Abstract
In the polymeric title compound, [HgCl2(C5H5N3O)2]n, the HgII atom (site symmetry
) adopts a distorted trans-HgN2Cl4 octahedral coordination geometry. In the crystal, adjacent mercury ions are bridged by pairs of chloride ions, generating infinite [100] chains, and N—H⋯O and N—H⋯(N,N) hydrogen bonds help to consolidate the packing.
Related literature
For related structures, see: Cati & Stoeckli-Evans (2004 ▶); Hausmann & Brooker (2004 ▶); Mir Mohammad Sadegh et al. (2010 ▶); Miyazaki et al. (2007 ▶).
Experimental
Crystal data
[HgCl2(C5H5N3O)2]
M r = 517.73
Triclinic,
a = 3.8451 (8) Å
b = 6.4170 (13) Å
c = 14.854 (3) Å
α = 101.14 (3)°
β = 92.53 (3)°
γ = 94.69 (3)°
V = 357.73 (13) Å3
Z = 1
Mo Kα radiation
μ = 11.14 mm−1
T = 298 K
0.48 × 0.15 × 0.06 mm
Data collection
Stoe IPDS II diffractometer
Absorption correction: numerical [optically, by X-RED and XSHAPE (Stoe & Cie, 2005 ▶)] T min = 0.150, T max = 0.515
4201 measured reflections
1887 independent reflections
1880 reflections with I > 2σ(I)
R int = 0.096
Refinement
R[F 2 > 2σ(F 2)] = 0.054
wR(F 2) = 0.144
S = 1.08
1887 reflections
97 parameters
H-atom parameters constrained
Δρmax = 3.25 e Å−3
Δρmin = −3.75 e Å−3
Data collection: X-AREA (Stoe & Cie, 2005 ▶); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003879/hb5301sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003879/hb5301Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected geometric parameters (Å, °).
| Hg1—N2 | 2.661 (7) |
| Hg1—Cl1i | 2.970 (2) |
| Hg1—Cl1 | 2.375 (2) |
| Hg1—Cl1—Hg1ii | 91.31 (7) |
Symmetry codes: (i)
; (ii)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N3—H3A⋯O1iii | 0.86 | 2.01 | 2.864 (12) | 176 |
| N3—H3B⋯N1 | 0.86 | 2.40 | 2.758 (12) | 105 |
| N3—H3B⋯N1iv | 0.86 | 2.54 | 3.198 (12) | 134 |
Symmetry codes: (iii)
; (iv)
.
Acknowledgments
The authors wish to acknowledge Shahid Beheshti University, G.C., for financial support.
supplementary crystallographic information
Comment
The coordination chemistry of parazineamides is rich. Examples of coordination via the pyrazine N atoms, the carbonyl O atoms and the amide N atoms of the ligand in a non-, mono-, or bis-deprotonated form are known (Hausmann and Brooker, 2004; Cati & Stoeckli-Evans, 2004; Miyazaki et al. 2007) and metal complexes of the ligands have been used extensively to mimic the properties of biologically active systems. Here we synthesized the title compound, (I), and report here its crystal structure.
The asymmetric unit of the title compound, (I), contains one half-molecule (Fig. 1). The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from pyrazine amides and four bridging Cl atoms. The bridging function of chloro atoms leads to a one-dimensional chain structure. The Hg—Cl and Hg—N bond lengths and angles (Table 1) are within normal ranges. In the crystal structure (Fig. 2), intermolecular N—H···O and N—H···N hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.
Experimental
A solution of pyrazineamide (0.246 g, 2.0 mmol) in methanol (10 ml) was added to a solution of HgCl2 (0.272 g, 1.0 mmol) in methanol (5 ml) at room temperature. Colourless plates of (I) were obtained by slow evaporation from methanolic solution after one week (yield; 0.359 g, 69.3%).
Refinement
All of the H atoms were positioned geometrically with C—H = 0.93 and 0.86Å for aromatic ring and NH2 hydrogen atoms respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The largest peak and deppest hole are near to Hg (0.87 and 0.75Å respectively).
Figures
Fig. 1.
The molecular staucture with displacement ellipsoids drawn at 30% probability level.
Fig. 2.
A packing diagram of (I) in b-directrion. Hydrogen bonds are shown as dashed lines.
Crystal data
| [HgCl2(C5H5N3O)2] | Z = 1 |
| Mr = 517.73 | F(000) = 242 |
| Triclinic, P1 | Dx = 2.403 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 3.8451 (8) Å | Cell parameters from 976 reflections |
| b = 6.4170 (13) Å | θ = 3.3–29.1° |
| c = 14.854 (3) Å | µ = 11.14 mm−1 |
| α = 101.14 (3)° | T = 298 K |
| β = 92.53 (3)° | Plate, colourless |
| γ = 94.69 (3)° | 0.48 × 0.15 × 0.06 mm |
| V = 357.73 (13) Å3 |
Data collection
| Stoe IPDS II diffractometer | 1880 reflections with I > 2σ(I) |
| ω scans | Rint = 0.096 |
| Absorption correction: numerical [optically, by X-RED and X-SHAPE (Stoe & Cie, 2005)] | θmax = 29.1°, θmin = 3.3° |
| Tmin = 0.150, Tmax = 0.515 | h = −5→4 |
| 4201 measured reflections | k = −8→8 |
| 1887 independent reflections | l = −20→20 |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.054 | w = 1/[σ2(Fo2) + (0.110P)2 + 0.204P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.144 | (Δ/σ)max < 0.001 |
| S = 1.08 | Δρmax = 3.25 e Å−3 |
| 1887 reflections | Δρmin = −3.75 e Å−3 |
| 97 parameters |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.397 (3) | 0.5265 (12) | 0.2863 (6) | 0.0431 (16) | |
| H1 | 0.3077 | 0.6583 | 0.3014 | 0.052* | |
| C2 | 0.400 (3) | 0.4268 (13) | 0.1935 (6) | 0.0431 (16) | |
| H2 | 0.3177 | 0.4953 | 0.1482 | 0.052* | |
| C3 | 0.632 (2) | 0.1435 (13) | 0.2363 (6) | 0.0391 (14) | |
| H3 | 0.7083 | 0.008 | 0.2215 | 0.047* | |
| C4 | 0.639 (2) | 0.2438 (11) | 0.3279 (5) | 0.0341 (12) | |
| C5 | 0.793 (2) | 0.1365 (12) | 0.3999 (6) | 0.0385 (14) | |
| N1 | 0.520 (2) | 0.4354 (11) | 0.3536 (5) | 0.0429 (14) | |
| N2 | 0.519 (2) | 0.2350 (11) | 0.1690 (5) | 0.0412 (13) | |
| N3 | 0.784 (3) | 0.2340 (13) | 0.4863 (6) | 0.0516 (19) | |
| H3A | 0.8724 | 0.1795 | 0.5296 | 0.062* | |
| H3B | 0.6888 | 0.352 | 0.4994 | 0.062* | |
| O1 | 0.924 (3) | −0.0327 (12) | 0.3755 (5) | 0.0539 (18) | |
| Cl1 | 0.8689 (6) | −0.2371 (3) | 0.05218 (16) | 0.0444 (4) | |
| Hg1 | 0.5 | 0 | 0 | 0.03963 (18) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.054 (4) | 0.036 (3) | 0.041 (4) | 0.016 (3) | −0.005 (3) | 0.007 (3) |
| C2 | 0.056 (4) | 0.042 (3) | 0.034 (4) | 0.011 (3) | 0.000 (3) | 0.012 (3) |
| C3 | 0.046 (4) | 0.042 (3) | 0.029 (3) | 0.016 (3) | 0.001 (3) | 0.004 (2) |
| C4 | 0.038 (3) | 0.036 (3) | 0.029 (3) | 0.009 (2) | −0.001 (3) | 0.006 (2) |
| C5 | 0.045 (4) | 0.040 (3) | 0.030 (3) | 0.006 (3) | −0.004 (3) | 0.008 (2) |
| N1 | 0.052 (4) | 0.038 (3) | 0.038 (3) | 0.012 (2) | −0.001 (3) | 0.003 (2) |
| N2 | 0.049 (4) | 0.045 (3) | 0.031 (3) | 0.014 (2) | −0.001 (3) | 0.007 (2) |
| N3 | 0.077 (6) | 0.045 (3) | 0.035 (3) | 0.032 (3) | −0.003 (3) | 0.003 (3) |
| O1 | 0.084 (5) | 0.047 (3) | 0.033 (3) | 0.033 (3) | 0.001 (3) | 0.004 (2) |
| Cl1 | 0.0448 (9) | 0.0477 (9) | 0.0434 (10) | 0.0146 (7) | 0.0022 (8) | 0.0114 (7) |
| Hg1 | 0.0397 (2) | 0.0505 (3) | 0.0305 (2) | 0.01765 (14) | −0.00015 (15) | 0.00733 (15) |
Geometric parameters (Å, °)
| C1—N1 | 1.340 (12) | C5—N3 | 1.318 (11) |
| C1—C2 | 1.404 (12) | N3—H3A | 0.86 |
| C1—H1 | 0.93 | N3—H3B | 0.86 |
| C2—N2 | 1.338 (11) | Cl1—Hg1i | 2.970 (2) |
| C2—H2 | 0.93 | Hg1—Cl1ii | 2.375 (2) |
| C3—N2 | 1.327 (11) | Hg1—N2ii | 2.661 (7) |
| C3—C4 | 1.387 (10) | Hg1—Cl1iii | 2.970 (2) |
| C3—H3 | 0.93 | Hg1—N2 | 2.661 (7) |
| C4—N1 | 1.338 (10) | Hg1—Cl1iv | 2.970 (2) |
| C4—C5 | 1.506 (11) | Hg1—Cl1 | 2.375 (2) |
| C5—O1 | 1.232 (11) | ||
| N1—C1—C2 | 121.3 (7) | C5—N3—H3A | 120 |
| N1—C1—H1 | 119.4 | C5—N3—H3B | 120 |
| C2—C1—H1 | 119.4 | H3A—N3—H3B | 120 |
| N2—C2—C1 | 121.3 (8) | Hg1—Cl1—Hg1i | 91.31 (7) |
| N2—C2—H2 | 119.4 | Cl1ii—Hg1—Cl1 | 180.0 |
| C1—C2—H2 | 119.4 | Cl1ii—Hg1—N2 | 89.49 (17) |
| N2—C3—C4 | 122.0 (7) | Cl1—Hg1—N2 | 90.51 (17) |
| N2—C3—H3 | 119 | Cl1ii—Hg1—N2ii | 90.51 (17) |
| C4—C3—H3 | 119 | Cl1—Hg1—N2ii | 89.49 (17) |
| N1—C4—C3 | 121.7 (8) | N2—Hg1—N2ii | 180.0 |
| N1—C4—C5 | 119.3 (7) | Cl1ii—Hg1—Cl1iii | 91.31 (7) |
| C3—C4—C5 | 118.9 (7) | Cl1—Hg1—Cl1iii | 88.69 (7) |
| O1—C5—N3 | 124.0 (8) | N2—Hg1—Cl1iii | 94.05 (18) |
| O1—C5—C4 | 119.1 (7) | N2ii—Hg1—Cl1iii | 85.95 (18) |
| N3—C5—C4 | 116.9 (7) | Cl1ii—Hg1—Cl1iv | 88.69 (7) |
| C4—N1—C1 | 116.7 (7) | Cl1—Hg1—Cl1iv | 91.31 (7) |
| C3—N2—C2 | 117.0 (7) | N2—Hg1—Cl1iv | 85.95 (18) |
| C3—N2—Hg1 | 116.0 (5) | N2ii—Hg1—Cl1iv | 94.05 (18) |
| C2—N2—Hg1 | 126.8 (6) | Cl1iii—Hg1—Cl1iv | 180.0 |
| N1—C1—C2—N2 | 1.5 (15) | C1—C2—N2—Hg1 | 174.2 (7) |
| N2—C3—C4—N1 | 2.4 (13) | Hg1i—Cl1—Hg1—N2 | −94.04 (18) |
| N2—C3—C4—C5 | −175.8 (8) | Hg1i—Cl1—Hg1—N2ii | 85.96 (18) |
| N1—C4—C5—O1 | −174.9 (9) | Hg1i—Cl1—Hg1—Cl1iii | 0 |
| C3—C4—C5—O1 | 3.3 (12) | Hg1i—Cl1—Hg1—Cl1iv | 180 |
| N1—C4—C5—N3 | 4.0 (12) | C3—N2—Hg1—Cl1ii | 163.8 (6) |
| C3—C4—C5—N3 | −177.8 (9) | C2—N2—Hg1—Cl1ii | −10.0 (8) |
| C3—C4—N1—C1 | −0.5 (12) | C3—N2—Hg1—Cl1 | −16.2 (6) |
| C5—C4—N1—C1 | 177.7 (8) | C2—N2—Hg1—Cl1 | 170.0 (8) |
| C2—C1—N1—C4 | −1.4 (13) | C3—N2—Hg1—Cl1iii | −104.9 (6) |
| C4—C3—N2—C2 | −2.3 (13) | C2—N2—Hg1—Cl1iii | 81.3 (8) |
| C4—C3—N2—Hg1 | −176.7 (6) | C3—N2—Hg1—Cl1iv | 75.1 (6) |
| C1—C2—N2—C3 | 0.4 (13) | C2—N2—Hg1—Cl1iv | −98.7 (8) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z; (iii) −x+2, −y, −z; (iv) x−1, y, z.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N3—H3A···O1v | 0.86 | 2.01 | 2.864 (12) | 176 |
| N3—H3B···N1 | 0.86 | 2.40 | 2.758 (12) | 105 |
| N3—H3B···N1vi | 0.86 | 2.54 | 3.198 (12) | 134 |
Symmetry codes: (v) −x+2, −y, −z+1; (vi) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5301).
References
- Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177–m179.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Hausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530–1531. [DOI] [PubMed]
- Mir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158. [DOI] [PMC free article] [PubMed]
- Miyazaki, S., Ohkubo, K., Kojima, T. & Fukuzumi, S. (2007). Angew. Chem. Int. Ed.46, 905–908. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Stoe & Cie (2005). X-AREA, X-RED and XSHAPE Stoe & Cie, Darmstadt, Germany.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003879/hb5301sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003879/hb5301Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


