

Experimental

The title compound was prepared by reacting ipidacrine (20.0 mg, 0.11 mmol) and 4-methoxyphenyl isocyanate (23.9 mg, 0.16 mmol) in dichloromethane (0.5 ml) at room temperature for 18 h. The resultant reaction mixture was concentrated in vacuo and was purified by flash chromatography (2 % MeOH/CH2Cl2) to afford the title compound I (18.1 mg; 33.8 % yield). Crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution of (I) in MeCN. 1H NMR (CDCl3) δ 7.28 (d, J = 8.96 Hz, 4H), δ (d, J = 8.96 Hz, 4H), δ 3.82 (s, 1H), δ 3.10 (dd, J = 7.54 Hz, 2H), δ 2.94-3.00 (m, 4H), δ 2.71 (m, 2H), δ 2.18 (m, 2H), δ 1.87 (m, 4H). ESI-MS calcd for C28H31N4O4 (M+H+) 487.23, found 487.22.

Refinement

The value of the absolute structure parameter is meaningless because of its large s.u. value (Flack's x = -0.01 (14)). Therefore, the merging of Friedel pair data was performed before the final refinement cycles. The methylene, methyl and phenyl H atoms were positioned using the HFIX 23, HFIX 137 and HFIX 43 instructions, with C—H = 0.99, 0.98 and 0.95 Å, respectively. In addition, the amide H atoms were positioned using the HFIX 43 instructions, with N—H = 0.88 Å. These C- and N-bound H atoms were also refined as a riding model, with Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). The ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres with arbitrary radii. The hydrogen bond is indicated by a dashed line.

Crystal data

C28H30N4O4 F(000) = 1032
Mr = 486.56 Dx = 1.331 Mg m3
Monoclinic, Cc Cu Kα radiation, λ = 1.54187 Å
Hall symbol: C -2yc Cell parameters from 18332 reflections
a = 22.4514 (4) Å θ = 4.0–68.2°
b = 12.7128 (2) Å µ = 0.73 mm1
c = 8.83183 (16) Å T = 193 K
β = 105.526 (1)° Block, colorless
V = 2428.80 (8) Å3 0.45 × 0.25 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 2235 independent reflections
Radiation source: rotating anode 2168 reflections with I > 2σ(I)
graphite Rint = 0.022
Detector resolution: 10.00 pixels mm-1 θmax = 68.2°, θmin = 4.0°
ω scans h = −26→26
Absorption correction: numerical (ABSCOR; Higashi, 1999) k = −15→15
Tmin = 0.754, Tmax = 0.929 l = −10→10
19342 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.5591P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2235 reflections Δρmax = 0.17 e Å3
328 parameters Δρmin = −0.15 e Å3
2 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00173 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.06234 (8) 0.24673 (12) 1.0794 (2) 0.0445 (4)
O2 −0.10168 (7) 0.65103 (12) 1.1352 (2) 0.0444 (4)
O3 0.17237 (8) 0.40771 (11) 0.8629 (2) 0.0430 (4)
O4 0.38341 (7) 0.39432 (13) 0.50693 (18) 0.0416 (4)
N1 0.13344 (8) 0.25410 (12) 0.9380 (2) 0.0306 (4)
N2 0.06980 (9) 0.39868 (14) 0.9509 (2) 0.0395 (4)
H2 0.0880 0.4276 0.8845 0.047*
N3 0.18591 (8) −0.05082 (13) 1.12185 (19) 0.0305 (4)
N4 0.20716 (8) 0.25153 (13) 0.7982 (2) 0.0329 (4)
H4 0.2030 0.1827 0.7998 0.039*
C1 0.08617 (9) 0.30000 (16) 0.9974 (2) 0.0321 (4)
C2 0.15121 (9) 0.14855 (15) 0.9958 (2) 0.0284 (4)
C3 0.11494 (9) 0.06101 (15) 0.9357 (2) 0.0281 (4)
C4 0.13470 (9) −0.03777 (15) 1.0012 (2) 0.0292 (4)
C5 0.21934 (10) 0.03451 (15) 1.1761 (2) 0.0309 (4)
C6 0.20443 (9) 0.13524 (16) 1.1171 (2) 0.0305 (4)
C7 0.27760 (11) 0.03514 (17) 1.3082 (3) 0.0383 (5)
H7A 0.3131 0.0083 1.2731 0.046*
H7B 0.2729 −0.0077 1.3979 0.046*
C8 0.28579 (11) 0.15237 (18) 1.3523 (3) 0.0426 (5)
H8A 0.3302 0.1715 1.3835 0.051*
H8B 0.2679 0.1683 1.4408 0.051*
C9 0.25137 (11) 0.21355 (17) 1.2040 (3) 0.0393 (5)
H9A 0.2311 0.2772 1.2316 0.047*
H9B 0.2798 0.2345 1.1410 0.047*
C10 0.05380 (10) 0.07332 (17) 0.8131 (2) 0.0340 (5)
H10A 0.0591 0.1235 0.7320 0.041*
H10B 0.0234 0.1040 0.8635 0.041*
C11 0.02802 (11) −0.02892 (18) 0.7335 (3) 0.0367 (5)
H11A 0.0514 −0.0494 0.6577 0.044*
H11B −0.0157 −0.0186 0.6743 0.044*
C12 0.03227 (10) −0.11677 (17) 0.8540 (3) 0.0353 (5)
H12A 0.0093 −0.0964 0.9307 0.042*
H12B 0.0135 −0.1819 0.8004 0.042*
C13 0.09972 (10) −0.13645 (16) 0.9390 (3) 0.0343 (5)
H13A 0.1018 −0.1852 1.0277 0.041*
H13B 0.1201 −0.1712 0.8658 0.041*
C14 0.02570 (10) 0.46052 (17) 0.9997 (3) 0.0348 (5)
C15 0.03188 (11) 0.56866 (18) 0.9956 (3) 0.0429 (5)
H15 0.0651 0.5981 0.9619 0.051*
C16 −0.00968 (11) 0.63476 (18) 1.0399 (3) 0.0432 (5)
H16 −0.0048 0.7089 1.0370 0.052*
C17 −0.05833 (10) 0.59240 (17) 1.0885 (3) 0.0359 (5)
C18 −0.06523 (10) 0.48428 (18) 1.0894 (3) 0.0414 (5)
H18 −0.0990 0.4549 1.1208 0.050*
C19 −0.02389 (11) 0.41839 (19) 1.0454 (3) 0.0429 (5)
H19 −0.0293 0.3443 1.0464 0.051*
C20 −0.08528 (13) 0.7562 (2) 1.1797 (4) 0.0531 (6)
H20A −0.1159 0.7867 1.2277 0.064*
H20B −0.0840 0.7972 1.0866 0.064*
H20C −0.0445 0.7575 1.2556 0.064*
C21 0.17192 (10) 0.31169 (16) 0.8647 (3) 0.0324 (4)
C22 0.25105 (9) 0.29474 (15) 0.7251 (2) 0.0308 (4)
C23 0.31085 (10) 0.25400 (15) 0.7664 (2) 0.0326 (4)
H23 0.3220 0.2016 0.8456 0.039*
C24 0.35403 (10) 0.28971 (17) 0.6923 (2) 0.0340 (4)
H24 0.3948 0.2619 0.7207 0.041*
C25 0.33780 (10) 0.36646 (16) 0.5759 (2) 0.0326 (4)
C26 0.27881 (10) 0.40864 (16) 0.5364 (2) 0.0347 (5)
H26 0.2679 0.4622 0.4589 0.042*
C27 0.23551 (10) 0.37212 (17) 0.6111 (3) 0.0343 (4)
H27 0.1949 0.4006 0.5836 0.041*
C28 0.36885 (12) 0.4734 (2) 0.3897 (3) 0.0483 (6)
H28A 0.4050 0.4872 0.3506 0.058*
H28B 0.3570 0.5380 0.4346 0.058*
H28C 0.3344 0.4496 0.3027 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0526 (10) 0.0364 (8) 0.0552 (10) 0.0085 (7) 0.0329 (8) 0.0106 (7)
O2 0.0345 (8) 0.0379 (8) 0.0634 (10) 0.0020 (6) 0.0175 (7) −0.0103 (7)
O3 0.0495 (9) 0.0270 (7) 0.0621 (10) −0.0047 (7) 0.0315 (8) −0.0014 (7)
O4 0.0372 (8) 0.0457 (9) 0.0458 (9) −0.0037 (7) 0.0177 (7) 0.0070 (7)
N1 0.0318 (8) 0.0258 (8) 0.0365 (9) 0.0002 (7) 0.0133 (7) 0.0008 (7)
N2 0.0456 (10) 0.0323 (9) 0.0489 (11) 0.0058 (8) 0.0267 (9) 0.0082 (8)
N3 0.0330 (9) 0.0274 (8) 0.0326 (9) 0.0005 (7) 0.0115 (7) −0.0006 (7)
N4 0.0376 (10) 0.0258 (8) 0.0387 (9) −0.0028 (7) 0.0161 (8) −0.0007 (7)
C1 0.0343 (11) 0.0299 (10) 0.0341 (10) 0.0005 (8) 0.0126 (9) −0.0007 (8)
C2 0.0308 (10) 0.0264 (9) 0.0313 (10) 0.0009 (8) 0.0142 (8) −0.0012 (7)
C3 0.0287 (10) 0.0298 (9) 0.0277 (9) −0.0012 (8) 0.0111 (8) −0.0005 (8)
C4 0.0287 (10) 0.0320 (10) 0.0290 (10) −0.0012 (8) 0.0116 (8) −0.0024 (8)
C5 0.0299 (10) 0.0329 (10) 0.0321 (10) 0.0016 (8) 0.0122 (8) 0.0004 (8)
C6 0.0313 (10) 0.0300 (10) 0.0324 (10) −0.0028 (8) 0.0124 (8) −0.0030 (8)
C7 0.0365 (11) 0.0382 (11) 0.0380 (11) −0.0001 (9) 0.0059 (10) −0.0001 (9)
C8 0.0379 (12) 0.0426 (12) 0.0432 (13) −0.0052 (10) 0.0040 (10) −0.0052 (10)
C9 0.0388 (12) 0.0338 (11) 0.0428 (12) −0.0059 (9) 0.0066 (10) −0.0025 (9)
C10 0.0321 (11) 0.0364 (11) 0.0329 (10) 0.0004 (9) 0.0075 (9) 0.0035 (9)
C11 0.0360 (11) 0.0426 (12) 0.0316 (11) −0.0064 (9) 0.0092 (9) −0.0026 (9)
C12 0.0366 (11) 0.0365 (11) 0.0341 (11) −0.0075 (9) 0.0114 (9) −0.0054 (9)
C13 0.0397 (12) 0.0285 (10) 0.0358 (11) −0.0022 (9) 0.0118 (9) −0.0029 (8)
C14 0.0353 (11) 0.0341 (11) 0.0366 (11) 0.0053 (9) 0.0126 (9) 0.0033 (9)
C15 0.0441 (13) 0.0343 (12) 0.0579 (14) 0.0029 (10) 0.0268 (11) 0.0065 (10)
C16 0.0444 (13) 0.0303 (11) 0.0587 (15) 0.0021 (10) 0.0205 (11) 0.0021 (10)
C17 0.0319 (11) 0.0376 (11) 0.0374 (11) 0.0054 (9) 0.0080 (9) −0.0022 (9)
C18 0.0352 (12) 0.0392 (12) 0.0543 (13) −0.0015 (9) 0.0200 (10) −0.0020 (10)
C19 0.0428 (13) 0.0322 (11) 0.0574 (15) 0.0007 (9) 0.0198 (11) 0.0009 (10)
C20 0.0440 (13) 0.0434 (13) 0.0753 (18) −0.0013 (11) 0.0218 (13) −0.0171 (12)
C21 0.0328 (10) 0.0308 (10) 0.0352 (10) −0.0028 (8) 0.0120 (8) −0.0007 (8)
C22 0.0337 (10) 0.0285 (10) 0.0326 (10) −0.0036 (8) 0.0131 (8) −0.0034 (8)
C23 0.0383 (12) 0.0284 (10) 0.0313 (10) 0.0006 (8) 0.0097 (9) 0.0027 (8)
C24 0.0293 (10) 0.0362 (11) 0.0358 (10) 0.0022 (9) 0.0076 (8) −0.0006 (9)
C25 0.0331 (10) 0.0331 (10) 0.0323 (10) −0.0073 (8) 0.0103 (8) −0.0038 (8)
C26 0.0397 (12) 0.0312 (10) 0.0338 (11) 0.0001 (9) 0.0113 (9) 0.0045 (8)
C27 0.0311 (10) 0.0333 (10) 0.0386 (11) 0.0008 (8) 0.0095 (9) 0.0011 (9)
C28 0.0562 (15) 0.0430 (13) 0.0532 (14) −0.0043 (11) 0.0275 (12) 0.0090 (11)

Geometric parameters (Å, °)

O1—C1 1.215 (3) C10—H10B 0.9900
O2—C17 1.374 (3) C11—C12 1.528 (3)
O2—C20 1.414 (3) C11—H11A 0.9900
O3—C21 1.221 (3) C11—H11B 0.9900
O4—C25 1.371 (3) C12—C13 1.520 (3)
O4—C28 1.417 (3) C12—H12A 0.9900
N1—C21 1.415 (3) C12—H12B 0.9900
N1—C1 1.429 (2) C13—H13A 0.9900
N1—C2 1.453 (2) C13—H13B 0.9900
N2—C1 1.340 (3) C14—C15 1.383 (3)
N2—C14 1.418 (3) C14—C19 1.389 (3)
N2—H2 0.8800 C15—C16 1.388 (3)
N3—C5 1.333 (3) C15—H15 0.9500
N3—C4 1.352 (3) C16—C17 1.385 (3)
N4—C21 1.343 (3) C16—H16 0.9500
N4—C22 1.425 (3) C17—C18 1.383 (3)
N4—H4 0.8800 C18—C19 1.381 (3)
C2—C6 1.385 (3) C18—H18 0.9500
C2—C3 1.397 (3) C19—H19 0.9500
C3—C4 1.404 (3) C20—H20A 0.9800
C3—C10 1.512 (3) C20—H20B 0.9800
C4—C13 1.504 (3) C20—H20C 0.9800
C5—C6 1.390 (3) C22—C27 1.383 (3)
C5—C7 1.502 (3) C22—C23 1.393 (3)
C6—C9 1.503 (3) C23—C24 1.383 (3)
C7—C8 1.539 (3) C23—H23 0.9500
C7—H7A 0.9900 C24—C25 1.393 (3)
C7—H7B 0.9900 C24—H24 0.9500
C8—C9 1.542 (3) C25—C26 1.384 (3)
C8—H8A 0.9900 C26—C27 1.393 (3)
C8—H8B 0.9900 C26—H26 0.9500
C9—H9A 0.9900 C27—H27 0.9500
C9—H9B 0.9900 C28—H28A 0.9800
C10—C11 1.517 (3) C28—H28B 0.9800
C10—H10A 0.9900 C28—H28C 0.9800
C17—O2—C20 116.32 (17) C11—C12—H12A 109.8
C25—O4—C28 117.02 (17) C13—C12—H12B 109.8
C21—N1—C1 124.17 (16) C11—C12—H12B 109.8
C21—N1—C2 119.67 (16) H12A—C12—H12B 108.2
C1—N1—C2 114.15 (16) C4—C13—C12 113.39 (17)
C1—N2—C14 125.59 (18) C4—C13—H13A 108.9
C1—N2—H2 117.2 C12—C13—H13A 108.9
C14—N2—H2 117.2 C4—C13—H13B 108.9
C5—N3—C4 117.49 (17) C12—C13—H13B 108.9
C21—N4—C22 122.56 (16) H13A—C13—H13B 107.7
C21—N4—H4 118.7 C15—C14—C19 119.0 (2)
C22—N4—H4 118.7 C15—C14—N2 117.37 (19)
O1—C1—N2 125.17 (19) C19—C14—N2 123.6 (2)
O1—C1—N1 118.70 (18) C14—C15—C16 121.0 (2)
N2—C1—N1 116.06 (17) C14—C15—H15 119.5
C6—C2—C3 119.41 (18) C16—C15—H15 119.5
C6—C2—N1 118.90 (17) C17—C16—C15 119.8 (2)
C3—C2—N1 121.66 (18) C17—C16—H16 120.1
C2—C3—C4 117.90 (18) C15—C16—H16 120.1
C2—C3—C10 120.99 (18) O2—C17—C18 116.60 (19)
C4—C3—C10 120.93 (17) O2—C17—C16 124.26 (19)
N3—C4—C3 122.87 (17) C18—C17—C16 119.1 (2)
N3—C4—C13 115.87 (17) C19—C18—C17 121.1 (2)
C3—C4—C13 121.26 (18) C19—C18—H18 119.5
N3—C5—C6 123.98 (19) C17—C18—H18 119.5
N3—C5—C7 124.98 (18) C18—C19—C14 119.9 (2)
C6—C5—C7 111.04 (18) C18—C19—H19 120.0
C2—C6—C5 118.31 (18) C14—C19—H19 120.0
C2—C6—C9 131.00 (19) O2—C20—H20A 109.5
C5—C6—C9 110.68 (19) O2—C20—H20B 109.5
C5—C7—C8 102.83 (18) H20A—C20—H20B 109.5
C5—C7—H7A 111.2 O2—C20—H20C 109.5
C8—C7—H7A 111.2 H20A—C20—H20C 109.5
C5—C7—H7B 111.2 H20B—C20—H20C 109.5
C8—C7—H7B 111.2 O3—C21—N4 123.77 (19)
H7A—C7—H7B 109.1 O3—C21—N1 122.10 (18)
C7—C8—C9 105.95 (18) N4—C21—N1 114.13 (17)
C7—C8—H8A 110.5 C27—C22—C23 119.49 (19)
C9—C8—H8A 110.5 C27—C22—N4 122.23 (19)
C7—C8—H8B 110.5 C23—C22—N4 118.22 (18)
C9—C8—H8B 110.5 C24—C23—C22 120.15 (19)
H8A—C8—H8B 108.7 C24—C23—H23 119.9
C6—C9—C8 102.91 (17) C22—C23—H23 119.9
C6—C9—H9A 111.2 C23—C24—C25 120.05 (19)
C8—C9—H9A 111.2 C23—C24—H24 120.0
C6—C9—H9B 111.2 C25—C24—H24 120.0
C8—C9—H9B 111.2 O4—C25—C26 124.47 (19)
H9A—C9—H9B 109.1 O4—C25—C24 115.45 (18)
C3—C10—C11 113.83 (18) C26—C25—C24 120.08 (19)
C3—C10—H10A 108.8 C25—C26—C27 119.57 (19)
C11—C10—H10A 108.8 C25—C26—H26 120.2
C3—C10—H10B 108.8 C27—C26—H26 120.2
C11—C10—H10B 108.8 C22—C27—C26 120.6 (2)
H10A—C10—H10B 107.7 C22—C27—H27 119.7
C10—C11—C12 110.99 (18) C26—C27—H27 119.7
C10—C11—H11A 109.4 O4—C28—H28A 109.5
C12—C11—H11A 109.4 O4—C28—H28B 109.5
C10—C11—H11B 109.4 H28A—C28—H28B 109.5
C12—C11—H11B 109.4 O4—C28—H28C 109.5
H11A—C11—H11B 108.0 H28A—C28—H28C 109.5
C13—C12—C11 109.42 (18) H28B—C28—H28C 109.5
C13—C12—H12A 109.8
C14—N2—C1—O1 5.5 (4) C10—C11—C12—C13 −62.0 (2)
C14—N2—C1—N1 −177.6 (2) N3—C4—C13—C12 157.07 (17)
C21—N1—C1—O1 −168.7 (2) C3—C4—C13—C12 −23.4 (3)
C2—N1—C1—O1 −5.0 (3) C11—C12—C13—C4 49.9 (2)
C21—N1—C1—N2 14.2 (3) C1—N2—C14—C15 154.1 (2)
C2—N1—C1—N2 177.95 (18) C1—N2—C14—C19 −28.2 (4)
C21—N1—C2—C6 64.4 (2) C19—C14—C15—C16 1.6 (4)
C1—N1—C2—C6 −100.1 (2) N2—C14—C15—C16 179.4 (2)
C21—N1—C2—C3 −117.7 (2) C14—C15—C16—C17 −0.3 (4)
C1—N1—C2—C3 77.8 (2) C20—O2—C17—C18 161.6 (2)
C6—C2—C3—C4 −0.4 (3) C20—O2—C17—C16 −19.2 (3)
N1—C2—C3—C4 −178.32 (17) C15—C16—C17—O2 179.7 (2)
C6—C2—C3—C10 174.75 (17) C15—C16—C17—C18 −1.0 (3)
N1—C2—C3—C10 −3.1 (3) O2—C17—C18—C19 −179.6 (2)
C5—N3—C4—C3 −1.9 (3) C16—C17—C18—C19 1.1 (4)
C5—N3—C4—C13 177.58 (18) C17—C18—C19—C14 0.2 (4)
C2—C3—C4—N3 1.9 (3) C15—C14—C19—C18 −1.5 (4)
C10—C3—C4—N3 −173.28 (17) N2—C14—C19—C18 −179.2 (2)
C2—C3—C4—C13 −177.55 (18) C22—N4—C21—O3 3.1 (3)
C10—C3—C4—C13 7.3 (3) C22—N4—C21—N1 −176.96 (18)
C4—N3—C5—C6 0.5 (3) C1—N1—C21—O3 8.8 (3)
C4—N3—C5—C7 −179.63 (19) C2—N1—C21—O3 −154.1 (2)
C3—C2—C6—C5 −0.9 (3) C1—N1—C21—N4 −171.12 (18)
N1—C2—C6—C5 177.05 (16) C2—N1—C21—N4 26.0 (3)
C3—C2—C6—C9 −179.65 (19) C21—N4—C22—C27 −52.2 (3)
N1—C2—C6—C9 −1.7 (3) C21—N4—C22—C23 130.4 (2)
N3—C5—C6—C2 0.9 (3) C27—C22—C23—C24 −0.9 (3)
C7—C5—C6—C2 −179.00 (18) N4—C22—C23—C24 176.55 (18)
N3—C5—C6—C9 179.93 (19) C22—C23—C24—C25 −0.1 (3)
C7—C5—C6—C9 0.0 (2) C28—O4—C25—C26 1.4 (3)
N3—C5—C7—C8 −164.38 (19) C28—O4—C25—C24 −179.1 (2)
C6—C5—C7—C8 15.5 (2) C23—C24—C25—O4 −178.30 (18)
C5—C7—C8—C9 −24.5 (2) C23—C24—C25—C26 1.3 (3)
C2—C6—C9—C8 163.3 (2) O4—C25—C26—C27 178.06 (19)
C5—C6—C9—C8 −15.5 (2) C24—C25—C26—C27 −1.5 (3)
C7—C8—C9—C6 24.6 (2) C23—C22—C27—C26 0.7 (3)
C2—C3—C10—C11 166.33 (18) N4—C22—C27—C26 −176.64 (18)
C4—C3—C10—C11 −18.6 (3) C25—C26—C27—C22 0.5 (3)
C3—C10—C11—C12 45.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3 0.88 1.97 2.623 (3) 130
N4—H4···N3i 0.88 2.26 2.961 (2) 137

Symmetry codes: (i) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2281).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Harrison, W. T. A. (2007). Acta Cryst. E63, o3883.
  4. Higashi, T. (1999). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  7. Roh, S.-G. & Jeong, J. H. (2000). Acta Cryst C56, e529–e530. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006057/fj2281sup1.cif

e-66-0o655-sup1.cif (25.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006057/fj2281Isup2.hkl

e-66-0o655-Isup2.hkl (107.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES