Abstract
In the title compound, C5H5ClN2·C7H6O2, the carboxyl group of the benzoic acid molecule is twisted away from the attached ring by 14.22 (7)°. In the crystal, the 2-amino-5-chloropyridine molecules interact with the carboxyl groups of benzoic acid molecules through N—H⋯O and O—H⋯N hydrogen bonds, forming cyclic R 2 2(8) hydrogen-bonded motifs, and linking the molecules into chains parallel to the [001] direction. Neighbouring 2-amino-5-chloropyridine molecules are also centrosymmetrically paired through C—H⋯Cl hydrogen bonds, forming another R 2 2(8) motif. The crystal structure is further stabilized by weak C—H⋯O hydrogen bonds.
Related literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 ▶); Katritzky et al. (1996 ▶); For details of hydrogen bonding, see: Jeffrey & Saenger (1991 ▶); Jeffrey (1997 ▶); Scheiner (1997 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶); Lynch & Jones (2004 ▶). For reference bond-length data, see: Allen et al. (1987 ▶). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 ▶).
Experimental
Crystal data
C5H5ClN2·C7H6O2
M r = 250.68
Monoclinic,
a = 17.6114 (19) Å
b = 5.3442 (6) Å
c = 12.4774 (13) Å
β = 100.161 (2)°
V = 1155.9 (2) Å3
Z = 4
Mo Kα radiation
μ = 0.32 mm−1
T = 100 K
0.55 × 0.25 × 0.07 mm
Data collection
Bruker SMART APEX DUO CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.844, T max = 0.979
11852 measured reflections
3331 independent reflections
2802 reflections with > 2(I)
R int = 0.025
Refinement
R[F 2 > 2σ(F 2)] = 0.033
wR(F 2) = 0.111
S = 1.12
3331 reflections
198 parameters
All H-atom parameters refined
Δρmax = 0.46 e Å−3
Δρmin = −0.21 e Å−3
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004447/wn2376sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004447/wn2376Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H1O2⋯N1i | 0.98 (2) | 1.65 (2) | 2.629 (1) | 175 (2) |
| N2—H1N2⋯O1ii | 0.88 (2) | 2.04 (2) | 2.898 (2) | 165.4 (18) |
| N2—H2N2⋯O2iii | 0.88 (2) | 2.37 (2) | 3.231 (2) | 165.8 (17) |
| C3—H3⋯Cl1iv | 0.99 (2) | 2.82 (2) | 3.780 (2) | 163.4 (16) |
| C6—H6⋯O1v | 0.91 (2) | 2.58 (2) | 3.095 (2) | 116.3 (15) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Acknowledgments
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
supplementary crystallographic information
Comment
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The adducts of carboxylic acids with the 2-aminoheterocylic ring system form a graph-set motif R22(8) (Lynch & Jones, 2004). In the present study, the hydrogen-bonding patterns in the 2-amino-5-chloropyridine benzoic acid (1/1) cocrystal, are investigated.
The asymmetric unit (Fig. 1), contains one 2-amino-5-chloropyridine molecule and one benzoic acid molecule. The 2-amino-5-chloropyridine molecule is planar, with a maximum deviation of 0.002 (1) Å for atom N1. The carboxyl group of the benzoic acid molecule is twisted away from the attached ring by 14.22 (7)° . The bond lengths (Allen et al., 1987) and angles are normal.
In the crystal packing (Fig. 2), the 2-amino-5-chloropyridine molecules interact with the carboxyl group of benzoic acid molecules through N—H···O and O—H···N hydrogen bonds, forming a cyclic hydrogen-bonded motif R22(8) (Bernstein et al., 1995), and linking the molecules into chains parallel to the [001] direction. Neighbouring 2-amino-5-chloropyridine molecules are also centrosymmetrically paired through C—H···Cl hydrogen bonds, forming another R22(8) motif. The crystal structure is further stabilized by weak C6—H6···O1 (Table 1) hydrogen bonds.
Experimental
A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (65 mg, Aldrich) and benzoic acid (61 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.
Refinement
All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.88 (2) Å, O—H = 0.98 (2) Å, C—H = 0.91 (2) - 1.02 (2) Å].
Figures
Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. Hydrogen atoms not involved in hydrogen bonding have been omitted.
Crystal data
| C5H5ClN2·C7H6O2 | F(000) = 520 |
| Mr = 250.68 | Dx = 1.440 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 5100 reflections |
| a = 17.6114 (19) Å | θ = 2.4–30.0° |
| b = 5.3442 (6) Å | µ = 0.32 mm−1 |
| c = 12.4774 (13) Å | T = 100 K |
| β = 100.161 (2)° | Plate, colourless |
| V = 1155.9 (2) Å3 | 0.55 × 0.25 × 0.07 mm |
| Z = 4 |
Data collection
| Bruker SMART APEX DUO CCD area-detector diffractometer | 3331 independent reflections |
| Radiation source: fine-focus sealed tube | 2802 reflections with > 2(I) |
| graphite | Rint = 0.025 |
| φ and ω scans | θmax = 30.0°, θmin = 1.2° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −24→24 |
| Tmin = 0.844, Tmax = 0.979 | k = −7→7 |
| 11852 measured reflections | l = −17→17 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.111 | All H-atom parameters refined |
| S = 1.12 | w = 1/[σ2(Fo2) + (0.0596P)2 + 0.2767P] where P = (Fo2 + 2Fc2)/3 |
| 3331 reflections | (Δ/σ)max < 0.001 |
| 198 parameters | Δρmax = 0.46 e Å−3 |
| 0 restraints | Δρmin = −0.21 e Å−3 |
Special details
| Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.029115 (18) | 0.29660 (7) | 0.17435 (3) | 0.02611 (11) | |
| N1 | 0.17431 (6) | −0.2004 (2) | 0.08617 (9) | 0.0197 (2) | |
| N2 | 0.22948 (8) | −0.2526 (3) | −0.06737 (10) | 0.0270 (3) | |
| C1 | 0.12668 (7) | −0.0733 (2) | 0.14079 (10) | 0.0202 (2) | |
| C2 | 0.08720 (7) | 0.1356 (2) | 0.09858 (10) | 0.0203 (2) | |
| C3 | 0.09605 (8) | 0.2235 (3) | −0.00426 (11) | 0.0232 (3) | |
| C4 | 0.14399 (8) | 0.0960 (3) | −0.06017 (11) | 0.0229 (3) | |
| C5 | 0.18308 (7) | −0.1193 (2) | −0.01300 (10) | 0.0199 (2) | |
| O1 | 0.30023 (6) | 0.33873 (19) | 0.06701 (7) | 0.0235 (2) | |
| O2 | 0.25316 (5) | 0.46305 (18) | 0.21358 (7) | 0.0202 (2) | |
| C6 | 0.35843 (7) | 0.1449 (3) | 0.34708 (10) | 0.0194 (2) | |
| C7 | 0.40642 (7) | −0.0304 (3) | 0.40807 (10) | 0.0226 (3) | |
| C8 | 0.44122 (8) | −0.2180 (3) | 0.35634 (12) | 0.0232 (3) | |
| C9 | 0.42870 (8) | −0.2295 (3) | 0.24289 (12) | 0.0227 (3) | |
| C10 | 0.38163 (7) | −0.0544 (2) | 0.18193 (10) | 0.0202 (2) | |
| C11 | 0.34623 (7) | 0.1339 (2) | 0.23375 (10) | 0.0170 (2) | |
| C12 | 0.29775 (7) | 0.3214 (2) | 0.16423 (10) | 0.0173 (2) | |
| H1 | 0.1213 (10) | −0.132 (3) | 0.2126 (14) | 0.028 (4)* | |
| H3 | 0.0695 (11) | 0.375 (4) | −0.0377 (16) | 0.040 (5)* | |
| H4 | 0.1539 (10) | 0.154 (4) | −0.1271 (15) | 0.032 (5)* | |
| H6 | 0.3370 (10) | 0.270 (4) | 0.3810 (14) | 0.026 (4)* | |
| H7 | 0.4150 (10) | −0.018 (4) | 0.4848 (14) | 0.032 (5)* | |
| H8 | 0.4762 (10) | −0.344 (3) | 0.4016 (14) | 0.026 (4)* | |
| H9 | 0.4506 (10) | −0.362 (3) | 0.2061 (14) | 0.029 (4)* | |
| H10 | 0.3722 (9) | −0.058 (3) | 0.1028 (13) | 0.024 (4)* | |
| H1O2 | 0.2262 (13) | 0.590 (5) | 0.1647 (19) | 0.061 (7)* | |
| H1N2 | 0.2563 (11) | −0.378 (4) | −0.0353 (16) | 0.039 (5)* | |
| H2N2 | 0.2443 (11) | −0.186 (4) | −0.1250 (16) | 0.033 (5)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.02624 (17) | 0.02425 (18) | 0.02760 (18) | 0.00709 (12) | 0.00407 (12) | 0.00036 (12) |
| N1 | 0.0220 (5) | 0.0181 (5) | 0.0187 (5) | 0.0018 (4) | 0.0026 (4) | 0.0026 (4) |
| N2 | 0.0345 (6) | 0.0266 (6) | 0.0217 (5) | 0.0075 (5) | 0.0096 (5) | 0.0059 (5) |
| C1 | 0.0208 (5) | 0.0187 (6) | 0.0208 (6) | 0.0005 (5) | 0.0025 (4) | 0.0021 (5) |
| C2 | 0.0185 (5) | 0.0186 (6) | 0.0228 (6) | 0.0008 (5) | 0.0011 (4) | −0.0009 (5) |
| C3 | 0.0232 (6) | 0.0200 (6) | 0.0240 (6) | 0.0016 (5) | −0.0028 (5) | 0.0040 (5) |
| C4 | 0.0249 (6) | 0.0229 (6) | 0.0193 (6) | 0.0005 (5) | −0.0006 (5) | 0.0049 (5) |
| C5 | 0.0208 (5) | 0.0189 (6) | 0.0193 (5) | −0.0018 (5) | 0.0012 (4) | 0.0010 (5) |
| O1 | 0.0320 (5) | 0.0243 (5) | 0.0148 (4) | 0.0045 (4) | 0.0059 (3) | 0.0020 (4) |
| O2 | 0.0225 (4) | 0.0211 (4) | 0.0178 (4) | 0.0043 (4) | 0.0055 (3) | 0.0031 (4) |
| C6 | 0.0207 (5) | 0.0203 (6) | 0.0182 (5) | 0.0006 (5) | 0.0063 (4) | 0.0022 (5) |
| C7 | 0.0219 (6) | 0.0267 (7) | 0.0191 (6) | 0.0010 (5) | 0.0037 (4) | 0.0056 (5) |
| C8 | 0.0197 (6) | 0.0206 (6) | 0.0291 (7) | 0.0010 (5) | 0.0034 (5) | 0.0065 (5) |
| C9 | 0.0210 (6) | 0.0182 (6) | 0.0289 (7) | 0.0010 (5) | 0.0044 (5) | −0.0018 (5) |
| C10 | 0.0210 (5) | 0.0195 (6) | 0.0200 (5) | −0.0013 (5) | 0.0033 (4) | −0.0026 (5) |
| C11 | 0.0165 (5) | 0.0158 (5) | 0.0187 (5) | −0.0029 (4) | 0.0030 (4) | 0.0015 (4) |
| C12 | 0.0179 (5) | 0.0167 (6) | 0.0172 (5) | −0.0025 (4) | 0.0027 (4) | 0.0001 (4) |
Geometric parameters (Å, °)
| Cl1—C2 | 1.7382 (13) | O2—C12 | 1.3190 (15) |
| N1—C5 | 1.3454 (16) | O2—H1O2 | 0.98 (2) |
| N1—C1 | 1.3532 (17) | C6—C11 | 1.3936 (17) |
| N2—C5 | 1.3530 (18) | C6—C7 | 1.3946 (18) |
| N2—H1N2 | 0.88 (2) | C6—H6 | 0.907 (18) |
| N2—H2N2 | 0.881 (19) | C7—C8 | 1.392 (2) |
| C1—C2 | 1.3705 (18) | C7—H7 | 0.945 (17) |
| C1—H1 | 0.970 (18) | C8—C9 | 1.395 (2) |
| C2—C3 | 1.4006 (19) | C8—H8 | 1.015 (18) |
| C3—C4 | 1.368 (2) | C9—C10 | 1.3854 (19) |
| C3—H3 | 0.99 (2) | C9—H9 | 0.962 (18) |
| C4—C5 | 1.4149 (18) | C10—C11 | 1.4005 (18) |
| C4—H4 | 0.936 (18) | C10—H10 | 0.972 (16) |
| O1—C12 | 1.2250 (15) | C11—C12 | 1.4913 (17) |
| C5—N1—C1 | 118.92 (11) | C11—C6—H6 | 120.1 (11) |
| C5—N2—H1N2 | 120.0 (13) | C7—C6—H6 | 120.1 (11) |
| C5—N2—H2N2 | 119.3 (13) | C8—C7—C6 | 120.33 (12) |
| H1N2—N2—H2N2 | 117.8 (18) | C8—C7—H7 | 120.9 (11) |
| N1—C1—C2 | 122.21 (12) | C6—C7—H7 | 118.7 (11) |
| N1—C1—H1 | 118.2 (11) | C7—C8—C9 | 119.92 (12) |
| C2—C1—H1 | 119.5 (11) | C7—C8—H8 | 119.6 (10) |
| C1—C2—C3 | 119.61 (12) | C9—C8—H8 | 120.5 (10) |
| C1—C2—Cl1 | 120.10 (10) | C10—C9—C8 | 119.96 (12) |
| C3—C2—Cl1 | 120.25 (10) | C10—C9—H9 | 119.2 (11) |
| C4—C3—C2 | 118.61 (12) | C8—C9—H9 | 120.8 (11) |
| C4—C3—H3 | 118.7 (11) | C9—C10—C11 | 120.26 (12) |
| C2—C3—H3 | 122.6 (11) | C9—C10—H10 | 121.5 (10) |
| C3—C4—C5 | 119.45 (12) | C11—C10—H10 | 118.3 (10) |
| C3—C4—H4 | 121.2 (11) | C6—C11—C10 | 119.82 (12) |
| C5—C4—H4 | 119.3 (11) | C6—C11—C12 | 122.12 (11) |
| N1—C5—N2 | 117.98 (12) | C10—C11—C12 | 118.04 (11) |
| N1—C5—C4 | 121.20 (12) | O1—C12—O2 | 123.17 (11) |
| N2—C5—C4 | 120.81 (12) | O1—C12—C11 | 120.66 (11) |
| C12—O2—H1O2 | 111.7 (14) | O2—C12—C11 | 116.17 (10) |
| C11—C6—C7 | 119.69 (12) | ||
| C5—N1—C1—C2 | −0.16 (19) | C6—C7—C8—C9 | 0.6 (2) |
| N1—C1—C2—C3 | −0.2 (2) | C7—C8—C9—C10 | 0.0 (2) |
| N1—C1—C2—Cl1 | −178.03 (10) | C8—C9—C10—C11 | −0.3 (2) |
| C1—C2—C3—C4 | 0.34 (19) | C7—C6—C11—C10 | 0.60 (19) |
| Cl1—C2—C3—C4 | 178.12 (10) | C7—C6—C11—C12 | −177.84 (11) |
| C2—C3—C4—C5 | −0.04 (19) | C9—C10—C11—C6 | −0.01 (19) |
| C1—N1—C5—N2 | −178.39 (12) | C9—C10—C11—C12 | 178.49 (11) |
| C1—N1—C5—C4 | 0.47 (19) | C6—C11—C12—O1 | 165.21 (12) |
| C3—C4—C5—N1 | −0.37 (19) | C10—C11—C12—O1 | −13.25 (18) |
| C3—C4—C5—N2 | 178.46 (13) | C6—C11—C12—O2 | −14.87 (17) |
| C11—C6—C7—C8 | −0.9 (2) | C10—C11—C12—O2 | 166.67 (11) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H1O2···N1i | 0.98 (2) | 1.65 (2) | 2.629 (1) | 175 (2) |
| N2—H1N2···O1ii | 0.88 (2) | 2.04 (2) | 2.898 (2) | 165.4 (18) |
| N2—H2N2···O2iii | 0.88 (2) | 2.37 (2) | 3.231 (2) | 165.8 (17) |
| C3—H3···Cl1iv | 0.99 (2) | 2.82 (2) | 3.780 (2) | 163.4 (16) |
| C6—H6···O1v | 0.91 (2) | 2.58 (2) | 3.095 (2) | 116.3 (15) |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) x, −y+1/2, z−1/2; (iv) −x, −y+1, −z; (v) x, −y+1/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2376).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
- Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
- Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. [DOI] [PubMed]
- Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
- Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004447/wn2376sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004447/wn2376Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


