Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 13;66(Pt 3):o614. doi: 10.1107/S1600536810004654

2,6-Diethyl­anilinium perchlorate

Wajda Smirani Sta a,*, Mohamed Rzaigui a,b, Salem S Al-Deyab b
PMCID: PMC2983530  PMID: 21580372

Abstract

The asymmetric unit of the title mol­ecular salt, C10H16N+·ClO4 , contains two cations and two anions. The atoms of one of the ethyl side chains of one of the cations are disordered over two sets of sites in a 0.531 (13):0.469 (13) ratio. In the crystal, the components are linked by N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds and weaker C—H⋯O inter­actions, such that the organic cations alternate with the perchlorate anions, forming ribbons in the a-axis direction.

Related literature

For background to the physical properties and potential applications of mol­ecular salts, see: Czarnecki et al. (1994); Mylrajan & Srinivasan (1991); Toumi Akriche et al. (2010); Xiao et al. (2005). For the graph-set notation of hydrogen-bond networks, see: Bernstein et al. (1995). graphic file with name e-66-0o614-scheme1.jpg

Experimental

Crystal data

  • C10H16N+·ClO4

  • M r = 249.69

  • Monoclinic, Inline graphic

  • a = 15.105 (3) Å

  • b = 21.192 (5) Å

  • c = 7.718 (6) Å

  • β = 98.10 (3)°

  • V = 2446 (2) Å3

  • Z = 8

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.20 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer

  • 15750 measured reflections

  • 11941 independent reflections

  • 2954 reflections with I > 2σ(I)

  • R int = 0.052

  • 2 standard reflections every 120 min intensity decay: 5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.089

  • wR(F 2) = 0.278

  • S = 0.91

  • 11941 reflections

  • 304 parameters

  • H-atom parameters not refined

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810004654/hb5332sup1.cif

e-66-0o614-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004654/hb5332Isup2.hkl

e-66-0o614-Isup2.hkl (572.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6 0.89 2.41 3.029 (4) 127
N1—H1B⋯O4 0.89 2.27 3.043 (5) 146
N1—H1B⋯O2i 0.89 2.48 2.889 (4) 109
N1—H1C⋯O3ii 0.89 2.10 2.935 (4) 157
N1—H1C⋯O2i 0.89 2.58 2.889 (4) 101
N2—H2A⋯O1 0.89 2.17 2.971 (4) 149
N2—H2B⋯O5 0.89 2.39 2.875 (4) 114
N2—H2B⋯O7iii 0.89 2.24 2.991 (4) 141
N2—H2C⋯O7iv 0.89 2.03 2.805 (3) 144
C3—H3⋯O3v 0.93 2.60 3.321 (5) 134
C13—H13⋯O8vi 0.93 2.49 3.418 (6) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

A special attention is focused on the synthesis of hybrid class of inorganic-organic materials because of their interesting architectures and wide variety of physical properties. Organic substructure of these compounds is usually responsible for their molecular hyperpolarizability, electric permittivity and spontaneous polarization. The inorganic part determines thermal and mechanical stability of the crystals. The combination of these various features attributed to both organic and inorganic substructures may lead to interesting materials (Xiao et al., 2005). In particular, the association of the perchlorate anions to organic molecules could lead to materials having phase transitions, non-symmetric structures, characteristic H-bonds (Czarnecki et al., 1994; Mylrajan & Srinivasan, 1991). Among the crystals comprising perchlorate anions, the most interesting are non-centrosymmetric, due to non linear optical(ONL) properties. A pronounced second harmonic generation was found in L-leucinium perchlorate (SHG efficiency d eff= 0.44 x d eff KDP). In this paper, we report single-crystal X-ray study of 2,6-diethylanilinium perchlorate (I). Crystal structure of this latter is depicted in the figure 1. The asymmetric unit, built of two 2,6-diethylanilinium cations and two perchlorate anions, has the geometrical configuration shown in the figure 2. These four components establish between them H-bonds to form a tetra-membered ring. This ring form two slightly corrugated ribbons parallel to the a direction at y = 1/4 and 3/4. Each ribbon is built of an alternance of both inorganic and organic entities.

The first Cl(1)O4- is surrounded by three N(1)H3+cations, to build a ribbon extended in the a direction, and generating R24(8) graph-set motifs.Whereas the second Cl(2)O4-, surrounded by two N(2)H3+cations, leads to R24(10) graph-set motifs which form another ribbon extended in the same direction. Both parallel ribbons are attached together by N—H···O hydrogen bonds. The organic molecules are anchored on these ribbons so that to leave spacious channels (13.9 Å x 3.3 Å) parallel to the a axis. The Cl—O distances indicate rather slight distortion of the two perchlorate anions from the tetrahedral symmetry. The shortest Cl—O bond equals to 1.384 (3) Å, whereas the longest one to 1.444 (3) Å, the angles vary from 105.6 (2)° to 111.2 (2)° that are standard values for perchlorate ions (Toumi Akriche, S. et al. 2010). In this organisation, the components display different interactions (electrostatic, H-bonds, Van derWalls) to keep the three-dimensional network stability.

Experimental

An ethalonic 2,6-diethylaniline solution (5 mmol, in 5 ml) was added to an aqueous perchloric acid solution (0.5 M, 10 ml) at room temperature (293 K). Slow evaporation of the obtained mixture led to the formation of small crystals of the title compound. These were recrystallised from a mixture of water / ethanol (80% / 20%) to yield colourless blocks of (I).

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97Å, N—H = 0.89Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

A view of the packing of (I) along the a axis.

Fig. 2.

Fig. 2.

The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Crystal data

C10H16N+·ClO4 F(000) = 1056
Mr = 249.69 Dx = 1.356 Mg m3
Monoclinic, P21/c Ag Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 15.105 (3) Å θ = 9–11°
b = 21.192 (5) Å µ = 0.17 mm1
c = 7.718 (6) Å T = 293 K
β = 98.10 (3)° Block, colourless
V = 2446 (2) Å3 0.50 × 0.40 × 0.20 mm
Z = 8

Data collection

Enraf–Nonius TurboCAD-4 diffractometer Rint = 0.052
Radiation source: fine-focus sealed tube θmax = 28.0°, θmin = 2.2°
graphite h = −25→5
non–profiled ω scans k = −35→0
15750 measured reflections l = −12→12
11941 independent reflections 2 standard reflections every 120 min
2954 reflections with I > 2σ(I) intensity decay: 5%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.278 H-atom parameters not refined
S = 0.91 w = 1/[σ2(Fo2) + (0.1095P)2 + ] where P = (Fo2 + 2Fc2)/3
11941 reflections (Δ/σ)max < 0.001
304 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C7A −0.0545 (10) 0.6898 (8) 0.139 (3) 0.094 (7) 0.469 (13)
H7A1 0.0024 0.7060 0.1960 0.112* 0.469 (13)
H7A2 −0.0600 0.7012 0.0165 0.112* 0.469 (13)
C7B −0.0813 (12) 0.6774 (8) 0.089 (2) 0.106 (6) 0.531 (13)
H7B1 −0.0280 0.7030 0.1180 0.127* 0.531 (13)
H7B2 −0.0885 0.6726 −0.0373 0.127* 0.531 (13)
C8A −0.1146 (10) 0.7157 (9) 0.204 (3) 0.126 (4) 0.469 (13)
H8A1 −0.1124 0.7604 0.1839 0.188* 0.469 (13)
H8A2 −0.1072 0.7076 0.3273 0.188* 0.469 (13)
H8A3 −0.1713 0.6995 0.1504 0.188* 0.469 (13)
C8B −0.1498 (9) 0.7177 (8) 0.116 (3) 0.126 (4) 0.531 (13)
H8B1 −0.1429 0.7570 0.0571 0.188* 0.531 (13)
H8B2 −0.1481 0.7251 0.2387 0.188* 0.531 (13)
H8B3 −0.2061 0.6990 0.0695 0.188* 0.531 (13)
N2 0.37636 (18) 0.68014 (13) 0.7366 (3) 0.0541 (7)
H2A 0.3312 0.6531 0.7121 0.081*
H2B 0.3754 0.7078 0.6497 0.081*
H2C 0.3709 0.7005 0.8355 0.081*
O3 0.1026 (2) 0.65755 (15) 0.8694 (4) 0.1012 (11)
O1 0.18825 (19) 0.63681 (13) 0.6498 (4) 0.0866 (9)
O7 0.3499 (2) 0.68975 (12) 0.0880 (3) 0.0791 (8)
N1 0.1070 (2) 0.63278 (14) 0.2448 (4) 0.0658 (8)
H1A 0.1561 0.6116 0.2870 0.099*
H1B 0.0970 0.6629 0.3201 0.099*
H1C 0.1141 0.6502 0.1428 0.099*
O2 0.1721 (2) 0.73912 (12) 0.7426 (5) 0.1005 (11)
O5 0.3253 (3) 0.66497 (17) 0.3658 (4) 0.1196 (14)
O8 0.4341 (2) 0.61129 (16) 0.2440 (6) 0.1222 (14)
O6 0.2856 (2) 0.59355 (16) 0.1434 (5) 0.1159 (12)
O4 0.0539 (2) 0.6843 (2) 0.5835 (5) 0.1218 (13)
Cl1 0.12968 (6) 0.68032 (4) 0.71443 (11) 0.0502 (2)
Cl2 0.35009 (6) 0.63848 (4) 0.21107 (12) 0.0580 (3)
C1 0.0299 (2) 0.58913 (16) 0.2194 (4) 0.0544 (9)
C3 −0.0302 (3) 0.48757 (18) 0.2325 (5) 0.0674 (11)
H3 −0.0236 0.4448 0.2587 0.081*
C2 0.0446 (3) 0.52653 (16) 0.2615 (4) 0.0562 (9)
C4 −0.1126 (3) 0.5099 (2) 0.1672 (5) 0.0786 (12)
H4 −0.1612 0.4825 0.1497 0.094*
C6 −0.0529 (3) 0.6145 (2) 0.1543 (6) 0.0713 (11)
C9 0.1350 (3) 0.50228 (19) 0.3346 (5) 0.0723 (11)
H9A 0.1554 0.5253 0.4414 0.087*
H9B 0.1758 0.5118 0.2518 0.087*
C10 0.1413 (3) 0.43215 (19) 0.3754 (6) 0.0896 (14)
H10A 0.2019 0.4216 0.4210 0.134*
H10B 0.1231 0.4085 0.2703 0.134*
H10C 0.1030 0.4221 0.4606 0.134*
C5 −0.1239 (3) 0.5723 (2) 0.1274 (6) 0.0850 (13)
H5 −0.1804 0.5869 0.0813 0.102*
C11 0.4615 (2) 0.64544 (17) 0.7574 (4) 0.0548 (9)
C16 0.5406 (3) 0.6799 (2) 0.7952 (5) 0.0634 (10)
C12 0.4577 (3) 0.58089 (18) 0.7432 (5) 0.0647 (10)
C20 0.3702 (4) 0.4774 (3) 0.7116 (8) 0.125 (2)
H20A 0.3098 0.4624 0.6854 0.187*
H20B 0.3956 0.4630 0.8258 0.187*
H20C 0.4049 0.4616 0.6260 0.187*
C13 0.5396 (3) 0.5487 (2) 0.7667 (6) 0.0885 (14)
H13 0.5405 0.5049 0.7598 0.106*
C19 0.3704 (3) 0.5457 (2) 0.7082 (7) 0.0876 (14)
H19A 0.3333 0.5600 0.7930 0.105*
H19B 0.3411 0.5587 0.5938 0.105*
C17 0.5385 (3) 0.7511 (2) 0.8118 (6) 0.0765 (11)
H17A 0.5014 0.7616 0.9005 0.092*
H17B 0.5093 0.7682 0.7017 0.092*
C15 0.6199 (3) 0.6456 (3) 0.8166 (6) 0.0883 (14)
H15 0.6745 0.6663 0.8425 0.106*
C14 0.6174 (3) 0.5811 (3) 0.7994 (7) 0.0945 (15)
H14 0.6710 0.5589 0.8106 0.113*
C18 0.6274 (4) 0.7845 (3) 0.8577 (8) 0.120 (2)
H18A 0.6176 0.8292 0.8628 0.180*
H18B 0.6649 0.7755 0.7700 0.180*
H18C 0.6562 0.7699 0.9694 0.180*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C7A 0.044 (6) 0.062 (9) 0.168 (16) 0.000 (6) −0.007 (7) 0.039 (9)
C7B 0.119 (14) 0.088 (8) 0.130 (11) −0.023 (9) 0.083 (11) −0.023 (8)
C8A 0.050 (8) 0.135 (6) 0.187 (16) 0.045 (7) −0.002 (6) 0.010 (9)
C8B 0.050 (8) 0.135 (6) 0.187 (16) 0.045 (7) −0.002 (6) 0.010 (9)
N2 0.0530 (17) 0.0584 (16) 0.0511 (16) 0.0024 (14) 0.0081 (14) −0.0052 (13)
O3 0.146 (3) 0.103 (2) 0.0636 (17) −0.043 (2) 0.0447 (19) −0.0017 (16)
O1 0.0757 (19) 0.0764 (18) 0.114 (2) 0.0053 (15) 0.0331 (18) −0.0259 (16)
O7 0.107 (2) 0.0746 (17) 0.0590 (15) −0.0023 (16) 0.0237 (16) 0.0112 (13)
N1 0.077 (2) 0.0641 (19) 0.0620 (18) −0.0194 (16) 0.0293 (16) −0.0043 (14)
O2 0.128 (3) 0.0523 (16) 0.129 (3) −0.0247 (17) 0.044 (2) −0.0107 (16)
O5 0.181 (4) 0.136 (3) 0.0490 (16) 0.062 (3) 0.041 (2) 0.0098 (17)
O8 0.073 (2) 0.082 (2) 0.216 (4) 0.0294 (18) 0.034 (2) 0.020 (2)
O6 0.108 (3) 0.091 (2) 0.149 (3) −0.036 (2) 0.022 (2) −0.002 (2)
O4 0.083 (2) 0.165 (3) 0.107 (3) 0.030 (2) −0.020 (2) −0.002 (2)
Cl1 0.0526 (5) 0.0464 (4) 0.0535 (5) −0.0003 (4) 0.0142 (4) −0.0012 (4)
Cl2 0.0594 (6) 0.0571 (5) 0.0608 (5) 0.0063 (5) 0.0198 (4) 0.0041 (4)
C1 0.062 (2) 0.057 (2) 0.0494 (18) −0.0151 (18) 0.0236 (17) −0.0073 (15)
C3 0.086 (3) 0.056 (2) 0.064 (2) −0.022 (2) 0.021 (2) −0.0045 (17)
C2 0.072 (3) 0.055 (2) 0.0449 (18) −0.0150 (18) 0.0206 (18) −0.0058 (15)
C4 0.076 (3) 0.091 (3) 0.071 (3) −0.033 (3) 0.017 (2) 0.001 (2)
C6 0.076 (3) 0.068 (3) 0.078 (3) −0.004 (2) 0.036 (2) 0.009 (2)
C9 0.076 (3) 0.072 (3) 0.071 (3) −0.010 (2) 0.017 (2) 0.004 (2)
C10 0.104 (4) 0.075 (3) 0.089 (3) 0.004 (3) 0.012 (3) 0.012 (2)
C5 0.065 (3) 0.111 (4) 0.082 (3) −0.006 (3) 0.020 (2) 0.013 (3)
C11 0.060 (2) 0.067 (2) 0.0380 (17) 0.0130 (19) 0.0068 (16) −0.0003 (15)
C16 0.058 (2) 0.079 (3) 0.053 (2) 0.007 (2) 0.0057 (18) −0.0018 (18)
C12 0.068 (3) 0.065 (2) 0.062 (2) 0.009 (2) 0.009 (2) 0.0027 (18)
C20 0.101 (4) 0.105 (4) 0.163 (6) 0.001 (3) −0.001 (4) 0.017 (4)
C13 0.082 (3) 0.075 (3) 0.110 (4) 0.025 (3) 0.020 (3) 0.007 (3)
C19 0.077 (3) 0.063 (3) 0.121 (4) 0.010 (2) 0.006 (3) −0.002 (2)
C17 0.060 (3) 0.090 (3) 0.078 (3) −0.007 (2) 0.007 (2) −0.013 (2)
C15 0.057 (3) 0.114 (4) 0.091 (3) 0.009 (3) −0.001 (2) 0.004 (3)
C14 0.066 (3) 0.100 (4) 0.119 (4) 0.024 (3) 0.017 (3) 0.009 (3)
C18 0.095 (4) 0.118 (4) 0.145 (5) −0.031 (3) 0.010 (4) −0.024 (4)

Geometric parameters (Å, °)

C7A—C8A 1.22 (3) C2—C9 1.493 (5)
C7A—C6 1.599 (17) C4—C5 1.363 (6)
C7A—H7A1 0.9700 C4—H4 0.9300
C7A—H7A2 0.9700 C6—C5 1.390 (6)
C7B—C8B 1.38 (2) C9—C10 1.520 (5)
C7B—C6 1.468 (19) C9—H9A 0.9700
C7B—H7B1 0.9700 C9—H9B 0.9700
C7B—H7B2 0.9700 C10—H10A 0.9600
C8A—H8A1 0.9600 C10—H10B 0.9600
C8A—H8A2 0.9600 C10—H10C 0.9600
C8A—H8A3 0.9600 C5—H5 0.9300
C8B—H8B1 0.9600 C11—C12 1.373 (5)
C8B—H8B2 0.9600 C11—C16 1.395 (5)
C8B—H8B3 0.9600 C16—C15 1.392 (6)
N2—C11 1.471 (4) C16—C17 1.515 (6)
N2—H2A 0.8900 C12—C13 1.402 (5)
N2—H2B 0.8900 C12—C19 1.506 (6)
N2—H2C 0.8900 C20—C19 1.446 (6)
O3—Cl1 1.404 (3) C20—H20A 0.9600
O1—Cl1 1.416 (3) C20—H20B 0.9600
O7—Cl2 1.443 (3) C20—H20C 0.9600
N1—C1 1.478 (4) C13—C14 1.354 (6)
N1—H1A 0.8900 C13—H13 0.9300
N1—H1B 0.8900 C19—H19A 0.9700
N1—H1C 0.8900 C19—H19B 0.9700
O2—Cl1 1.404 (3) C17—C18 1.515 (6)
O5—Cl2 1.417 (3) C17—H17A 0.9700
O8—Cl2 1.385 (3) C17—H17B 0.9700
O6—Cl2 1.409 (3) C15—C14 1.374 (6)
O4—Cl1 1.418 (3) C15—H15 0.9300
C1—C2 1.376 (5) C14—H14 0.9300
C1—C6 1.389 (5) C18—H18A 0.9600
C3—C4 1.360 (6) C18—H18B 0.9600
C3—C2 1.391 (5) C18—H18C 0.9600
C3—H3 0.9300
C8A—C7A—C6 115.0 (16) C5—C6—C7B 110.6 (8)
C8A—C7A—H7A1 108.5 C1—C6—C7A 114.6 (6)
C6—C7A—H7A1 108.5 C5—C6—C7A 128.9 (7)
C8A—C7A—H7A2 108.5 C7B—C6—C7A 21.4 (10)
C6—C7A—H7A2 108.5 C2—C9—C10 116.3 (4)
H7A1—C7A—H7A2 107.5 C2—C9—H9A 108.2
C8B—C7B—C6 134.4 (14) C10—C9—H9A 108.2
C8B—C7B—H7B1 103.6 C2—C9—H9B 108.2
C6—C7B—H7B1 103.6 C10—C9—H9B 108.2
C8B—C7B—H7B2 103.6 H9A—C9—H9B 107.4
C6—C7B—H7B2 103.6 C9—C10—H10A 109.5
H7B1—C7B—H7B2 105.3 C9—C10—H10B 109.5
C7A—C8A—H8A1 109.5 H10A—C10—H10B 109.5
C7A—C8A—H8A2 109.5 C9—C10—H10C 109.5
H8A1—C8A—H8A2 109.5 H10A—C10—H10C 109.5
C7A—C8A—H8A3 109.5 H10B—C10—H10C 109.5
H8A1—C8A—H8A3 109.5 C4—C5—C6 121.4 (5)
H8A2—C8A—H8A3 109.5 C4—C5—H5 119.3
C7B—C8B—H8B1 109.5 C6—C5—H5 119.3
C7B—C8B—H8B2 109.5 C12—C11—C16 124.3 (4)
H8B1—C8B—H8B2 109.5 C12—C11—N2 117.6 (3)
C7B—C8B—H8B3 109.5 C16—C11—N2 118.1 (3)
H8B1—C8B—H8B3 109.5 C15—C16—C11 116.7 (4)
H8B2—C8B—H8B3 109.5 C15—C16—C17 122.5 (4)
C11—N2—H2A 109.5 C11—C16—C17 120.8 (3)
C11—N2—H2B 109.5 C11—C12—C13 116.7 (4)
H2A—N2—H2B 109.5 C11—C12—C19 122.3 (4)
C11—N2—H2C 109.5 C13—C12—C19 121.0 (4)
H2A—N2—H2C 109.5 C19—C20—H20A 109.5
H2B—N2—H2C 109.5 C19—C20—H20B 109.5
C1—N1—H1A 109.5 H20A—C20—H20B 109.5
C1—N1—H1B 109.5 C19—C20—H20C 109.5
H1A—N1—H1B 109.5 H20A—C20—H20C 109.5
C1—N1—H1C 109.5 H20B—C20—H20C 109.5
H1A—N1—H1C 109.5 C14—C13—C12 120.3 (4)
H1B—N1—H1C 109.5 C14—C13—H13 119.9
O3—Cl1—O2 110.8 (2) C12—C13—H13 119.9
O3—Cl1—O1 110.4 (2) C20—C19—C12 119.8 (4)
O2—Cl1—O1 109.79 (19) C20—C19—H19A 107.4
O3—Cl1—O4 108.9 (2) C12—C19—H19A 107.4
O2—Cl1—O4 111.2 (2) C20—C19—H19B 107.4
O1—Cl1—O4 105.6 (2) C12—C19—H19B 107.4
O8—Cl2—O6 110.8 (2) H19A—C19—H19B 106.9
O8—Cl2—O5 110.8 (3) C16—C17—C18 117.2 (4)
O6—Cl2—O5 109.2 (2) C16—C17—H17A 108.0
O8—Cl2—O7 110.6 (2) C18—C17—H17A 108.0
O6—Cl2—O7 109.1 (2) C16—C17—H17B 108.0
O5—Cl2—O7 106.27 (19) C18—C17—H17B 108.0
C2—C1—C6 124.4 (3) H17A—C17—H17B 107.2
C2—C1—N1 118.4 (3) C14—C15—C16 119.7 (5)
C6—C1—N1 117.3 (3) C14—C15—H15 120.1
C4—C3—C2 122.2 (4) C16—C15—H15 120.1
C4—C3—H3 118.9 C13—C14—C15 122.3 (5)
C2—C3—H3 118.9 C13—C14—H14 118.8
C1—C2—C3 115.8 (4) C15—C14—H14 118.8
C1—C2—C9 121.9 (3) C17—C18—H18A 109.5
C3—C2—C9 122.3 (3) C17—C18—H18B 109.5
C3—C4—C5 120.0 (4) H18A—C18—H18B 109.5
C3—C4—H4 120.0 C17—C18—H18C 109.5
C5—C4—H4 120.0 H18A—C18—H18C 109.5
C1—C6—C5 116.2 (4) H18B—C18—H18C 109.5
C1—C6—C7B 132.9 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O6 0.89 2.41 3.029 (4) 127
N1—H1B···O4 0.89 2.27 3.043 (5) 146
N1—H1B···O2i 0.89 2.48 2.889 (4) 109
N1—H1C···O3ii 0.89 2.10 2.935 (4) 157
N1—H1C···O2i 0.89 2.58 2.889 (4) 101
N2—H2A···O1 0.89 2.17 2.971 (4) 149
N2—H2B···O5 0.89 2.39 2.875 (4) 114
N2—H2B···O7iii 0.89 2.24 2.991 (4) 141
N2—H2C···O7iv 0.89 2.03 2.805 (3) 144
C3—H3···O3v 0.93 2.60 3.321 (5) 134
C13—H13···O8vi 0.93 2.49 3.418 (6) 172

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, y, z−1; (iii) x, −y+3/2, z+1/2; (iv) x, y, z+1; (v) −x, −y+1, −z+1; (vi) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5332).

References

  1. Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Czarnecki, P., Nawrocik, W., Pajak, Z. & Wasicki, J. (1994). Phys. Rev. B, 49, 1511–1512. [DOI] [PubMed]
  3. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  7. Mylrajan, M. & Srinivasan, T. K. K. (1991). J. Raman Spectrosc. 22, 53–55.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Toumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300. [DOI] [PMC free article] [PubMed]
  10. Xiao, D., An, H., Wang, E. & Xu, L. (2005). J. Mol. Struct.738, 217–225.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810004654/hb5332sup1.cif

e-66-0o614-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004654/hb5332Isup2.hkl

e-66-0o614-Isup2.hkl (572.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES