Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 27;66(Pt 3):m342. doi: 10.1107/S1600536810006872

catena-Poly[[[aqua­(5-nitro­benzene-1,2,3-tricarboxyl­ato-κO 1)nickel(II)]-di-μ-aqua-[diaqua­sodium]-di-μ-aqua] tetra­hydrate]

Zheng-De Tan a,*, Bing Yi a
PMCID: PMC2983560  PMID: 21580274

Abstract

In the title complex, {[NaNi(C9H2NO8)(H2O)7]·4H2O}n, the NiII atom has a distorted octa­hedral coordination, defined by five O atoms from five water mol­ecules and one O atom from one 5-nitro­benzene-1,2,3-tricarboxyl­ate ligand. The Na cation is coordinated by six water O atoms in an irregular trigonal-prismatic geometry. There are seven coordinated water mol­ecules in the asymmetic unit. The Ni and Na atoms are linked by water bridges, forming infinite chains, which are connected by strong O—H⋯O hydrogen bonds involving the coordinated and uncoordinated water mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Ding & Zhao (2010); Li et al. (2006).graphic file with name e-66-0m342-scheme1.jpg

Experimental

Crystal data

  • [NaNi(C9H2NO8)(H2O)7]·4H2O

  • M r = 531.99

  • Triclinic, Inline graphic

  • a = 6.7005 (6) Å

  • b = 13.161 (4) Å

  • c = 13.586 (4) Å

  • α = 63.415 (6)°

  • β = 79.076 (6)°

  • γ = 81.857 (6)°

  • V = 1049.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 296 K

  • 0.32 × 0.30 × 0.21 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005) T min = 0.733, T max = 0.812

  • 5287 measured reflections

  • 3702 independent reflections

  • 3115 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.172

  • S = 0.82

  • 3702 reflections

  • 280 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.02 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006872/si2240sup1.cif

e-66-0m342-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006872/si2240Isup2.hkl

e-66-0m342-Isup2.hkl (181.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8W—H16W⋯O6Wi 0.84 2.07 2.876 (4) 161
O8W—H15W⋯O2ii 0.84 2.06 2.835 (4) 153
O7W—H13W⋯O10Wiii 0.84 1.93 2.748 (4) 163
O7W—H14W⋯O1ii 0.84 1.90 2.731 (4) 172
O10W—H20W⋯O6 0.84 1.92 2.735 (5) 165
O10W—H19W⋯O9W 0.84 2.01 2.813 (4) 160
O9W—H18W⋯O3iv 0.84 1.99 2.802 (4) 161
O9W—H17W⋯O4 0.84 1.89 2.734 (4) 176
O11W—H22W⋯O7W 0.84 1.85 2.676 (4) 168
O11W—H21W⋯O10Wv 0.84 1.95 2.784 (4) 173
O1W—H2W⋯O4vi 0.84 1.89 2.721 (3) 172
O1W—H1W⋯O9Wv 0.84 1.86 2.685 (4) 168
O3W—H6W⋯O8W 0.84 1.85 2.660 (4) 162
O3W—H5W⋯O2vi 0.84 1.97 2.783 (4) 162
O2W—H4W⋯O3vi 0.84 1.83 2.657 (3) 170
O2W—H3W⋯O4 0.84 2.00 2.826 (4) 168
O4W—H7W⋯O6 0.84 1.84 2.655 (4) 163
O4W—H8W⋯O7W 0.84 2.02 2.801 (4) 154
O6W—H11W⋯O8W 0.84 2.09 2.900 (5) 161
O6W—H12W⋯O1vii 0.84 2.11 2.919 (4) 160
O5W—H9W⋯O3vi 0.84 2.25 2.935 (4) 139
O5W—H10W⋯O2viii 0.84 2.18 2.913 (5) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

The authors acknowledge the Scientific Research Project of Hunan Department of Education (No. 09c259) for support of this work.

supplementary crystallographic information

Comment

It is well-known that carboxylate ligands play an important role in coordination chemistry. They usually adopt diverse binding modes as terminal monodentate, chelating to one metal center, bridging to two metal centers (Ding et al., 2010; Li et al., 2006). In the present paper, we synthesized a novel green complex {[NiNa(C9H2NO8)(H2O)7].4(H2O)}n based on 5-nitrobenzene-1,2,3-tricarboxylate ligand. It is isostructural to the copper compound reported by Ding & Zhao, (2010).

The coordination geometries of Ni and Na centers are very close to the values observed in the {[CuNa(C9H2NO8)(H2O)7].4(H2O)}n compound, and also the hydrogen bonds in both structures are very similar (Fig.1). The Ni and Na atoms are linked by water bridges, forming an infinite chain (Fig.2). They are arrayed by turns with the distance of 3.4258 (21)Å and 3.7373 (20)Å between Ni and Na. The chains are connected by strong O—H···O hydrogen bonds involving the coordinated and uncoordinated water molecules into a three-dimensional network (Table 1). In the {[CuNa(C9H2NO8)(H2O)7].4(H2O)}n compound, the six Cu—O bond lengths range between 2.028 (2) and 2.098 (3) Å. It is a rare case that all Cu—O distances are above 2.00 Å, which may be explained by the influence of the Na—O—Cu bridges. But in the title compound, the Ni—O bond lengths range between 2.032 (2) and 2.106 (3) Å and represent normal values.

Experimental

A mixture of 5-nitrobenzene-1,2,3-tricarboxylate ligand (0.1 mmol), Ni(NO3)2 (0.1 mmol) and H2O (20 ml) was treated with a solution of NaOH until the pH about 7-8. and left to stand at room temperature for about a few weeks,then the green crystals were obtained.

Refinement

Carbon bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Figures

Fig. 1.

Fig. 1.

A section of the structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids. [Symmetry codes: (i) x-1, y, z.]

Fig. 2.

Fig. 2.

The chain of the title compound along the b axis (the uncoordinated water molecules have been omitted for clarity).

Crystal data

[NaNi(C9H2NO8)(H2O)7]·4H2O Z = 2
Mr = 531.99 F(000) = 552
Triclinic, P1 Dx = 1.683 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.7005 (6) Å Cell parameters from 2858 reflections
b = 13.161 (4) Å θ = 3.1–28.2°
c = 13.586 (4) Å µ = 1.04 mm1
α = 63.415 (6)° T = 296 K
β = 79.076 (6)° Block, green
γ = 81.857 (6)° 0.32 × 0.30 × 0.21 mm
V = 1049.8 (4) Å3

Data collection

Bruker APEXII area-detector diffractometer 3702 independent reflections
Radiation source: fine-focus sealed tube 3115 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scan θmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2005) h = −8→7
Tmin = 0.733, Tmax = 0.812 k = −11→15
5287 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172 H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.162P)2 + 0.8519P] where P = (Fo2 + 2Fc2)/3
3702 reflections (Δ/σ)max = 0.001
280 parameters Δρmax = 0.85 e Å3
33 restraints Δρmin = −1.02 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9163 (6) 0.0491 (3) 0.7521 (3) 0.0269 (8)
C2 0.8515 (5) 0.1016 (3) 0.8336 (3) 0.0228 (7)
C3 0.7844 (6) 0.0308 (3) 0.9447 (3) 0.0252 (8)
H3 0.7885 −0.0476 0.9691 0.030*
C4 0.7123 (5) 0.0780 (3) 1.0174 (3) 0.0248 (8)
C5 0.7116 (5) 0.1939 (3) 0.9862 (3) 0.0252 (8)
H5 0.6619 0.2237 1.0372 0.030*
C6 0.7864 (5) 0.2642 (3) 0.8773 (3) 0.0232 (8)
C7 0.8516 (5) 0.2191 (3) 0.7993 (3) 0.0226 (8)
C8 0.9163 (6) 0.2966 (3) 0.6771 (3) 0.0232 (7)
C9 0.7955 (6) 0.3896 (3) 0.8445 (3) 0.0247 (8)
N1 0.6278 (5) 0.0040 (3) 1.1322 (2) 0.0304 (7)
Na1 0.4252 (3) 0.71871 (14) 0.62371 (12) 0.0367 (4)
Ni1 0.95998 (7) 0.61127 (4) 0.67564 (3) 0.0235 (2)
O1 1.0145 (5) −0.0455 (2) 0.7877 (2) 0.0384 (7)
O2 0.8649 (4) 0.1028 (2) 0.6566 (2) 0.0344 (7)
O3 1.0990 (4) 0.2896 (2) 0.6371 (2) 0.0292 (6)
O4 0.7775 (4) 0.3631 (2) 0.62481 (19) 0.0278 (6)
O5 0.9363 (4) 0.4410 (2) 0.7681 (2) 0.0252 (6)
O6 0.6652 (5) 0.4346 (2) 0.8957 (2) 0.0395 (7)
O7 0.5232 (5) 0.0489 (3) 1.1881 (2) 0.0468 (8)
O8 0.6619 (5) −0.0989 (2) 1.1654 (2) 0.0440 (8)
O5W 0.5203 (6) 0.8170 (3) 0.4318 (3) 0.0609 (10)
H10W 0.4216 0.8129 0.4041 0.091*
H9W 0.6299 0.8222 0.3885 0.091*
O6W 0.3273 (5) 0.8978 (3) 0.6356 (3) 0.0474 (8)
H12W 0.2531 0.9289 0.6730 0.071*
H11W 0.4516 0.9004 0.6361 0.071*
O4W 0.6914 (4) 0.6549 (2) 0.7614 (2) 0.0344 (6)
H8W 0.7288 0.6999 0.7818 0.052*
H7W 0.6762 0.5899 0.8144 0.052*
O2W 0.7733 (4) 0.5951 (2) 0.5785 (2) 0.0286 (6)
H3W 0.7918 0.5254 0.5944 0.043*
H4W 0.7993 0.6346 0.5096 0.043*
O3W 1.0007 (5) 0.7794 (2) 0.5696 (2) 0.0362 (7)
H5W 1.0372 0.8014 0.5009 0.054*
H6W 0.9399 0.8326 0.5838 0.054*
O1W 1.2328 (4) 0.5797 (2) 0.5931 (2) 0.0294 (6)
H1W 1.2943 0.5159 0.6247 0.044*
H2W 1.2408 0.5999 0.5245 0.044*
O11W 1.1438 (4) 0.6187 (2) 0.7811 (2) 0.0317 (6)
H21W 1.1856 0.5531 0.8238 0.048*
H22W 1.0735 0.6526 0.8170 0.048*
O9W 0.3769 (4) 0.3668 (2) 0.7147 (2) 0.0367 (7)
H17W 0.5013 0.3639 0.6899 0.055*
H18W 0.3103 0.3295 0.6970 0.055*
O10W 0.2681 (5) 0.3942 (3) 0.9122 (2) 0.0438 (8)
H19W 0.2749 0.3769 0.8592 0.066*
H20W 0.3833 0.4069 0.9185 0.066*
O7W 0.8872 (5) 0.7396 (3) 0.8714 (3) 0.0496 (8)
H14W 0.9288 0.8041 0.8520 0.074*
H13W 0.8565 0.7050 0.9407 0.074*
O8W 0.7517 (5) 0.9492 (3) 0.5860 (2) 0.0424 (7)
H15W 0.7651 0.9794 0.6271 0.064*
H16W 0.7585 0.9966 0.5189 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.029 (2) 0.0227 (18) 0.0295 (18) −0.0097 (16) −0.0020 (15) −0.0105 (15)
C2 0.0208 (18) 0.0251 (18) 0.0231 (16) −0.0018 (14) −0.0042 (14) −0.0103 (14)
C3 0.0242 (19) 0.0216 (17) 0.0278 (17) −0.0024 (15) −0.0073 (14) −0.0072 (15)
C4 0.0229 (19) 0.0274 (19) 0.0193 (16) −0.0061 (15) −0.0060 (14) −0.0035 (15)
C5 0.024 (2) 0.0290 (19) 0.0247 (17) −0.0032 (15) −0.0048 (14) −0.0123 (15)
C6 0.0212 (18) 0.0256 (18) 0.0238 (16) −0.0049 (15) −0.0054 (14) −0.0097 (15)
C7 0.0190 (18) 0.0250 (18) 0.0237 (17) −0.0026 (14) −0.0076 (14) −0.0083 (14)
C8 0.027 (2) 0.0215 (17) 0.0224 (16) −0.0049 (15) −0.0060 (14) −0.0086 (14)
C9 0.027 (2) 0.0268 (18) 0.0219 (16) −0.0035 (16) −0.0058 (15) −0.0102 (15)
N1 0.0286 (18) 0.0352 (19) 0.0218 (15) −0.0069 (15) −0.0034 (13) −0.0059 (14)
Na1 0.0375 (10) 0.0382 (9) 0.0305 (8) −0.0049 (7) −0.0042 (7) −0.0110 (7)
Ni1 0.0249 (3) 0.0215 (3) 0.0229 (3) −0.0038 (2) −0.0044 (2) −0.0076 (2)
O1 0.0469 (19) 0.0283 (14) 0.0402 (15) 0.0007 (13) −0.0059 (13) −0.0159 (13)
O2 0.0445 (18) 0.0354 (15) 0.0258 (13) −0.0081 (13) −0.0083 (12) −0.0128 (12)
O3 0.0239 (14) 0.0325 (14) 0.0257 (12) −0.0051 (11) −0.0023 (10) −0.0073 (11)
O4 0.0290 (15) 0.0288 (13) 0.0224 (12) −0.0009 (11) −0.0094 (10) −0.0062 (11)
O5 0.0265 (14) 0.0211 (12) 0.0263 (12) −0.0054 (10) −0.0020 (10) −0.0082 (10)
O6 0.0418 (18) 0.0303 (15) 0.0416 (16) −0.0056 (13) 0.0098 (13) −0.0165 (13)
O7 0.051 (2) 0.0521 (19) 0.0291 (14) −0.0078 (16) 0.0046 (14) −0.0131 (14)
O8 0.053 (2) 0.0287 (16) 0.0350 (15) −0.0074 (14) −0.0063 (14) 0.0010 (13)
O5W 0.054 (2) 0.068 (2) 0.0413 (17) 0.0225 (19) −0.0073 (15) −0.0142 (17)
O6W 0.0432 (19) 0.059 (2) 0.0490 (17) −0.0078 (16) −0.0051 (14) −0.0310 (16)
O4W 0.0354 (16) 0.0297 (14) 0.0360 (14) −0.0046 (12) −0.0022 (12) −0.0127 (12)
O2W 0.0330 (15) 0.0268 (13) 0.0237 (12) −0.0077 (11) −0.0051 (10) −0.0068 (11)
O3W 0.0505 (19) 0.0242 (13) 0.0279 (13) −0.0034 (12) −0.0011 (12) −0.0073 (11)
O1W 0.0297 (15) 0.0306 (14) 0.0255 (12) −0.0022 (11) −0.0057 (11) −0.0093 (11)
O11W 0.0368 (16) 0.0323 (14) 0.0285 (13) −0.0041 (12) −0.0066 (11) −0.0142 (11)
O9W 0.0270 (15) 0.0408 (16) 0.0450 (16) 0.0012 (13) −0.0077 (12) −0.0208 (14)
O10W 0.0432 (19) 0.0519 (18) 0.0344 (15) −0.0023 (15) −0.0077 (13) −0.0164 (14)
O7W 0.074 (2) 0.0348 (16) 0.0421 (16) −0.0121 (16) 0.0063 (16) −0.0217 (14)
O8W 0.051 (2) 0.0383 (16) 0.0436 (16) −0.0027 (14) −0.0094 (14) −0.0216 (14)

Geometric parameters (Å, °)

C1—O1 1.251 (5) Ni1—O1W 2.048 (3)
C1—O2 1.257 (4) Ni1—O3W 2.053 (3)
C1—C2 1.520 (5) Ni1—O2W 2.074 (3)
C2—C3 1.397 (5) Ni1—O11W 2.100 (3)
C2—C7 1.402 (5) Ni1—O4W 2.106 (3)
C3—C4 1.371 (5) Ni1—Na1ii 3.4258 (18)
C3—H3 0.9300 O5W—H10W 0.8400
C4—C5 1.387 (5) O5W—H9W 0.8400
C4—N1 1.471 (4) O6W—H12W 0.8400
C5—C6 1.386 (5) O6W—H11W 0.8400
C5—H5 0.9300 O4W—H8W 0.8400
C6—C7 1.407 (5) O4W—H7W 0.8400
C6—C9 1.512 (5) O2W—H3W 0.8400
C7—C8 1.523 (5) O2W—H4W 0.8400
C8—O3 1.250 (4) O3W—Na1ii 2.982 (3)
C8—O4 1.265 (4) O3W—H5W 0.8400
C9—O6 1.261 (5) O3W—H6W 0.8400
C9—O5 1.268 (4) O1W—Na1ii 2.595 (3)
N1—O8 1.222 (4) O1W—H1W 0.8400
N1—O7 1.225 (5) O1W—H2W 0.8400
Na1—O5W 2.337 (4) O11W—Na1ii 2.553 (3)
Na1—O6W 2.424 (4) O11W—H21W 0.8400
Na1—O11Wi 2.553 (3) O11W—H22W 0.8400
Na1—O1Wi 2.595 (3) O9W—H17W 0.8401
Na1—O4W 2.611 (3) O9W—H18W 0.8400
Na1—O2W 2.782 (3) O10W—H19W 0.8400
Na1—O3Wi 2.982 (3) O10W—H20W 0.8401
Na1—Ni1i 3.4258 (18) O7W—H14W 0.8400
Na1—H10W 2.6736 O7W—H13W 0.8400
Na1—H11W 2.5038 O8W—H15W 0.8400
Ni1—O5 2.032 (2) O8W—H16W 0.8400
O1—C1—O2 126.1 (4) O1Wi—Na1—H11W 153.1
O1—C1—C2 116.1 (3) O4W—Na1—H11W 78.9
O2—C1—C2 117.8 (3) O2W—Na1—H11W 120.7
C3—C2—C7 119.5 (3) O3Wi—Na1—H11W 93.9
C3—C2—C1 118.8 (3) Ni1i—Na1—H11W 120.3
C7—C2—C1 121.7 (3) H10W—Na1—H11W 96.2
C4—C3—C2 119.4 (3) O5—Ni1—O1W 89.70 (11)
C4—C3—H3 120.3 O5—Ni1—O3W 174.16 (10)
C2—C3—H3 120.3 O1W—Ni1—O3W 85.19 (11)
C3—C4—C5 122.4 (3) O5—Ni1—O2W 85.04 (10)
C3—C4—N1 119.1 (3) O1W—Ni1—O2W 97.31 (10)
C5—C4—N1 118.5 (3) O3W—Ni1—O2W 92.77 (11)
C6—C5—C4 118.6 (3) O5—Ni1—O11W 91.88 (10)
C6—C5—H5 120.7 O1W—Ni1—O11W 83.66 (10)
C4—C5—H5 120.7 O3W—Ni1—O11W 90.39 (11)
C5—C6—C7 120.3 (3) O2W—Ni1—O11W 176.77 (10)
C5—C6—C9 118.7 (3) O5—Ni1—O4W 93.85 (11)
C7—C6—C9 121.0 (3) O1W—Ni1—O4W 175.04 (11)
C2—C7—C6 119.6 (3) O3W—Ni1—O4W 91.42 (11)
C2—C7—C8 119.3 (3) O2W—Ni1—O4W 86.46 (11)
C6—C7—C8 121.0 (3) O11W—Ni1—O4W 92.76 (11)
O3—C8—O4 125.7 (3) O5—Ni1—Na1ii 118.34 (8)
O3—C8—C7 118.2 (3) O1W—Ni1—Na1ii 49.05 (8)
O4—C8—C7 116.1 (3) O3W—Ni1—Na1ii 59.89 (9)
O6—C9—O5 125.0 (3) O2W—Ni1—Na1ii 134.65 (8)
O6—C9—C6 117.9 (3) O11W—Ni1—Na1ii 47.99 (8)
O5—C9—C6 117.1 (3) O4W—Ni1—Na1ii 126.02 (9)
O8—N1—O7 123.8 (3) C9—O5—Ni1 128.6 (2)
O8—N1—C4 118.2 (3) Na1—O5W—H10W 104.5
O7—N1—C4 118.0 (3) Na1—O5W—H9W 134.6
O5W—Na1—O6W 90.09 (13) H10W—O5W—H9W 111.2
O5W—Na1—O11Wi 146.60 (14) Na1—O6W—H12W 144.4
O6W—Na1—O11Wi 91.75 (11) Na1—O6W—H11W 85.6
O5W—Na1—O1Wi 90.25 (13) H12W—O6W—H11W 111.8
O6W—Na1—O1Wi 133.78 (12) Ni1—O4W—Na1 104.27 (11)
O11Wi—Na1—O1Wi 65.02 (9) Ni1—O4W—H8W 103.8
O5W—Na1—O4W 121.28 (13) Na1—O4W—H8W 122.0
O6W—Na1—O4W 94.00 (11) Ni1—O4W—H7W 96.9
O11Wi—Na1—O4W 91.85 (10) Na1—O4W—H7W 114.2
O1Wi—Na1—O4W 124.33 (10) H8W—O4W—H7W 111.5
O5W—Na1—O2W 75.95 (10) Ni1—O2W—Na1 99.62 (11)
O6W—Na1—O2W 139.81 (12) Ni1—O2W—H3W 101.7
O11Wi—Na1—O2W 120.48 (10) Na1—O2W—H3W 129.8
O1Wi—Na1—O2W 84.54 (9) Ni1—O2W—H4W 116.3
O4W—Na1—O2W 64.05 (9) Na1—O2W—H4W 99.2
O5W—Na1—O3Wi 84.67 (11) H3W—O2W—H4W 110.8
O6W—Na1—O3Wi 74.83 (10) Ni1—O3W—Na1ii 83.57 (10)
O11Wi—Na1—O3Wi 63.77 (9) Ni1—O3W—H5W 122.1
O1Wi—Na1—O3Wi 59.21 (9) Na1ii—O3W—H5W 93.9
O4W—Na1—O3Wi 152.24 (10) Ni1—O3W—H6W 122.3
O2W—Na1—O3Wi 138.79 (10) Na1ii—O3W—H6W 114.5
O5W—Na1—Ni1i 109.49 (12) H5W—O3W—H6W 111.2
O6W—Na1—Ni1i 101.28 (9) Ni1—O1W—Na1ii 94.35 (11)
O11Wi—Na1—Ni1i 37.68 (6) Ni1—O1W—H1W 117.0
O1Wi—Na1—Ni1i 36.60 (6) Na1ii—O1W—H1W 104.3
O4W—Na1—Ni1i 126.75 (8) Ni1—O1W—H2W 117.9
O2W—Na1—Ni1i 118.89 (8) Na1ii—O1W—H2W 108.9
O3Wi—Na1—Ni1i 36.54 (6) H1W—O1W—H2W 111.6
O5W—Na1—H10W 17.7 Ni1—O11W—Na1ii 94.33 (10)
O6W—Na1—H10W 93.1 Ni1—O11W—H21W 110.8
O11Wi—Na1—H10W 129.0 Na1ii—O11W—H21W 110.9
O1Wi—Na1—H10W 75.6 Ni1—O11W—H22W 107.3
O4W—Na1—H10W 138.2 Na1ii—O11W—H22W 120.5
O2W—Na1—H10W 84.7 H21W—O11W—H22W 111.5
O3Wi—Na1—H10W 68.8 H17W—O9W—H18W 111.5
Ni1i—Na1—H10W 91.8 H19W—O10W—H20W 111.2
O5W—Na1—H11W 87.5 H14W—O7W—H13W 111.9
O6W—Na1—H11W 19.5 H15W—O8W—H16W 111.9
O11Wi—Na1—H11W 104.4

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O8W—H16W···O6Wiii 0.84 2.07 2.876 (4) 161
O8W—H15W···O2iv 0.84 2.06 2.835 (4) 153
O7W—H13W···O10Wv 0.84 1.93 2.748 (4) 163
O7W—H14W···O1iv 0.84 1.90 2.731 (4) 172
O10W—H20W···O6 0.84 1.92 2.735 (5) 165
O10W—H19W···O9W 0.84 2.01 2.813 (4) 160
O9W—H18W···O3i 0.84 1.99 2.802 (4) 161
O9W—H17W···O4 0.84 1.89 2.734 (4) 176
O11W—H22W···O7W 0.84 1.85 2.676 (4) 168
O11W—H21W···O10Wii 0.84 1.95 2.784 (4) 173
O1W—H2W···O4vi 0.84 1.89 2.721 (3) 172
O1W—H1W···O9Wii 0.84 1.86 2.685 (4) 168
O3W—H6W···O8W 0.84 1.85 2.660 (4) 162
O3W—H5W···O2vi 0.84 1.97 2.783 (4) 162
O2W—H4W···O3vi 0.84 1.83 2.657 (3) 170
O2W—H3W···O4 0.84 2.00 2.826 (4) 168
O4W—H7W···O6 0.84 1.84 2.655 (4) 163
O4W—H8W···O7W 0.84 2.02 2.801 (4) 154
O6W—H11W···O8W 0.84 2.09 2.900 (5) 161
O6W—H12W···O1vii 0.84 2.11 2.919 (4) 160
O5W—H9W···O3vi 0.84 2.25 2.935 (4) 139
O5W—H10W···O2viii 0.84 2.18 2.913 (5) 145

Symmetry codes: (iii) −x+1, −y+2, −z+1; (iv) x, y+1, z; (v) −x+1, −y+1, −z+2; (i) x−1, y, z; (ii) x+1, y, z; (vi) −x+2, −y+1, −z+1; (vii) x−1, y+1, z; (viii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2240).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ding, Y.-J. & Zhao, C.-X. (2010). Acta Cryst. E66, m132–m133. [DOI] [PMC free article] [PubMed]
  3. Li, Z.-F., Wang, C.-X., Wang, P. & Zhang, Q.-H. (2006). Acta Cryst. E62, m914–m915.
  4. Sheldrick, G. M. (2005). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810006872/si2240sup1.cif

e-66-0m342-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006872/si2240Isup2.hkl

e-66-0m342-Isup2.hkl (181.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES