Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 6;66(Pt 3):m261. doi: 10.1107/S1600536810003879

catena-Poly[[bis­(pyrazine-2-carbox­amide)mercury(II)]-di-μ-chlorido]

Alireza Azhdari Tehrani a, Bahareh Mir Mohammad Sadegh a, Hamid Reza Khavasi a,*
PMCID: PMC2983533  PMID: 21580214

Abstract

In the polymeric title compound, [HgCl2(C5H5N3O)2]n, the HgII atom (site symmetry Inline graphic) adopts a distorted trans-HgN2Cl4 octa­hedral coordination geometry. In the crystal, adjacent mercury ions are bridged by pairs of chloride ions, generating infinite [100] chains, and N—H⋯O and N—H⋯(N,N) hydrogen bonds help to consolidate the packing.

Related literature

For related structures, see: Cati & Stoeckli-Evans (2004); Hausmann & Brooker (2004); Mir Mohammad Sadegh et al. (2010); Miyazaki et al. (2007).graphic file with name e-66-0m261-scheme1.jpg

Experimental

Crystal data

  • [HgCl2(C5H5N3O)2]

  • M r = 517.73

  • Triclinic, Inline graphic

  • a = 3.8451 (8) Å

  • b = 6.4170 (13) Å

  • c = 14.854 (3) Å

  • α = 101.14 (3)°

  • β = 92.53 (3)°

  • γ = 94.69 (3)°

  • V = 357.73 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 11.14 mm−1

  • T = 298 K

  • 0.48 × 0.15 × 0.06 mm

Data collection

  • Stoe IPDS II diffractometer

  • Absorption correction: numerical [optically, by X-RED and XSHAPE (Stoe & Cie, 2005)] T min = 0.150, T max = 0.515

  • 4201 measured reflections

  • 1887 independent reflections

  • 1880 reflections with I > 2σ(I)

  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.144

  • S = 1.08

  • 1887 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 3.25 e Å−3

  • Δρmin = −3.75 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003879/hb5301sup1.cif

e-66-0m261-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003879/hb5301Isup2.hkl

e-66-0m261-Isup2.hkl (90.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Hg1—N2 2.661 (7)
Hg1—Cl1i 2.970 (2)
Hg1—Cl1 2.375 (2)
Hg1—Cl1—Hg1ii 91.31 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1iii 0.86 2.01 2.864 (12) 176
N3—H3B⋯N1 0.86 2.40 2.758 (12) 105
N3—H3B⋯N1iv 0.86 2.54 3.198 (12) 134

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors wish to acknowledge Shahid Beheshti University, G.C., for financial support.

supplementary crystallographic information

Comment

The coordination chemistry of parazineamides is rich. Examples of coordination via the pyrazine N atoms, the carbonyl O atoms and the amide N atoms of the ligand in a non-, mono-, or bis-deprotonated form are known (Hausmann and Brooker, 2004; Cati & Stoeckli-Evans, 2004; Miyazaki et al. 2007) and metal complexes of the ligands have been used extensively to mimic the properties of biologically active systems. Here we synthesized the title compound, (I), and report here its crystal structure.

The asymmetric unit of the title compound, (I), contains one half-molecule (Fig. 1). The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from pyrazine amides and four bridging Cl atoms. The bridging function of chloro atoms leads to a one-dimensional chain structure. The Hg—Cl and Hg—N bond lengths and angles (Table 1) are within normal ranges. In the crystal structure (Fig. 2), intermolecular N—H···O and N—H···N hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.

Experimental

A solution of pyrazineamide (0.246 g, 2.0 mmol) in methanol (10 ml) was added to a solution of HgCl2 (0.272 g, 1.0 mmol) in methanol (5 ml) at room temperature. Colourless plates of (I) were obtained by slow evaporation from methanolic solution after one week (yield; 0.359 g, 69.3%).

Refinement

All of the H atoms were positioned geometrically with C—H = 0.93 and 0.86Å for aromatic ring and NH2 hydrogen atoms respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The largest peak and deppest hole are near to Hg (0.87 and 0.75Å respectively).

Figures

Fig. 1.

Fig. 1.

The molecular staucture with displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I) in b-directrion. Hydrogen bonds are shown as dashed lines.

Crystal data

[HgCl2(C5H5N3O)2] Z = 1
Mr = 517.73 F(000) = 242
Triclinic, P1 Dx = 2.403 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 3.8451 (8) Å Cell parameters from 976 reflections
b = 6.4170 (13) Å θ = 3.3–29.1°
c = 14.854 (3) Å µ = 11.14 mm1
α = 101.14 (3)° T = 298 K
β = 92.53 (3)° Plate, colourless
γ = 94.69 (3)° 0.48 × 0.15 × 0.06 mm
V = 357.73 (13) Å3

Data collection

Stoe IPDS II diffractometer 1880 reflections with I > 2σ(I)
ω scans Rint = 0.096
Absorption correction: numerical [optically, by X-RED and X-SHAPE (Stoe & Cie, 2005)] θmax = 29.1°, θmin = 3.3°
Tmin = 0.150, Tmax = 0.515 h = −5→4
4201 measured reflections k = −8→8
1887 independent reflections l = −20→20

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.110P)2 + 0.204P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 3.25 e Å3
1887 reflections Δρmin = −3.75 e Å3
97 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.397 (3) 0.5265 (12) 0.2863 (6) 0.0431 (16)
H1 0.3077 0.6583 0.3014 0.052*
C2 0.400 (3) 0.4268 (13) 0.1935 (6) 0.0431 (16)
H2 0.3177 0.4953 0.1482 0.052*
C3 0.632 (2) 0.1435 (13) 0.2363 (6) 0.0391 (14)
H3 0.7083 0.008 0.2215 0.047*
C4 0.639 (2) 0.2438 (11) 0.3279 (5) 0.0341 (12)
C5 0.793 (2) 0.1365 (12) 0.3999 (6) 0.0385 (14)
N1 0.520 (2) 0.4354 (11) 0.3536 (5) 0.0429 (14)
N2 0.519 (2) 0.2350 (11) 0.1690 (5) 0.0412 (13)
N3 0.784 (3) 0.2340 (13) 0.4863 (6) 0.0516 (19)
H3A 0.8724 0.1795 0.5296 0.062*
H3B 0.6888 0.352 0.4994 0.062*
O1 0.924 (3) −0.0327 (12) 0.3755 (5) 0.0539 (18)
Cl1 0.8689 (6) −0.2371 (3) 0.05218 (16) 0.0444 (4)
Hg1 0.5 0 0 0.03963 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.054 (4) 0.036 (3) 0.041 (4) 0.016 (3) −0.005 (3) 0.007 (3)
C2 0.056 (4) 0.042 (3) 0.034 (4) 0.011 (3) 0.000 (3) 0.012 (3)
C3 0.046 (4) 0.042 (3) 0.029 (3) 0.016 (3) 0.001 (3) 0.004 (2)
C4 0.038 (3) 0.036 (3) 0.029 (3) 0.009 (2) −0.001 (3) 0.006 (2)
C5 0.045 (4) 0.040 (3) 0.030 (3) 0.006 (3) −0.004 (3) 0.008 (2)
N1 0.052 (4) 0.038 (3) 0.038 (3) 0.012 (2) −0.001 (3) 0.003 (2)
N2 0.049 (4) 0.045 (3) 0.031 (3) 0.014 (2) −0.001 (3) 0.007 (2)
N3 0.077 (6) 0.045 (3) 0.035 (3) 0.032 (3) −0.003 (3) 0.003 (3)
O1 0.084 (5) 0.047 (3) 0.033 (3) 0.033 (3) 0.001 (3) 0.004 (2)
Cl1 0.0448 (9) 0.0477 (9) 0.0434 (10) 0.0146 (7) 0.0022 (8) 0.0114 (7)
Hg1 0.0397 (2) 0.0505 (3) 0.0305 (2) 0.01765 (14) −0.00015 (15) 0.00733 (15)

Geometric parameters (Å, °)

C1—N1 1.340 (12) C5—N3 1.318 (11)
C1—C2 1.404 (12) N3—H3A 0.86
C1—H1 0.93 N3—H3B 0.86
C2—N2 1.338 (11) Cl1—Hg1i 2.970 (2)
C2—H2 0.93 Hg1—Cl1ii 2.375 (2)
C3—N2 1.327 (11) Hg1—N2ii 2.661 (7)
C3—C4 1.387 (10) Hg1—Cl1iii 2.970 (2)
C3—H3 0.93 Hg1—N2 2.661 (7)
C4—N1 1.338 (10) Hg1—Cl1iv 2.970 (2)
C4—C5 1.506 (11) Hg1—Cl1 2.375 (2)
C5—O1 1.232 (11)
N1—C1—C2 121.3 (7) C5—N3—H3A 120
N1—C1—H1 119.4 C5—N3—H3B 120
C2—C1—H1 119.4 H3A—N3—H3B 120
N2—C2—C1 121.3 (8) Hg1—Cl1—Hg1i 91.31 (7)
N2—C2—H2 119.4 Cl1ii—Hg1—Cl1 180.0
C1—C2—H2 119.4 Cl1ii—Hg1—N2 89.49 (17)
N2—C3—C4 122.0 (7) Cl1—Hg1—N2 90.51 (17)
N2—C3—H3 119 Cl1ii—Hg1—N2ii 90.51 (17)
C4—C3—H3 119 Cl1—Hg1—N2ii 89.49 (17)
N1—C4—C3 121.7 (8) N2—Hg1—N2ii 180.0
N1—C4—C5 119.3 (7) Cl1ii—Hg1—Cl1iii 91.31 (7)
C3—C4—C5 118.9 (7) Cl1—Hg1—Cl1iii 88.69 (7)
O1—C5—N3 124.0 (8) N2—Hg1—Cl1iii 94.05 (18)
O1—C5—C4 119.1 (7) N2ii—Hg1—Cl1iii 85.95 (18)
N3—C5—C4 116.9 (7) Cl1ii—Hg1—Cl1iv 88.69 (7)
C4—N1—C1 116.7 (7) Cl1—Hg1—Cl1iv 91.31 (7)
C3—N2—C2 117.0 (7) N2—Hg1—Cl1iv 85.95 (18)
C3—N2—Hg1 116.0 (5) N2ii—Hg1—Cl1iv 94.05 (18)
C2—N2—Hg1 126.8 (6) Cl1iii—Hg1—Cl1iv 180.0
N1—C1—C2—N2 1.5 (15) C1—C2—N2—Hg1 174.2 (7)
N2—C3—C4—N1 2.4 (13) Hg1i—Cl1—Hg1—N2 −94.04 (18)
N2—C3—C4—C5 −175.8 (8) Hg1i—Cl1—Hg1—N2ii 85.96 (18)
N1—C4—C5—O1 −174.9 (9) Hg1i—Cl1—Hg1—Cl1iii 0
C3—C4—C5—O1 3.3 (12) Hg1i—Cl1—Hg1—Cl1iv 180
N1—C4—C5—N3 4.0 (12) C3—N2—Hg1—Cl1ii 163.8 (6)
C3—C4—C5—N3 −177.8 (9) C2—N2—Hg1—Cl1ii −10.0 (8)
C3—C4—N1—C1 −0.5 (12) C3—N2—Hg1—Cl1 −16.2 (6)
C5—C4—N1—C1 177.7 (8) C2—N2—Hg1—Cl1 170.0 (8)
C2—C1—N1—C4 −1.4 (13) C3—N2—Hg1—Cl1iii −104.9 (6)
C4—C3—N2—C2 −2.3 (13) C2—N2—Hg1—Cl1iii 81.3 (8)
C4—C3—N2—Hg1 −176.7 (6) C3—N2—Hg1—Cl1iv 75.1 (6)
C1—C2—N2—C3 0.4 (13) C2—N2—Hg1—Cl1iv −98.7 (8)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z; (iii) −x+2, −y, −z; (iv) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O1v 0.86 2.01 2.864 (12) 176
N3—H3B···N1 0.86 2.40 2.758 (12) 105
N3—H3B···N1vi 0.86 2.54 3.198 (12) 134

Symmetry codes: (v) −x+2, −y, −z+1; (vi) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5301).

References

  1. Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177–m179.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Hausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530–1531. [DOI] [PubMed]
  5. Mir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158. [DOI] [PMC free article] [PubMed]
  6. Miyazaki, S., Ohkubo, K., Kojima, T. & Fukuzumi, S. (2007). Angew. Chem. Int. Ed.46, 905–908. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stoe & Cie (2005). X-AREA, X-RED and XSHAPE Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003879/hb5301sup1.cif

e-66-0m261-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003879/hb5301Isup2.hkl

e-66-0m261-Isup2.hkl (90.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES