Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 27;66(Pt 3):o710. doi: 10.1107/S1600536810006744

8H-Chromeno[2′,3′:4,5]imidazo[2,1-a]isoquinoline

Saifidin Safarov a,*, Leonid G Voskressensky b, Oksana V Bizhko b, Larisa N Kulikova b, Victor N Khrustalev c
PMCID: PMC2983581  PMID: 21580448

Abstract

The title compound, C18H12N2O, comprises two aromatic fragments, viz., imidazo[2,1-a]isoquinoline and benzene, linked by oxygen and methyl­ene bridges. Despite the absence of a common conjugative system within the mol­ecule, it adopts an essentially planar conformation with an r.m.s. deviation of 0. 036 Å. In the crystal, due to this structure, mol­ecules form stacks along the b axis by π⋯π stacking inter­actions, with shortest C⋯C distances in the range 3.340 (4)–3.510 (4) Å. The mol­ecules are bound by inter­molecular C—H⋯O inter­actions within the stacks and C—H⋯π inter­actions between the stacks.

Related literature

For background to cascade reactions, see: Bunce (1995); Tietze (1996); Parsons et al. (1996); Nicolaou et al. (2003, 2006); Wasilke et al. (2005); Pellissier (2006a ,b ); Parenty & Cronin (2008). For related compounds, see: Yadav et al. (2007); Kianmehr et al. (2009); Surpur et al. (2009).graphic file with name e-66-0o710-scheme1.jpg

Experimental

Crystal data

  • C18H12N2O

  • M r = 272.30

  • Monoclinic, Inline graphic

  • a = 11.9717 (15) Å

  • b = 6.0580 (8) Å

  • c = 17.948 (2) Å

  • β = 102.682 (3)°

  • V = 1269.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.12 × 0.02 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.965, T max = 0.998

  • 12413 measured reflections

  • 2734 independent reflections

  • 1821 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.182

  • S = 1.00

  • 2734 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006744/rk2193sup1.cif

e-66-0o710-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006744/rk2193Isup2.hkl

e-66-0o710-Isup2.hkl (134.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the O13,C12A,C8A,C8,C7A,C13A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O13i 0.99 2.71 3.637 (4) 157
C8—H8BCgii 0.99 2.63 3.547 (3) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Cascade reactions have emerged as powerful tools to allow rapidly increasing molecular complexity (Tietze, 1996; Parsons et al., 1996; Wasilke et al., 2005). These processes avoid the excessive handling and isolation of synthetic intermediates generating less waste and thus contribute towards "Green Chemistry". Cascade reactions, in which multiple reactions are combined into one synthetic operation, have been reported extensively in the literature and have already become "state–of–the–art" in synthetic organic chemistry (Bunce, 1995; Nicolaou et al., 2003, 2006; Pellissier, 2006a, 2006b; Parenty & Cronin, 2008).

The title compound I, C18H12N2O, is the product of a novel cascade reaction (Fig. 1) (Yadav et al., 2007; Kianmehr et al., 2009; Surpur et al., 2009) starting with the Kroehnke condensation of salicylic aldehyde and isoquinolinium salt to afford the styryl derivative A, which forms zwitterion B upon thermally–induced cleavage of acetyl chloride. Then zwitterion B undergoes two consecutive nucleophilic cyclizations followed by [1,4]–proton shift to give the pentacycle I (Fig. 2). The single crystals of I suitable for X–ray diffraction analysis were obtained by slow crystallization from ethyl acetate solution.

Compound I comprises two aromatic fragments - imidazo[2,1–a]isoquinoline and benzene linked by the oxygen and methylene bridges (Fig. 3). Despite the absence of common conjugative system within the molecule, it adopts practically planar conformation, with the r.m.s. deviation of 0.036Å. In the crystal, due to this structure, molecules form stacks along the b axis by the stacking interactions [C1···C7Ai = 3.340 (4)Å, C2···C8i = 3.510Å, C2···C8Ai = 3.451 (4)Å, C3···C12Ai = 3.394 (4)Å, C13A···C14Bi = 3.496 (4)Å and C14A···C14Ai = 3.426 (4)Å] (Fig. 4). The molecules are also bound by the C8—H8A···O13ii [H···O = 2.71Å, C—H···O 157°] interactions within the stacks and the C8—H8B···π (C12Aiii—O13iii—C13Aiii) [H···C12A = 2.94Å, H···O13 = 2.80Å and H···C13A 2.81Å, C—H···O 175°] interactions between the stacks. Symmetry codes: (i) 1-x, 1-y, z; (ii) x, 1+y, z; (iii) 1.5-x, 0.5+y, 0.5-z.

Experimental

A water solution of K2CO3 (0.4 g in 1 ml of H2O) was added to a solution of freshly distilled salicylic aldehyde (0.18 g, 1.47 mmol) and 2–(cyanomethyl)isoquinolinium chloride (0.30 g, 1.47 mmol) in H2O (5 ml). The resulting mixture was stirred for 3 hours at 293 K. The precipitate formed was filtered–off and recrystallized from ethyl acetate / hexane mixture to give product I as colourless needles. Yield is 32%. M.p. = 444 K. Found (%): C 79.13, H4.58, N 10.53. Calcd. for C18H12N2O (%): C79.39, H 4.44, N 10.29. 1H NMR (400 MHz, CDCl3): δ = 4.25 (s, 2H, CH2), 6.98 (dd, 1H, H12, J11,12 = 8.1, J10,12 = 1.2), 7.01 (d, 1H, H5, J5,6 = 7.5), 7.07–7.12 (m, 2H, H9+H10), 7.16 (dd, 1H, H11, J11,12 = 8.1, J9,11 = 1.2), 7.40–7.45 (m, 1H, H3), 7.48–7.53 (m, 1H, H2), 7.55 (d, 1H, H4, J3,4 = 7.5), 7.58 (d, 1H, H6, J5,6 = 7.5), 8.47(d, 1H, H1, J1,2 = 8.1). 13C NMR (100 MHz, CDCl3): δ = 23.2 (CH2), 112.9 (CH), 117.8 (Cq), 118.1 (Cq), 118.3 (CH), 120.3 (CH), 123.1 (CH), 123.2 (Cq), 123.5 (CH), 127.1 (CH), 127.8 (CH), 128.2 (2xCH), 129.1 (Cq), 130.3 (CH), 138.0 (Cq), 152.0 (Cq), 161.1 (Cq). Mass spectrum (EI MS), m/z (Ir, %): 272 (70) [M+.], 136 (11), 128 (10).

Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

Synthesis of compound I.

Fig. 2.

Fig. 2.

The plausible formation mechanism of I.

Fig. 3.

Fig. 3.

Molecular structure of Iwith the atom numbering scheme. Displacement ellipsoids are shown atthe 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 4.

Fig. 4.

Crystal packing of I viewed down the b axis. Dashed lines indicate the C—H···O and C—H···π interactions.

Crystal data

C18H12N2O F(000) = 568
Mr = 272.30 Dx = 1.424 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1700 reflections
a = 11.9717 (15) Å θ = 2.3–26.3°
b = 6.0580 (8) Å µ = 0.09 mm1
c = 17.948 (2) Å T = 100 K
β = 102.682 (3)° Needle, colourless
V = 1269.9 (3) Å3 0.40 × 0.12 × 0.02 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2734 independent reflections
Radiation source: fine–focus sealed tube 1821 reflections with I > 2σ(I)
graphite Rint = 0.056
φ and ω scans θmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −15→15
Tmin = 0.965, Tmax = 0.998 k = −7→7
12413 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.077P)2 + 1.7P] where P = (Fo2 + 2Fc2)/3
2734 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6165 (2) 0.1766 (5) −0.07577 (16) 0.0290 (6)
H1 0.5719 0.0665 −0.0583 0.035*
C2 0.6436 (2) 0.1563 (5) −0.14599 (17) 0.0349 (7)
H2 0.6185 0.0302 −0.1766 0.042*
C3 0.7068 (2) 0.3167 (6) −0.17271 (17) 0.0372 (7)
H3 0.7237 0.3008 −0.2217 0.045*
C4 0.7447 (2) 0.4957 (5) −0.12988 (17) 0.0349 (7)
H4 0.7885 0.6033 −0.1494 0.042*
C4A 0.7213 (2) 0.5276 (5) −0.05755 (16) 0.0309 (6)
C5 0.7591 (2) 0.7182 (5) −0.01180 (16) 0.0332 (7)
H5 0.8052 0.8253 −0.0295 0.040*
C6 0.7306 (2) 0.7478 (5) 0.05559 (16) 0.0310 (6)
H6 0.7538 0.8777 0.0845 0.037*
N7 0.66701 (19) 0.5884 (4) 0.08314 (13) 0.0269 (5)
C7A 0.6332 (2) 0.5823 (4) 0.15238 (15) 0.0251 (6)
C8 0.6498 (2) 0.7432 (5) 0.21381 (16) 0.0326 (7)
H8A 0.6141 0.8858 0.1950 0.039*
H8B 0.7325 0.7676 0.2349 0.039*
C8A 0.5921 (2) 0.6458 (5) 0.27520 (16) 0.0301 (6)
C9 0.5902 (2) 0.7644 (5) 0.34032 (18) 0.0347 (7)
H9 0.6261 0.9050 0.3466 0.042*
C10 0.5385 (3) 0.6886 (5) 0.39654 (18) 0.0382 (7)
H10 0.5390 0.7752 0.4407 0.046*
C11 0.4851 (2) 0.4809 (6) 0.38774 (18) 0.0387 (8)
H11 0.4483 0.4261 0.4258 0.046*
C12 0.4864 (2) 0.3558 (5) 0.32275 (16) 0.0304 (6)
H12 0.4516 0.2141 0.3163 0.037*
C12A 0.5393 (2) 0.4417 (5) 0.26757 (15) 0.0264 (6)
O13 0.53167 (16) 0.2981 (3) 0.20489 (11) 0.0319 (5)
C13A 0.5786 (2) 0.3795 (5) 0.14856 (15) 0.0297 (6)
N14 0.57698 (19) 0.2676 (4) 0.08385 (13) 0.0297 (5)
C14A 0.6311 (2) 0.3960 (5) 0.04379 (16) 0.0291 (6)
C14B 0.6554 (2) 0.3618 (5) −0.02983 (14) 0.0278 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0230 (13) 0.0287 (15) 0.0340 (15) −0.0002 (11) 0.0032 (11) 0.0065 (12)
C2 0.0304 (15) 0.0366 (16) 0.0339 (16) 0.0086 (13) −0.0012 (12) −0.0084 (13)
C3 0.0285 (15) 0.056 (2) 0.0270 (15) 0.0063 (14) 0.0051 (12) 0.0020 (14)
C4 0.0300 (15) 0.0386 (17) 0.0360 (17) 0.0009 (13) 0.0072 (12) 0.0117 (13)
C4A 0.0256 (13) 0.0281 (15) 0.0354 (16) 0.0053 (11) −0.0012 (12) −0.0019 (12)
C5 0.0312 (15) 0.0325 (15) 0.0360 (16) −0.0054 (12) 0.0080 (12) 0.0073 (13)
C6 0.0333 (15) 0.0264 (14) 0.0335 (15) 0.0002 (12) 0.0078 (12) 0.0053 (12)
N7 0.0261 (11) 0.0246 (12) 0.0282 (12) 0.0025 (9) 0.0021 (9) 0.0000 (10)
C7A 0.0187 (12) 0.0265 (14) 0.0297 (14) −0.0019 (10) 0.0045 (10) 0.0056 (11)
C8 0.0258 (14) 0.0372 (16) 0.0350 (16) −0.0040 (12) 0.0072 (12) −0.0058 (13)
C8A 0.0209 (13) 0.0325 (15) 0.0350 (15) 0.0021 (11) 0.0020 (11) 0.0023 (13)
C9 0.0278 (14) 0.0313 (15) 0.0440 (17) 0.0019 (12) 0.0055 (12) 0.0008 (13)
C10 0.0365 (16) 0.0407 (18) 0.0362 (16) 0.0091 (14) 0.0054 (13) −0.0132 (14)
C11 0.0304 (15) 0.051 (2) 0.0388 (17) 0.0089 (14) 0.0175 (13) 0.0082 (15)
C12 0.0239 (13) 0.0275 (14) 0.0397 (16) 0.0001 (11) 0.0067 (12) 0.0026 (13)
C12A 0.0214 (12) 0.0294 (14) 0.0283 (14) 0.0068 (11) 0.0055 (11) −0.0016 (11)
O13 0.0344 (11) 0.0285 (10) 0.0352 (11) −0.0058 (8) 0.0130 (9) −0.0022 (9)
C13A 0.0256 (14) 0.0345 (15) 0.0290 (14) 0.0048 (12) 0.0059 (11) 0.0012 (12)
N14 0.0254 (11) 0.0327 (13) 0.0314 (13) 0.0016 (10) 0.0070 (9) 0.0015 (10)
C14A 0.0252 (13) 0.0257 (14) 0.0347 (15) 0.0004 (11) 0.0029 (11) −0.0018 (12)
C14B 0.0227 (13) 0.0376 (16) 0.0214 (13) 0.0105 (11) 0.0014 (10) 0.0021 (12)

Geometric parameters (Å, °)

C1—C2 1.374 (4) C8—C8A 1.540 (4)
C1—C14B 1.410 (4) C8—H8A 0.9900
C1—H1 0.9500 C8—H8B 0.9900
C2—C3 1.380 (5) C8A—C9 1.377 (4)
C2—H2 0.9500 C8A—C12A 1.382 (4)
C3—C4 1.349 (5) C9—C10 1.373 (4)
C3—H3 0.9500 C9—H9 0.9500
C4—C4A 1.400 (4) C10—C11 1.405 (5)
C4—H4 0.9500 C10—H10 0.9500
C4A—C5 1.432 (4) C11—C12 1.394 (4)
C4A—C14B 1.432 (4) C11—H11 0.9500
C5—C6 1.339 (4) C12—C12A 1.389 (4)
C5—H5 0.9500 C12—H12 0.9500
C6—N7 1.386 (4) C12A—O13 1.409 (3)
C6—H6 0.9500 O13—C13A 1.353 (3)
N7—C14A 1.382 (4) C13A—N14 1.341 (4)
N7—C7A 1.390 (4) N14—C14A 1.321 (4)
C7A—C13A 1.386 (4) C14A—C14B 1.429 (4)
C7A—C8 1.452 (4)
C2—C1—C14B 119.6 (3) C8A—C8—H8B 110.5
C2—C1—H1 120.2 H8A—C8—H8B 108.7
C14B—C1—H1 120.2 C9—C8A—C12A 117.3 (3)
C1—C2—C3 120.9 (3) C9—C8A—C8 120.1 (3)
C1—C2—H2 119.6 C12A—C8A—C8 122.6 (3)
C3—C2—H2 119.6 C10—C9—C8A 122.9 (3)
C4—C3—C2 120.6 (3) C10—C9—H9 118.5
C4—C3—H3 119.7 C8A—C9—H9 118.5
C2—C3—H3 119.7 C9—C10—C11 119.0 (3)
C3—C4—C4A 121.9 (3) C9—C10—H10 120.5
C3—C4—H4 119.0 C11—C10—H10 120.5
C4A—C4—H4 119.0 C12—C11—C10 119.5 (3)
C4—C4A—C5 122.7 (3) C12—C11—H11 120.2
C4—C4A—C14B 117.6 (3) C10—C11—H11 120.2
C5—C4A—C14B 119.7 (3) C12A—C12—C11 118.9 (3)
C6—C5—C4A 121.0 (3) C12A—C12—H12 120.5
C6—C5—H5 119.5 C11—C12—H12 120.5
C4A—C5—H5 119.5 C8A—C12A—C12 122.4 (3)
C5—C6—N7 119.9 (3) C8A—C12A—O13 125.4 (2)
C5—C6—H6 120.1 C12—C12A—O13 112.2 (2)
N7—C6—H6 120.1 C13A—O13—C12A 114.0 (2)
C14A—N7—C6 122.6 (2) N14—C13A—O13 122.2 (3)
C14A—N7—C7A 108.4 (2) N14—C13A—C7A 114.1 (2)
C6—N7—C7A 129.0 (2) O13—C13A—C7A 123.7 (2)
C13A—C7A—N7 101.9 (2) C14A—N14—C13A 104.9 (2)
C13A—C7A—C8 128.1 (2) N14—C14A—N7 110.7 (2)
N7—C7A—C8 130.0 (2) N14—C14A—C14B 129.9 (3)
C7A—C8—C8A 106.1 (2) N7—C14A—C14B 119.4 (3)
C7A—C8—H8A 110.5 C1—C14B—C14A 123.3 (3)
C8A—C8—H8A 110.5 C1—C14B—C4A 119.4 (2)
C7A—C8—H8B 110.5 C14A—C14B—C4A 117.3 (3)
C14B—C1—C2—C3 −1.1 (4) C11—C12—C12A—O13 −178.9 (2)
C1—C2—C3—C4 0.9 (4) C8A—C12A—O13—C13A −2.1 (4)
C2—C3—C4—C4A −0.5 (4) C12—C12A—O13—C13A 177.7 (2)
C3—C4—C4A—C5 −178.9 (3) C12A—O13—C13A—N14 −178.5 (2)
C3—C4—C4A—C14B 0.2 (4) C12A—O13—C13A—C7A 2.1 (4)
C4—C4A—C5—C6 176.9 (3) N7—C7A—C13A—N14 −0.3 (3)
C14B—C4A—C5—C6 −2.3 (4) C8—C7A—C13A—N14 180.0 (3)
C4A—C5—C6—N7 2.4 (4) N7—C7A—C13A—O13 179.1 (2)
C5—C6—N7—C14A 0.2 (4) C8—C7A—C13A—O13 −0.6 (4)
C5—C6—N7—C7A 176.8 (3) O13—C13A—N14—C14A −179.3 (2)
C14A—N7—C7A—C13A 0.3 (3) C7A—C13A—N14—C14A 0.1 (3)
C6—N7—C7A—C13A −176.7 (3) C13A—N14—C14A—N7 0.1 (3)
C14A—N7—C7A—C8 −179.9 (3) C13A—N14—C14A—C14B 179.9 (3)
C6—N7—C7A—C8 3.1 (5) C6—N7—C14A—N14 177.0 (2)
C13A—C7A—C8—C8A −1.0 (4) C7A—N7—C14A—N14 −0.3 (3)
N7—C7A—C8—C8A 179.3 (2) C6—N7—C14A—C14B −2.8 (4)
C7A—C8—C8A—C9 −177.9 (2) C7A—N7—C14A—C14B 179.9 (2)
C7A—C8—C8A—C12A 1.0 (4) C2—C1—C14B—C14A 179.9 (3)
C12A—C8A—C9—C10 −0.1 (4) C2—C1—C14B—C4A 0.8 (4)
C8—C8A—C9—C10 178.9 (3) N14—C14A—C14B—C1 3.9 (4)
C8A—C9—C10—C11 0.0 (4) N7—C14A—C14B—C1 −176.3 (2)
C9—C10—C11—C12 0.6 (4) N14—C14A—C14B—C4A −176.9 (3)
C10—C11—C12—C12A −1.0 (4) N7—C14A—C14B—C4A 2.8 (4)
C9—C8A—C12A—C12 −0.4 (4) C4—C4A—C14B—C1 −0.4 (4)
C8—C8A—C12A—C12 −179.3 (2) C5—C4A—C14B—C1 178.8 (2)
C9—C8A—C12A—O13 179.4 (2) C4—C4A—C14B—C14A −179.5 (2)
C8—C8A—C12A—O13 0.5 (4) C5—C4A—C14B—C14A −0.4 (4)
C11—C12—C12A—C8A 0.9 (4)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the O13,C12A,C8A,C8,C7A,C13A ring.
D—H···A D—H H···A D···A D—H···A
C8—H8A···O13i 0.99 2.71 3.637 (4) 157
C8—H8B···Cgii 0.99 2.63 3.547 (3) 154

Symmetry codes: (i) x, y+1, z; (ii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2193).

References

  1. Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bunce, R. A. (1995). Tetrahedron, 51, 13103–13159.
  4. Kianmehr, E., Faramarzi, R. & Estiri, H. (2009). Heterocycles, 78, 415–423.
  5. Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. (2006). Angew. Chem. Int. Ed.45, 7134–7186. [DOI] [PubMed]
  6. Nicolaou, K. C., Montagnon, T. & Snyder, S. A. (2003). Chem. Commun. pp. 551–564. [DOI] [PubMed]
  7. Parenty, A. D. C. & Cronin, L. (2008). Synthesis, pp. 1479–1485.
  8. Parsons, P. J., Penkett, C. S. & Shell, A. J. (1996). Chem. Rev.96, 195–206. [DOI] [PubMed]
  9. Pellissier, H. (2006a). Tetrahedron, 62, 1619–1665.
  10. Pellissier, H. (2006b). Tetrahedron, 62, 2143–2173.
  11. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Surpur, M. P., Kshirsagar, S. & Samant, S. D. (2009). Tetrahedron Lett.50, 719–722.
  14. Tietze, L. F. (1996). Chem. Rev.96, 115–136. [DOI] [PubMed]
  15. Wasilke, J.–C., Obrey, S. J., Baker, R. T. & Bazan, G. C. (2005). Chem. Rev.105, 1001–1020. [DOI] [PubMed]
  16. Yadav, J. S., Subba Reddy, B. V., Gupta, M. K., Prathap, I. & Pandey, S. K. (2007). Catal. Commun.8, 2208–2211.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006744/rk2193sup1.cif

e-66-0o710-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006744/rk2193Isup2.hkl

e-66-0o710-Isup2.hkl (134.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES