Abstract
The title compound, C21H21Cl2NO, exists in a twin-chair conformation with an equatorial orientation of the 4-chlorophenyl groups on both sides of the secondary amino group; the dihedral angle between the 4-chlorophenyl rings is 36.58 (2)°. The crystal packing is stabilized by an intermolecular N—H⋯O hydrogen bond and a weak Cl⋯Cl [3.4331 (9) Å] interaction.
Related literature
For the synthesis and biological activity of 3-azabicyclo[3.3.1] nonan-9-ones, see: Parthiban et al. (2009 ▶); Hardick et al. (1996 ▶); Jeyaraman & Avila (1981 ▶). For the structure of the non-methylated analog of the title compound, see: Parthiban et al. (2009a
▶). For related structures with similar conformations, see: Parthiban et al. (2009b
▶, 2010 ▶). For a related structure with chair–boat conformation, see: Smith-Verdier et al. (1983 ▶). For a related structure with boat–boat conformation, see: Padegimas & Kovacic (1972 ▶). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975 ▶); Nardelli (1983 ▶). Scheme: resolution poor
Experimental
Crystal data
C21H21Cl2NO
M r = 374.29
Monoclinic,
a = 28.4515 (14) Å
b = 7.0380 (3) Å
c = 21.2771 (12) Å
β = 117.148 (4)°
V = 3791.2 (3) Å3
Z = 8
Mo Kα radiation
μ = 0.35 mm−1
T = 298 K
0.58 × 0.42 × 0.18 mm
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1999 ▶) T min = 0.822, T max = 0.940
24985 measured reflections
4661 independent reflections
3149 reflections with I > 2σ(I)
R int = 0.033
Refinement
R[F 2 > 2σ(F 2)] = 0.045
wR(F 2) = 0.125
S = 1.02
4661 reflections
231 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.36 e Å−3
Δρmin = −0.43 e Å−3
Data collection: APEX2 (Bruker, 2004 ▶); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004 ▶); data reduction: SAINT-Plus and XPREP (Bruker, 2004 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004095/hb5322sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004095/hb5322Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1A⋯O1i | 0.87 (2) | 2.45 (2) | 3.309 (2) | 170.2 (18) |
Symmetry code: (i)
.
Acknowledgments
This work was supported by the Corporate-affiliated Research Institute of Academic–Industrial–Institutional Cooperation Improvement Business No. S7080008110. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.
supplementary crystallographic information
Comment
3-Azabicyclo[3.3.1]nonanes are an important class of heterocyclic compounds due to their broad spectrum of biological activities such as antibacterial, antifungal, analgesic, antogonistic, anti-inflammatory, local anesthetic and hypotensive activity, and their presence in a wide variety of naturally occurring diterpenoid/norditerpenoid alkaloids (Parthiban et al., 2009; Hardick et al., 1996; Jeyaraman & Avila, 1981). As stereochemistry plays a vital role in biological activities, it is essential to establish the stereochemistry of the synthesized bio-active molecules. Owing to the diverse possibilities in the conformation of the 3-azabicycle such as chair-chair (Parthiban et al., 2009b & 2010), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972), the present crystal study was undertaken to examine the stereochemistry of the synthesized 2,4-bis(4-chlorophenyl)-1-methyl-3-azabicyclo[3.3.1]nonan-9-one.
The crystallographic analysis of the title compound shows that the piperidine ring adopts a near ideal chair conformation. The total puckering amplitude QT is 0.587 (2)Å and the phase angle θ is 1.8 (2)° (Cremer & Pople, 1975). The smallest displacement asymmetry parameters being q2 and q3 are 0.022 (2)Å and 0.587 (2) Å, respectively (Nardelli, 1983). The deviation of ring atoms C8 and N1 from the C1/C2/C6/C7 plane by 0.677 (3)Å and -0.642 (3) Å, respectively.
The crystallographic analysis of the title compound suggests that the cyclohexane ring deviates from the ideal chair conformation. The total puckering amplitude QT is 0.573 (2)Å and the phase angle θ is 13.8 (2)° (Cremer & Pople, 1975). The smallest displacement asymmetry parameters being q2 and q3 are 0.134 (2)Å and 0.556 (2) Å, respectively (Nardelli, 1983). The deviation of ring atoms C4 and C8 from the C2/C3/C5/C6 plane by -0.554 (4)Å and 0.723 (2) Å, respectively.
According to the crystallogrphic analysis, the title compound, C21H21Cl2N O, exists in a twin-chair conformation with an equatorial orientation of the para-chlorophenyl groups on both sides of the secondary amino group.
In the title compound, the para-chlorophenyl rings are orientated at an angle of 36.58 (2)° with respect to one another, whereas in its non-methyl analog, 2,4-bis(4-chlorophenyl)-3- azabicyclo[3.3.1]nonan-9-one, the angle is 31.33 (3)°. The crystal structure of the title compound is stabilized by an intermolecular N—H···O interaction and a weak Cl—Cl interaction [Cl···Cl = 3.43 Å]. Though similar interactions observed in the non-methyl analog, the hydrogen bond geometries such as distance and angle of N1—H1···O1 [respectively, 3.1202Å and 160.2 (18)°] are comparatively lower than the title compound (Table 1).
In the title compound, the torsion angles of C1—C2—C8—C9 and C6—C7—C8—C16 are -178.85 (4)° and -179.35 (4)°, respectively (in the non-methyl analog of the title compound, they are -177.88 (4)° and -179.01 (4)°).
Experimental
The 1-methyl-2,4-bis(4-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one was synthesized by a modified Mannich reaction in one-pot, using para-chlorobenzaldehyde (0.1 mol, 14.06 g), 2-methylcyclohexanone (0.05 mol, 5.61 g/6.07 ml) and ammonium acetate (0.075 mol, 5.78 g) in 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate with stirring and continued at 303-308 K (30-35° C) till completion of the reaction. The progress was monitered by TLC. After all starting material was used up, the crude 3-azabicyclononan-9-one was separated by filtration and washed with a 1:5 ethanol-ether mixture, till the solid becomes colorless. Colourless blocks of (I) were obtained by slow evoporation from ethanol.
Refinement
The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å, methine C—H = 0.98 Å and methyl C—H = 0.96 Å . The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms atUiso(H) = 1.5Ueq(C)
Figures
Fig. 1.
The molecular structure of (I) with atoms represented with 30% probability ellipsoids.
Fig. 2.
Packing diagram for (I) showing the N—H···O and Cl···Cl interactions.
Crystal data
| C21H21Cl2NO | F(000) = 1568 |
| Mr = 374.29 | Dx = 1.312 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2yc | Cell parameters from 7359 reflections |
| a = 28.4515 (14) Å | θ = 2.5–27.3° |
| b = 7.0380 (3) Å | µ = 0.35 mm−1 |
| c = 21.2771 (12) Å | T = 298 K |
| β = 117.148 (4)° | Rectangular block, colourless |
| V = 3791.2 (3) Å3 | 0.58 × 0.42 × 0.18 mm |
| Z = 8 |
Data collection
| Bruker APEXII CCD diffractometer | 4661 independent reflections |
| Radiation source: fine-focus sealed tube | 3149 reflections with I > 2σ(I) |
| graphite | Rint = 0.033 |
| phi and ω scans | θmax = 28.2°, θmin = 2.2° |
| Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −36→37 |
| Tmin = 0.822, Tmax = 0.940 | k = −8→9 |
| 24985 measured reflections | l = −28→27 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0487P)2 + 3.2087P] where P = (Fo2 + 2Fc2)/3 |
| 4661 reflections | (Δ/σ)max = 0.001 |
| 231 parameters | Δρmax = 0.36 e Å−3 |
| 0 restraints | Δρmin = −0.43 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell esds are takeninto account individually in the estimation of esds in distances, anglesand torsion angles; correlations between esds in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.17656 (7) | 0.4818 (2) | 0.98420 (9) | 0.0357 (4) | |
| H1 | 0.2131 | 0.4889 | 0.9916 | 0.043* | |
| C2 | 0.15724 (7) | 0.6894 (2) | 0.98539 (10) | 0.0393 (4) | |
| C3 | 0.09894 (8) | 0.7068 (3) | 0.97191 (11) | 0.0501 (5) | |
| H3A | 0.0949 | 0.6354 | 1.0082 | 0.060* | |
| H3B | 0.0919 | 0.8391 | 0.9772 | 0.060* | |
| C4 | 0.05740 (8) | 0.6377 (3) | 0.90001 (12) | 0.0556 (5) | |
| H4A | 0.0228 | 0.6790 | 0.8929 | 0.067* | |
| H4B | 0.0575 | 0.4999 | 0.8993 | 0.067* | |
| C5 | 0.06735 (8) | 0.7126 (3) | 0.83970 (11) | 0.0559 (5) | |
| H5A | 0.0564 | 0.8446 | 0.8311 | 0.067* | |
| H5B | 0.0456 | 0.6416 | 0.7972 | 0.067* | |
| C6 | 0.12516 (8) | 0.6988 (3) | 0.85398 (10) | 0.0450 (4) | |
| H6 | 0.1292 | 0.7694 | 0.8171 | 0.054* | |
| C7 | 0.14595 (7) | 0.4935 (2) | 0.85650 (9) | 0.0395 (4) | |
| H7 | 0.1826 | 0.5010 | 0.8644 | 0.047* | |
| C8 | 0.15846 (7) | 0.7924 (2) | 0.92360 (10) | 0.0413 (4) | |
| C9 | 0.17610 (7) | 0.3620 (2) | 1.04297 (9) | 0.0376 (4) | |
| C10 | 0.22206 (8) | 0.3354 (3) | 1.10561 (10) | 0.0478 (5) | |
| H10 | 0.2537 | 0.3846 | 1.1099 | 0.057* | |
| C11 | 0.22168 (9) | 0.2369 (3) | 1.16196 (10) | 0.0537 (5) | |
| H11 | 0.2528 | 0.2196 | 1.2035 | 0.064* | |
| C12 | 0.17493 (9) | 0.1654 (3) | 1.15562 (10) | 0.0487 (5) | |
| C13 | 0.12899 (8) | 0.1845 (3) | 1.09386 (11) | 0.0504 (5) | |
| H13 | 0.0976 | 0.1325 | 1.0897 | 0.061* | |
| C14 | 0.12984 (7) | 0.2817 (3) | 1.03794 (10) | 0.0443 (4) | |
| H14 | 0.0988 | 0.2938 | 0.9960 | 0.053* | |
| C15 | 0.19367 (9) | 0.7841 (3) | 1.05543 (11) | 0.0562 (5) | |
| H15A | 0.2298 | 0.7607 | 1.0662 | 0.084* | |
| H15B | 0.1869 | 0.7328 | 1.0923 | 0.084* | |
| H15C | 0.1872 | 0.9186 | 1.0519 | 0.084* | |
| C16 | 0.11369 (7) | 0.3942 (3) | 0.78664 (10) | 0.0426 (4) | |
| C17 | 0.11848 (10) | 0.4523 (3) | 0.72767 (12) | 0.0616 (6) | |
| H17 | 0.1433 | 0.5445 | 0.7324 | 0.074* | |
| C18 | 0.08692 (11) | 0.3752 (4) | 0.66173 (12) | 0.0692 (7) | |
| H18 | 0.0898 | 0.4179 | 0.6222 | 0.083* | |
| C19 | 0.05165 (8) | 0.2361 (3) | 0.65530 (10) | 0.0542 (5) | |
| C20 | 0.04760 (9) | 0.1701 (4) | 0.71289 (12) | 0.0633 (6) | |
| H20 | 0.0243 | 0.0719 | 0.7082 | 0.076* | |
| C21 | 0.07852 (9) | 0.2507 (3) | 0.77862 (11) | 0.0571 (5) | |
| H21 | 0.0754 | 0.2070 | 0.8178 | 0.068* | |
| Cl1 | 0.17372 (3) | 0.04670 (9) | 1.22681 (3) | 0.0770 (2) | |
| Cl2 | 0.01186 (2) | 0.13710 (11) | 0.57245 (3) | 0.0829 (2) | |
| N1 | 0.14499 (6) | 0.3905 (2) | 0.91547 (8) | 0.0379 (3) | |
| O1 | 0.18212 (6) | 0.94051 (19) | 0.92903 (8) | 0.0570 (4) | |
| H1A | 0.1580 (8) | 0.278 (3) | 0.9181 (11) | 0.050 (6)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0365 (9) | 0.0322 (8) | 0.0378 (9) | −0.0037 (7) | 0.0163 (7) | −0.0053 (7) |
| C2 | 0.0433 (10) | 0.0310 (8) | 0.0429 (10) | −0.0022 (7) | 0.0190 (8) | −0.0065 (7) |
| C3 | 0.0534 (11) | 0.0426 (10) | 0.0625 (13) | 0.0049 (9) | 0.0335 (10) | −0.0002 (9) |
| C4 | 0.0380 (10) | 0.0519 (12) | 0.0729 (15) | 0.0024 (9) | 0.0218 (10) | 0.0035 (10) |
| C5 | 0.0498 (11) | 0.0484 (11) | 0.0540 (12) | 0.0071 (9) | 0.0103 (10) | 0.0044 (10) |
| C6 | 0.0557 (11) | 0.0341 (9) | 0.0436 (10) | −0.0041 (8) | 0.0212 (9) | 0.0039 (8) |
| C7 | 0.0442 (10) | 0.0363 (9) | 0.0395 (9) | −0.0073 (7) | 0.0204 (8) | −0.0038 (7) |
| C8 | 0.0413 (9) | 0.0289 (8) | 0.0556 (11) | 0.0005 (7) | 0.0239 (9) | −0.0021 (8) |
| C9 | 0.0425 (9) | 0.0316 (8) | 0.0358 (9) | −0.0020 (7) | 0.0153 (8) | −0.0045 (7) |
| C10 | 0.0442 (10) | 0.0454 (10) | 0.0447 (11) | −0.0050 (8) | 0.0123 (9) | −0.0015 (8) |
| C11 | 0.0578 (12) | 0.0486 (11) | 0.0391 (10) | −0.0002 (9) | 0.0086 (9) | 0.0007 (9) |
| C12 | 0.0700 (13) | 0.0355 (9) | 0.0435 (11) | 0.0047 (9) | 0.0286 (10) | 0.0030 (8) |
| C13 | 0.0528 (11) | 0.0438 (10) | 0.0589 (12) | −0.0018 (9) | 0.0292 (10) | 0.0052 (9) |
| C14 | 0.0428 (10) | 0.0417 (10) | 0.0425 (10) | −0.0033 (8) | 0.0143 (8) | 0.0022 (8) |
| C15 | 0.0680 (13) | 0.0418 (10) | 0.0543 (12) | −0.0053 (10) | 0.0240 (11) | −0.0157 (9) |
| C16 | 0.0498 (10) | 0.0395 (9) | 0.0400 (10) | −0.0036 (8) | 0.0219 (8) | −0.0034 (8) |
| C17 | 0.0870 (16) | 0.0565 (13) | 0.0506 (12) | −0.0205 (12) | 0.0395 (12) | −0.0065 (10) |
| C18 | 0.1041 (19) | 0.0679 (15) | 0.0417 (12) | −0.0056 (14) | 0.0385 (13) | −0.0044 (11) |
| C19 | 0.0510 (11) | 0.0640 (13) | 0.0403 (11) | 0.0042 (10) | 0.0146 (9) | −0.0157 (10) |
| C20 | 0.0584 (13) | 0.0781 (16) | 0.0545 (13) | −0.0249 (12) | 0.0268 (11) | −0.0228 (12) |
| C21 | 0.0655 (13) | 0.0656 (13) | 0.0428 (11) | −0.0235 (11) | 0.0270 (10) | −0.0106 (10) |
| Cl1 | 0.1104 (5) | 0.0655 (4) | 0.0658 (4) | 0.0146 (3) | 0.0494 (4) | 0.0240 (3) |
| Cl2 | 0.0677 (4) | 0.1129 (6) | 0.0483 (3) | 0.0084 (4) | 0.0094 (3) | −0.0332 (3) |
| N1 | 0.0474 (9) | 0.0284 (7) | 0.0358 (8) | −0.0031 (6) | 0.0170 (7) | −0.0040 (6) |
| O1 | 0.0632 (9) | 0.0357 (7) | 0.0738 (10) | −0.0121 (6) | 0.0328 (8) | −0.0032 (7) |
Geometric parameters (Å, °)
| C1—N1 | 1.469 (2) | C10—C11 | 1.389 (3) |
| C1—C9 | 1.513 (2) | C10—H10 | 0.9300 |
| C1—C2 | 1.565 (2) | C11—C12 | 1.370 (3) |
| C1—H1 | 0.9800 | C11—H11 | 0.9300 |
| C2—C8 | 1.516 (3) | C12—C13 | 1.373 (3) |
| C2—C15 | 1.527 (3) | C12—Cl1 | 1.744 (2) |
| C2—C3 | 1.554 (3) | C13—C14 | 1.382 (3) |
| C3—C4 | 1.524 (3) | C13—H13 | 0.9300 |
| C3—H3A | 0.9700 | C14—H14 | 0.9300 |
| C3—H3B | 0.9700 | C15—H15A | 0.9600 |
| C4—C5 | 1.529 (3) | C15—H15B | 0.9600 |
| C4—H4A | 0.9700 | C15—H15C | 0.9600 |
| C4—H4B | 0.9700 | C16—C21 | 1.377 (3) |
| C5—C6 | 1.533 (3) | C16—C17 | 1.384 (3) |
| C5—H5A | 0.9700 | C17—C18 | 1.386 (3) |
| C5—H5B | 0.9700 | C17—H17 | 0.9300 |
| C6—C8 | 1.498 (3) | C18—C19 | 1.363 (3) |
| C6—C7 | 1.553 (3) | C18—H18 | 0.9300 |
| C6—H6 | 0.9800 | C19—C20 | 1.364 (3) |
| C7—N1 | 1.460 (2) | C19—Cl2 | 1.747 (2) |
| C7—C16 | 1.515 (2) | C20—C21 | 1.389 (3) |
| C7—H7 | 0.9800 | C20—H20 | 0.9300 |
| C8—O1 | 1.217 (2) | C21—H21 | 0.9300 |
| C9—C10 | 1.389 (3) | N1—H1A | 0.87 (2) |
| C9—C14 | 1.391 (3) | ||
| N1—C1—C9 | 110.30 (13) | C10—C9—C14 | 117.55 (17) |
| N1—C1—C2 | 111.38 (14) | C10—C9—C1 | 120.56 (16) |
| C9—C1—C2 | 111.78 (14) | C14—C9—C1 | 121.83 (16) |
| N1—C1—H1 | 107.7 | C11—C10—C9 | 121.37 (18) |
| C9—C1—H1 | 107.7 | C11—C10—H10 | 119.3 |
| C2—C1—H1 | 107.7 | C9—C10—H10 | 119.3 |
| C8—C2—C15 | 111.32 (15) | C12—C11—C10 | 119.18 (18) |
| C8—C2—C3 | 104.31 (15) | C12—C11—H11 | 120.4 |
| C15—C2—C3 | 109.74 (16) | C10—C11—H11 | 120.4 |
| C8—C2—C1 | 106.57 (14) | C11—C12—C13 | 121.07 (18) |
| C15—C2—C1 | 109.68 (15) | C11—C12—Cl1 | 119.56 (16) |
| C3—C2—C1 | 115.08 (14) | C13—C12—Cl1 | 119.36 (16) |
| C4—C3—C2 | 115.70 (16) | C12—C13—C14 | 119.27 (19) |
| C4—C3—H3A | 108.4 | C12—C13—H13 | 120.4 |
| C2—C3—H3A | 108.4 | C14—C13—H13 | 120.4 |
| C4—C3—H3B | 108.4 | C13—C14—C9 | 121.50 (18) |
| C2—C3—H3B | 108.4 | C13—C14—H14 | 119.3 |
| H3A—C3—H3B | 107.4 | C9—C14—H14 | 119.3 |
| C3—C4—C5 | 112.12 (17) | C2—C15—H15A | 109.5 |
| C3—C4—H4A | 109.2 | C2—C15—H15B | 109.5 |
| C5—C4—H4A | 109.2 | H15A—C15—H15B | 109.5 |
| C3—C4—H4B | 109.2 | C2—C15—H15C | 109.5 |
| C5—C4—H4B | 109.2 | H15A—C15—H15C | 109.5 |
| H4A—C4—H4B | 107.9 | H15B—C15—H15C | 109.5 |
| C4—C5—C6 | 113.87 (16) | C21—C16—C17 | 118.09 (18) |
| C4—C5—H5A | 108.8 | C21—C16—C7 | 122.73 (17) |
| C6—C5—H5A | 108.8 | C17—C16—C7 | 119.16 (17) |
| C4—C5—H5B | 108.8 | C16—C17—C18 | 121.1 (2) |
| C6—C5—H5B | 108.8 | C16—C17—H17 | 119.5 |
| H5A—C5—H5B | 107.7 | C18—C17—H17 | 119.5 |
| C8—C6—C5 | 107.78 (16) | C19—C18—C17 | 119.4 (2) |
| C8—C6—C7 | 108.41 (15) | C19—C18—H18 | 120.3 |
| C5—C6—C7 | 115.04 (15) | C17—C18—H18 | 120.3 |
| C8—C6—H6 | 108.5 | C18—C19—C20 | 120.96 (19) |
| C5—C6—H6 | 108.5 | C18—C19—Cl2 | 119.73 (18) |
| C7—C6—H6 | 108.5 | C20—C19—Cl2 | 119.29 (18) |
| N1—C7—C16 | 111.94 (14) | C19—C20—C21 | 119.4 (2) |
| N1—C7—C6 | 109.61 (15) | C19—C20—H20 | 120.3 |
| C16—C7—C6 | 110.16 (15) | C21—C20—H20 | 120.3 |
| N1—C7—H7 | 108.3 | C16—C21—C20 | 121.0 (2) |
| C16—C7—H7 | 108.3 | C16—C21—H21 | 119.5 |
| C6—C7—H7 | 108.3 | C20—C21—H21 | 119.5 |
| O1—C8—C6 | 122.90 (18) | C7—N1—C1 | 113.28 (13) |
| O1—C8—C2 | 123.91 (18) | C7—N1—H1A | 109.6 (13) |
| C6—C8—C2 | 113.12 (14) | C1—N1—H1A | 106.6 (14) |
| N1—C1—C2—C8 | −54.97 (18) | C2—C1—C9—C14 | 79.6 (2) |
| C9—C1—C2—C8 | −178.85 (14) | C14—C9—C10—C11 | −1.7 (3) |
| N1—C1—C2—C15 | −175.58 (15) | C1—C9—C10—C11 | 175.53 (17) |
| C9—C1—C2—C15 | 60.54 (19) | C9—C10—C11—C12 | −0.3 (3) |
| N1—C1—C2—C3 | 60.1 (2) | C10—C11—C12—C13 | 2.1 (3) |
| C9—C1—C2—C3 | −63.8 (2) | C10—C11—C12—Cl1 | −178.40 (15) |
| C8—C2—C3—C4 | 54.2 (2) | C11—C12—C13—C14 | −1.7 (3) |
| C15—C2—C3—C4 | 173.54 (17) | Cl1—C12—C13—C14 | 178.79 (15) |
| C1—C2—C3—C4 | −62.2 (2) | C12—C13—C14—C9 | −0.5 (3) |
| C2—C3—C4—C5 | −46.7 (2) | C10—C9—C14—C13 | 2.1 (3) |
| C3—C4—C5—C6 | 44.8 (2) | C1—C9—C14—C13 | −175.09 (17) |
| C4—C5—C6—C8 | −52.9 (2) | N1—C7—C16—C21 | 13.9 (3) |
| C4—C5—C6—C7 | 68.2 (2) | C6—C7—C16—C21 | −108.3 (2) |
| C8—C6—C7—N1 | 57.08 (19) | N1—C7—C16—C17 | −167.77 (18) |
| C5—C6—C7—N1 | −63.6 (2) | C6—C7—C16—C17 | 70.0 (2) |
| C8—C6—C7—C16 | −179.33 (15) | C21—C16—C17—C18 | 3.2 (4) |
| C5—C6—C7—C16 | 60.0 (2) | C7—C16—C17—C18 | −175.2 (2) |
| C5—C6—C8—O1 | −111.7 (2) | C16—C17—C18—C19 | −1.9 (4) |
| C7—C6—C8—O1 | 123.23 (19) | C17—C18—C19—C20 | −1.0 (4) |
| C5—C6—C8—C2 | 65.39 (19) | C17—C18—C19—Cl2 | −179.72 (19) |
| C7—C6—C8—C2 | −59.72 (19) | C18—C19—C20—C21 | 2.4 (4) |
| C15—C2—C8—O1 | −5.7 (3) | Cl2—C19—C20—C21 | −178.89 (18) |
| C3—C2—C8—O1 | 112.63 (19) | C17—C16—C21—C20 | −1.8 (3) |
| C1—C2—C8—O1 | −125.20 (18) | C7—C16—C21—C20 | 176.5 (2) |
| C15—C2—C8—C6 | 177.33 (16) | C19—C20—C21—C16 | −0.9 (4) |
| C3—C2—C8—C6 | −64.39 (18) | C16—C7—N1—C1 | 179.17 (14) |
| C1—C2—C8—C6 | 57.77 (19) | C6—C7—N1—C1 | −58.29 (19) |
| N1—C1—C9—C10 | 137.96 (17) | C9—C1—N1—C7 | −176.97 (14) |
| C2—C1—C9—C10 | −97.55 (19) | C2—C1—N1—C7 | 58.32 (19) |
| N1—C1—C9—C14 | −44.9 (2) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···O1i | 0.87 (2) | 2.45 (2) | 3.309 (2) | 170.2 (18) |
Symmetry codes: (i) x, y−1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5322).
References
- Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2, XPREP and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem.39, 4860–4866. [DOI] [PubMed]
- Jeyaraman, R. & Avila, S. (1981). Chem. Rev.81, 149–174.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
- Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
- Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem.37, 2672–2676.
- Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett.19, 6981–6985. [DOI] [PubMed]
- Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2009b). Acta Cryst. E65, o3103. [DOI] [PMC free article] [PubMed]
- Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2010). Acta Cryst. E66, o194–o195. [DOI] [PMC free article] [PubMed]
- Parthiban, P., Ramkumar, V., Kim, M. S., Kabilan, S. & Jeong, Y. T. (2009a). Acta Cryst. E65, o609. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004095/hb5322sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004095/hb5322Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


