Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 6;66(Pt 3):o555. doi: 10.1107/S1600536810004241

1,5-Bis[(E)-1-(2-hydroxyphenyl)ethyl­idene]thiocarbonohydrazide mono­hydrate

Md Abu Affan a,, Dayang N A Chee a, Fasihuddin B Ahmad a, Edward R T Tiekink b,*
PMCID: PMC2983601  PMID: 21580324

Abstract

In the title compound, C17H18N4O2S·H2O, the thio­urea derivative is almost planar, with an r.m.s. deviation for the non-H atoms of 0.057 Å. The hydroxyl groups lie to the same side of the mol­ecule as the thione S atom, a conformation that allows the formation of intra­molecular O—H⋯S and O—H⋯N hydrogen bonds. In the crystal structure, the thio­urea and water mol­ecules self-assemble into a two-dimensional array by a combination of Owater—H⋯Ohydrox­yl, N—H⋯Owater and Owater—H⋯S hydrogen bonds and C—H⋯π inter­actions.

Related literature

For background and recent studies of the biological activity of organotin compounds, see: Gielen & Tiekink (2005); Affan et al. (2009). For the structure of the ketone analogue of the title compound, see: Zukerman-Schpector et al. (2009).graphic file with name e-66-0o555-scheme1.jpg

Experimental

Crystal data

  • C17H18N4O2S·H2O

  • M r = 360.43

  • Monoclinic, Inline graphic

  • a = 15.8654 (3) Å

  • b = 7.3938 (1) Å

  • c = 16.3697 (3) Å

  • β = 115.922 (1)°

  • V = 1727.06 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.44 × 0.13 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.905, T max = 1

  • 15464 measured reflections

  • 3968 independent reflections

  • 3136 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.102

  • S = 1.03

  • 3968 reflections

  • 246 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004241/hb5327sup1.cif

e-66-0o555-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004241/hb5327Isup2.hkl

e-66-0o555-Isup2.hkl (190.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.83 (2) 1.79 (2) 2.5191 (17) 147 (2)
O1—H1O⋯S1 0.83 (2) 2.86 (2) 3.5126 (13) 138 (2)
O2—H2O⋯N4 0.82 (2) 1.81 (2) 2.542 (2) 148 (2)
O2—H2O⋯S1 0.82 (2) 2.96 (2) 3.6220 (15) 139 (2)
O3—H3O⋯O1 0.84 (2) 1.91 (2) 2.7525 (18) 174 (2)
O3—H4O⋯S1i 0.82 (2) 2.76 (2) 3.5089 (14) 154 (2)
N1—H1N⋯O3ii 0.87 (2) 2.04 (2) 2.8169 (19) 150 (2)
N3—H3N⋯O3ii 0.88 (2) 2.04 (2) 2.854 (2) 154 (2)
C11—H11CCg1iii 0.98 2.61 3.4497 (17) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors express their gratitude to the Ministry of Science, Technology and Innovation (MOSTI) for a research grant (No. 06-01-09-SF0046), and to Universiti Malaysia Sarawak (UNIMAS) for financial support.

supplementary crystallographic information

Comment

The molecule in the title hydrate, (I), was synthesised as part of an on-going study into biological studies of organotin compounds (Gielen & Tiekink, 2005; Affan et al., 2009). The thiourea derivative in (I) is effectively planar with the maximum deviation of any of the torsion angles from 0 or 180° being 4.6 (2)° for N4—C10—C12—C13 and -174.62 (15)° for C11—C10—C12—C13. The r.m.s. deviation for all non-hydrogen atoms in the thiourea molecule = 0.057 Å. The conformation about each of the C1═N2 [1.290 (2) Å] and C10═N4 [1.2956 (19) Å] double bonds is E. Finally, the hydroxyl groups are orientated to the same side of the molecule as the thione-S atom. The described molecular conformation is stabilised by intramolecular Ohydroxyl—H···Nimine and Ohydroxyl—H···Sthione hydrogen bonds, Table 1. Allowing for substitution of the thione by a ketone group, the described molecular conformation for the thiourea molecule in (I) resembles that in the recently reported ketone derivative (Zukerman-Schpector et al., 2009).

In addition to the intramolecular hydrogen bonds, the crystal structure features Owater—H···Ohydroxyl, N—H···Owater and Owater—H···S hydrogen bonds, Table 1. The N—H atoms of one molecule connect to a water molecule which in turn forms a hydrogen bond with a hydroxyl-O1 atom of a second thiourea derivative. These interactions give rise to a supramolecular chain with base vector [101]. However, this does not take into account a second donor hydrogen bond involving the water molecule. This forms a hydrogen bond with a thione-S atom of a third thiourea derivative, Fig. 2. The latter interactions link chains into a 2-D array with additional stabilisation afforded by C—H···π, Table 1, and π···π interactions. The latter occur between the benzene rings: ring centroid(C4–C9)···ring centroid(C12–C17)i distance = 3.7821 (10) Å, with a dihedral angle between the least-squares plane through the rings of 2.25 (7)°; symmetry operation i: 1 - x, -y, 1 - z.

Experimental

A mixture of thiocarbohydrazone (0.53 g, 0.005 mol) and 2-hydroxyacetophenone (1.36 g, 0.01 mol) in absolute ethanol was heated under reflux for 4–5 h in the presence of 1–2 drops of glacial acetic acid. The reaction mixture was allowed to cool to room temperature for 1 h. The light-yellow precipitate was filtered off and washed several times using absolute ethanol, and was purified by recrystallization from hot absolute ethanol and dried under vacuum over P2O5. Colourless prisms of (I) were obtained by slow evaporation of acetone solution at room temperature. Yield: 1.66 g, 88.0%. m.p. = 494–496 K. IR (KBr): νOH (3561–3391), νNH 3230, νCN 1619, νN—N 963, νCS 857 cm-1.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O- and N-bound H-atoms were located in a difference Fourier map and were refined with O–H and N–H restraints of 0.84 (10) Å and 0.88 (10) Å, respectively, and with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Supramolecular 2-D array in (I) mediated by O—H···O (orange dashed lines), N—H···O (blue dashed lines) and O—H···S (green dashed lines) hydrogen bonds. Colour code: S, yellow; O, red; N, blue; C, grey; H, green.

Crystal data

C17H18N4O2S·H2O F(000) = 760
Mr = 360.43 Dx = 1.386 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4324 reflections
a = 15.8654 (3) Å θ = 2.9–27.4°
b = 7.3938 (1) Å µ = 0.21 mm1
c = 16.3697 (3) Å T = 100 K
β = 115.922 (1)° Prism, colourless
V = 1727.06 (5) Å3 0.44 × 0.13 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 3968 independent reflections
Radiation source: sealed tube 3136 reflections with I > 2σ(I)
graphite Rint = 0.033
φ and ω scans θmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −20→20
Tmin = 0.905, Tmax = 1 k = −9→8
15464 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.7503P] where P = (Fo2 + 2Fc2)/3
3968 reflections (Δ/σ)max = 0.001
246 parameters Δρmax = 0.35 e Å3
7 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.65089 (3) 0.17338 (6) 0.56929 (3) 0.02002 (12)
O1 0.65341 (7) 0.31213 (16) 0.77557 (8) 0.0213 (3)
H1O 0.6224 (14) 0.300 (3) 0.7201 (15) 0.032*
O2 0.70052 (8) −0.01110 (17) 0.38996 (7) 0.0225 (3)
H2O 0.6629 (14) 0.041 (3) 0.4040 (14) 0.034*
O3 0.82009 (8) 0.13214 (18) 0.86971 (9) 0.0240 (3)
H3O 0.7673 (15) 0.180 (3) 0.8392 (15) 0.036*
H4O 0.8143 (14) 0.022 (3) 0.8646 (15) 0.036*
N1 0.47863 (9) 0.29267 (19) 0.53363 (9) 0.0179 (3)
H1N 0.4205 (13) 0.313 (2) 0.4972 (12) 0.022*
N2 0.51214 (9) 0.33207 (18) 0.62387 (8) 0.0166 (3)
N3 0.49527 (9) 0.19563 (19) 0.41174 (9) 0.0179 (3)
H3N 0.4365 (13) 0.229 (3) 0.3827 (13) 0.021*
N4 0.54462 (9) 0.12100 (18) 0.36967 (9) 0.0172 (3)
C1 0.53819 (10) 0.2217 (2) 0.50290 (11) 0.0170 (3)
C2 0.45776 (10) 0.4008 (2) 0.65560 (10) 0.0158 (3)
C3 0.35589 (10) 0.4419 (2) 0.59818 (11) 0.0203 (3)
H3A 0.3499 0.5603 0.5693 0.030*
H3B 0.3227 0.4433 0.6365 0.030*
H3C 0.3287 0.3488 0.5513 0.030*
C4 0.50342 (10) 0.4407 (2) 0.75353 (10) 0.0163 (3)
C5 0.59838 (11) 0.3942 (2) 0.80910 (11) 0.0175 (3)
C6 0.63916 (11) 0.4332 (2) 0.90125 (11) 0.0206 (3)
H6 0.7024 0.3997 0.9379 0.025*
C7 0.58878 (11) 0.5202 (2) 0.94020 (11) 0.0225 (4)
H7 0.6175 0.5468 1.0033 0.027*
C8 0.49609 (11) 0.5689 (2) 0.88708 (11) 0.0223 (4)
H8 0.4613 0.6295 0.9136 0.027*
C9 0.45484 (11) 0.5287 (2) 0.79543 (11) 0.0191 (3)
H9 0.3913 0.5619 0.7598 0.023*
C10 0.50214 (11) 0.0843 (2) 0.28371 (10) 0.0172 (3)
C11 0.39945 (11) 0.1186 (2) 0.22693 (11) 0.0235 (4)
H11A 0.3647 0.0869 0.2618 0.035*
H11B 0.3771 0.0445 0.1718 0.035*
H11C 0.3896 0.2468 0.2101 0.035*
C12 0.56124 (11) 0.0036 (2) 0.24484 (10) 0.0178 (3)
C13 0.65610 (11) −0.0429 (2) 0.29941 (11) 0.0187 (3)
C14 0.70852 (11) −0.1286 (2) 0.26121 (11) 0.0227 (4)
H14 0.7713 −0.1634 0.2990 0.027*
C15 0.67062 (12) −0.1635 (2) 0.16938 (12) 0.0242 (4)
H15 0.7073 −0.2212 0.1440 0.029*
C16 0.57851 (12) −0.1140 (2) 0.11390 (11) 0.0247 (4)
H16 0.5523 −0.1360 0.0504 0.030*
C17 0.52543 (12) −0.0331 (2) 0.15140 (11) 0.0217 (4)
H17 0.4624 −0.0010 0.1128 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01439 (18) 0.0259 (2) 0.01724 (19) 0.00368 (15) 0.00456 (14) 0.00086 (17)
O1 0.0168 (5) 0.0242 (6) 0.0187 (6) 0.0036 (5) 0.0039 (5) −0.0026 (5)
O2 0.0162 (5) 0.0326 (7) 0.0167 (6) 0.0010 (5) 0.0054 (5) −0.0034 (5)
O3 0.0144 (5) 0.0226 (7) 0.0283 (6) 0.0009 (5) 0.0031 (5) −0.0023 (6)
N1 0.0135 (6) 0.0230 (8) 0.0150 (6) 0.0015 (5) 0.0042 (5) −0.0006 (6)
N2 0.0165 (6) 0.0166 (7) 0.0148 (6) −0.0005 (5) 0.0049 (5) 0.0007 (5)
N3 0.0142 (6) 0.0210 (7) 0.0162 (6) 0.0020 (5) 0.0046 (5) −0.0002 (6)
N4 0.0170 (6) 0.0167 (7) 0.0176 (6) −0.0003 (5) 0.0075 (5) 0.0003 (5)
C1 0.0168 (7) 0.0155 (8) 0.0180 (8) −0.0017 (6) 0.0069 (6) 0.0014 (6)
C2 0.0152 (7) 0.0135 (8) 0.0181 (7) −0.0021 (6) 0.0066 (6) 0.0014 (6)
C3 0.0165 (7) 0.0247 (9) 0.0182 (8) −0.0006 (6) 0.0062 (6) −0.0005 (7)
C4 0.0162 (7) 0.0139 (8) 0.0179 (7) −0.0031 (6) 0.0066 (6) 0.0008 (6)
C5 0.0175 (7) 0.0130 (8) 0.0212 (8) −0.0013 (6) 0.0078 (6) 0.0005 (6)
C6 0.0179 (7) 0.0185 (9) 0.0200 (8) −0.0027 (6) 0.0032 (6) 0.0014 (7)
C7 0.0253 (8) 0.0226 (9) 0.0177 (8) −0.0057 (7) 0.0075 (7) −0.0023 (7)
C8 0.0247 (8) 0.0211 (9) 0.0243 (8) −0.0022 (7) 0.0136 (7) −0.0031 (7)
C9 0.0167 (7) 0.0194 (8) 0.0209 (8) −0.0015 (6) 0.0081 (6) 0.0008 (7)
C10 0.0186 (7) 0.0132 (8) 0.0176 (7) −0.0033 (6) 0.0058 (6) 0.0015 (6)
C11 0.0193 (8) 0.0236 (9) 0.0226 (8) −0.0014 (6) 0.0046 (7) 0.0001 (7)
C12 0.0212 (8) 0.0136 (8) 0.0170 (7) −0.0025 (6) 0.0069 (6) 0.0014 (6)
C13 0.0206 (7) 0.0181 (8) 0.0172 (7) −0.0049 (6) 0.0080 (6) 0.0006 (6)
C14 0.0190 (8) 0.0249 (9) 0.0243 (8) −0.0027 (6) 0.0096 (7) 0.0006 (7)
C15 0.0319 (9) 0.0202 (9) 0.0263 (9) −0.0032 (7) 0.0181 (7) −0.0024 (7)
C16 0.0360 (9) 0.0202 (9) 0.0169 (8) −0.0018 (7) 0.0105 (7) −0.0019 (7)
C17 0.0248 (8) 0.0168 (8) 0.0186 (8) 0.0003 (6) 0.0050 (7) 0.0008 (7)

Geometric parameters (Å, °)

S1—C1 1.6754 (15) C6—C7 1.380 (2)
O1—C5 1.3606 (19) C6—H6 0.9500
O1—H1O 0.83 (2) C7—C8 1.389 (2)
O2—C13 1.3550 (19) C7—H7 0.9500
O2—H2O 0.82 (2) C8—C9 1.382 (2)
O3—H3O 0.84 (2) C8—H8 0.9500
O3—H4O 0.82 (2) C9—H9 0.9500
N1—C1 1.355 (2) C10—C12 1.470 (2)
N1—N2 1.3649 (18) C10—C11 1.503 (2)
N1—H1N 0.865 (18) C11—H11A 0.9800
N2—C2 1.290 (2) C11—H11B 0.9800
N3—C1 1.356 (2) C11—H11C 0.9800
N3—N4 1.3650 (18) C12—C17 1.406 (2)
N3—H3N 0.876 (18) C12—C13 1.416 (2)
N4—C10 1.2956 (19) C13—C14 1.392 (2)
C2—C4 1.472 (2) C14—C15 1.378 (2)
C2—C3 1.503 (2) C14—H14 0.9500
C3—H3A 0.9800 C15—C16 1.391 (2)
C3—H3B 0.9800 C15—H15 0.9500
C3—H3C 0.9800 C16—C17 1.377 (2)
C4—C9 1.396 (2) C16—H16 0.9500
C4—C5 1.420 (2) C17—H17 0.9500
C5—C6 1.387 (2)
C5—O1—H1O 108.2 (14) C8—C7—H7 120.0
C13—O2—H2O 107.0 (14) C9—C8—C7 119.54 (16)
H3O—O3—H4O 109 (2) C9—C8—H8 120.2
C1—N1—N2 118.65 (13) C7—C8—H8 120.2
C1—N1—H1N 121.2 (12) C8—C9—C4 122.18 (14)
N2—N1—H1N 120.2 (12) C8—C9—H9 118.9
C2—N2—N1 120.48 (12) C4—C9—H9 118.9
C1—N3—N4 119.32 (13) N4—C10—C12 115.31 (13)
C1—N3—H3N 117.4 (12) N4—C10—C11 123.03 (15)
N4—N3—H3N 123.3 (12) C12—C10—C11 121.65 (14)
C10—N4—N3 119.45 (13) C10—C11—H11A 109.5
N1—C1—N3 111.55 (13) C10—C11—H11B 109.5
N1—C1—S1 124.15 (12) H11A—C11—H11B 109.5
N3—C1—S1 124.30 (12) C10—C11—H11C 109.5
N2—C2—C4 114.84 (13) H11A—C11—H11C 109.5
N2—C2—C3 123.59 (14) H11B—C11—H11C 109.5
C4—C2—C3 121.55 (14) C17—C12—C13 116.86 (15)
C2—C3—H3A 109.5 C17—C12—C10 121.22 (14)
C2—C3—H3B 109.5 C13—C12—C10 121.91 (14)
H3A—C3—H3B 109.5 O2—C13—C14 116.31 (14)
C2—C3—H3C 109.5 O2—C13—C12 123.28 (15)
H3A—C3—H3C 109.5 C14—C13—C12 120.40 (15)
H3B—C3—H3C 109.5 C15—C14—C13 120.93 (15)
C9—C4—C5 117.19 (14) C15—C14—H14 119.5
C9—C4—C2 120.92 (13) C13—C14—H14 119.5
C5—C4—C2 121.88 (14) C14—C15—C16 119.74 (16)
O1—C5—C6 117.06 (14) C14—C15—H15 120.1
O1—C5—C4 122.53 (14) C16—C15—H15 120.1
C6—C5—C4 120.40 (15) C17—C16—C15 119.75 (15)
C7—C6—C5 120.68 (15) C17—C16—H16 120.1
C7—C6—H6 119.7 C15—C16—H16 120.1
C5—C6—H6 119.7 C16—C17—C12 122.27 (15)
C6—C7—C8 120.00 (15) C16—C17—H17 118.9
C6—C7—H7 120.0 C12—C17—H17 118.9
C1—N1—N2—C2 179.58 (14) C7—C8—C9—C4 −0.4 (3)
C1—N3—N4—C10 175.22 (15) C5—C4—C9—C8 −0.4 (2)
N2—N1—C1—N3 −178.03 (13) C2—C4—C9—C8 −179.56 (15)
N2—N1—C1—S1 1.7 (2) N3—N4—C10—C12 −179.77 (13)
N4—N3—C1—N1 −178.53 (13) N3—N4—C10—C11 −0.5 (2)
N4—N3—C1—S1 1.8 (2) N4—C10—C12—C17 −176.26 (15)
N1—N2—C2—C4 −178.58 (13) C11—C10—C12—C17 4.5 (2)
N1—N2—C2—C3 0.2 (2) N4—C10—C12—C13 4.6 (2)
N2—C2—C4—C9 174.83 (15) C11—C10—C12—C13 −174.62 (15)
C3—C2—C4—C9 −4.0 (2) C17—C12—C13—O2 178.25 (15)
N2—C2—C4—C5 −4.3 (2) C10—C12—C13—O2 −2.6 (2)
C3—C2—C4—C5 176.85 (15) C17—C12—C13—C14 −2.9 (2)
C9—C4—C5—O1 −178.43 (14) C10—C12—C13—C14 176.31 (15)
C2—C4—C5—O1 0.8 (2) O2—C13—C14—C15 −178.53 (15)
C9—C4—C5—C6 1.0 (2) C12—C13—C14—C15 2.5 (3)
C2—C4—C5—C6 −179.76 (15) C13—C14—C15—C16 −0.5 (3)
O1—C5—C6—C7 178.47 (15) C14—C15—C16—C17 −1.0 (3)
C4—C5—C6—C7 −1.0 (2) C15—C16—C17—C12 0.6 (3)
C5—C6—C7—C8 0.3 (3) C13—C12—C17—C16 1.4 (2)
C6—C7—C8—C9 0.4 (3) C10—C12—C17—C16 −177.81 (15)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.
D—H···A D—H H···A D···A D—H···A
O1—H1O···N2 0.83 (2) 1.79 (2) 2.5191 (17) 147 (2)
O1—H1O···S1 0.83 (2) 2.86 (2) 3.5126 (13) 138 (2)
O2—H2O···N4 0.82 (2) 1.81 (2) 2.542 (2) 148 (2)
O2—H2O···S1 0.82 (2) 2.96 (2) 3.6220 (15) 139 (2)
O3—H3O···O1 0.84 (2) 1.91 (2) 2.7525 (18) 174 (2)
O3—H4O···S1i 0.82 (2) 2.76 (2) 3.5089 (14) 154 (2)
N1—H1N···O3ii 0.87 (2) 2.04 (2) 2.8169 (19) 150 (2)
N3—H3N···O3ii 0.88 (2) 2.04 (2) 2.854 (2) 154 (2)
C11—H11C···Cg1iii 0.98 2.61 3.4497 (17) 144

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5327).

References

  1. Affan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031–5037.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Gielen, M. & Tiekink, E. R. T. (2005). Editors. Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, pp. 421–439. Chichester: John Wiley & Sons.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zukerman-Schpector, J., Affan, M. A., Foo, S. W. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2951. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004241/hb5327sup1.cif

e-66-0o555-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004241/hb5327Isup2.hkl

e-66-0o555-Isup2.hkl (190.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES