Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 10;66(Pt 3):o578. doi: 10.1107/S1600536810004447

2-Amino-5-chloro­pyridine–benzoic acid (1/1)

Madhukar Hemamalini a, Hoong-Kun Fun a,*,
PMCID: PMC2983607  PMID: 21580345

Abstract

In the title compound, C5H5ClN2·C7H6O2, the carboxyl group of the benzoic acid mol­ecule is twisted away from the attached ring by 14.22 (7)°. In the crystal, the 2-amino-5-chloro­pyridine mol­ecules inter­act with the carboxyl groups of benzoic acid mol­ecules through N—H⋯O and O—H⋯N hydrogen bonds, forming cyclic R 2 2(8) hydrogen-bonded motifs, and linking the mol­ecules into chains parallel to the [001] direction. Neighbouring 2-amino-5-chloro­pyridine mol­ecules are also centrosymmetrically paired through C—H⋯Cl hydrogen bonds, forming another R 2 2(8) motif. The crystal structure is further stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995); Lynch & Jones (2004). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-0o578-scheme1.jpg

Experimental

Crystal data

  • C5H5ClN2·C7H6O2

  • M r = 250.68

  • Monoclinic, Inline graphic

  • a = 17.6114 (19) Å

  • b = 5.3442 (6) Å

  • c = 12.4774 (13) Å

  • β = 100.161 (2)°

  • V = 1155.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.55 × 0.25 × 0.07 mm

Data collection

  • Bruker SMART APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.844, T max = 0.979

  • 11852 measured reflections

  • 3331 independent reflections

  • 2802 reflections with > 2(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.111

  • S = 1.12

  • 3331 reflections

  • 198 parameters

  • All H-atom parameters refined

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004447/wn2376sup1.cif

e-66-0o578-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004447/wn2376Isup2.hkl

e-66-0o578-Isup2.hkl (163.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N1i 0.98 (2) 1.65 (2) 2.629 (1) 175 (2)
N2—H1N2⋯O1ii 0.88 (2) 2.04 (2) 2.898 (2) 165.4 (18)
N2—H2N2⋯O2iii 0.88 (2) 2.37 (2) 3.231 (2) 165.8 (17)
C3—H3⋯Cl1iv 0.99 (2) 2.82 (2) 3.780 (2) 163.4 (16)
C6—H6⋯O1v 0.91 (2) 2.58 (2) 3.095 (2) 116.3 (15)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The adducts of carboxylic acids with the 2-aminoheterocylic ring system form a graph-set motif R22(8) (Lynch & Jones, 2004). In the present study, the hydrogen-bonding patterns in the 2-amino-5-chloropyridine benzoic acid (1/1) cocrystal, are investigated.

The asymmetric unit (Fig. 1), contains one 2-amino-5-chloropyridine molecule and one benzoic acid molecule. The 2-amino-5-chloropyridine molecule is planar, with a maximum deviation of 0.002 (1) Å for atom N1. The carboxyl group of the benzoic acid molecule is twisted away from the attached ring by 14.22 (7)° . The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the 2-amino-5-chloropyridine molecules interact with the carboxyl group of benzoic acid molecules through N—H···O and O—H···N hydrogen bonds, forming a cyclic hydrogen-bonded motif R22(8) (Bernstein et al., 1995), and linking the molecules into chains parallel to the [001] direction. Neighbouring 2-amino-5-chloropyridine molecules are also centrosymmetrically paired through C—H···Cl hydrogen bonds, forming another R22(8) motif. The crystal structure is further stabilized by weak C6—H6···O1 (Table 1) hydrogen bonds.

Experimental

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (65 mg, Aldrich) and benzoic acid (61 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.88 (2) Å, O—H = 0.98 (2) Å, C—H = 0.91 (2) - 1.02 (2) Å].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. Hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C5H5ClN2·C7H6O2 F(000) = 520
Mr = 250.68 Dx = 1.440 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5100 reflections
a = 17.6114 (19) Å θ = 2.4–30.0°
b = 5.3442 (6) Å µ = 0.32 mm1
c = 12.4774 (13) Å T = 100 K
β = 100.161 (2)° Plate, colourless
V = 1155.9 (2) Å3 0.55 × 0.25 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEX DUO CCD area-detector diffractometer 3331 independent reflections
Radiation source: fine-focus sealed tube 2802 reflections with > 2(I)
graphite Rint = 0.025
φ and ω scans θmax = 30.0°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −24→24
Tmin = 0.844, Tmax = 0.979 k = −7→7
11852 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.2767P] where P = (Fo2 + 2Fc2)/3
3331 reflections (Δ/σ)max < 0.001
198 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.029115 (18) 0.29660 (7) 0.17435 (3) 0.02611 (11)
N1 0.17431 (6) −0.2004 (2) 0.08617 (9) 0.0197 (2)
N2 0.22948 (8) −0.2526 (3) −0.06737 (10) 0.0270 (3)
C1 0.12668 (7) −0.0733 (2) 0.14079 (10) 0.0202 (2)
C2 0.08720 (7) 0.1356 (2) 0.09858 (10) 0.0203 (2)
C3 0.09605 (8) 0.2235 (3) −0.00426 (11) 0.0232 (3)
C4 0.14399 (8) 0.0960 (3) −0.06017 (11) 0.0229 (3)
C5 0.18308 (7) −0.1193 (2) −0.01300 (10) 0.0199 (2)
O1 0.30023 (6) 0.33873 (19) 0.06701 (7) 0.0235 (2)
O2 0.25316 (5) 0.46305 (18) 0.21358 (7) 0.0202 (2)
C6 0.35843 (7) 0.1449 (3) 0.34708 (10) 0.0194 (2)
C7 0.40642 (7) −0.0304 (3) 0.40807 (10) 0.0226 (3)
C8 0.44122 (8) −0.2180 (3) 0.35634 (12) 0.0232 (3)
C9 0.42870 (8) −0.2295 (3) 0.24289 (12) 0.0227 (3)
C10 0.38163 (7) −0.0544 (2) 0.18193 (10) 0.0202 (2)
C11 0.34623 (7) 0.1339 (2) 0.23375 (10) 0.0170 (2)
C12 0.29775 (7) 0.3214 (2) 0.16423 (10) 0.0173 (2)
H1 0.1213 (10) −0.132 (3) 0.2126 (14) 0.028 (4)*
H3 0.0695 (11) 0.375 (4) −0.0377 (16) 0.040 (5)*
H4 0.1539 (10) 0.154 (4) −0.1271 (15) 0.032 (5)*
H6 0.3370 (10) 0.270 (4) 0.3810 (14) 0.026 (4)*
H7 0.4150 (10) −0.018 (4) 0.4848 (14) 0.032 (5)*
H8 0.4762 (10) −0.344 (3) 0.4016 (14) 0.026 (4)*
H9 0.4506 (10) −0.362 (3) 0.2061 (14) 0.029 (4)*
H10 0.3722 (9) −0.058 (3) 0.1028 (13) 0.024 (4)*
H1O2 0.2262 (13) 0.590 (5) 0.1647 (19) 0.061 (7)*
H1N2 0.2563 (11) −0.378 (4) −0.0353 (16) 0.039 (5)*
H2N2 0.2443 (11) −0.186 (4) −0.1250 (16) 0.033 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02624 (17) 0.02425 (18) 0.02760 (18) 0.00709 (12) 0.00407 (12) 0.00036 (12)
N1 0.0220 (5) 0.0181 (5) 0.0187 (5) 0.0018 (4) 0.0026 (4) 0.0026 (4)
N2 0.0345 (6) 0.0266 (6) 0.0217 (5) 0.0075 (5) 0.0096 (5) 0.0059 (5)
C1 0.0208 (5) 0.0187 (6) 0.0208 (6) 0.0005 (5) 0.0025 (4) 0.0021 (5)
C2 0.0185 (5) 0.0186 (6) 0.0228 (6) 0.0008 (5) 0.0011 (4) −0.0009 (5)
C3 0.0232 (6) 0.0200 (6) 0.0240 (6) 0.0016 (5) −0.0028 (5) 0.0040 (5)
C4 0.0249 (6) 0.0229 (6) 0.0193 (6) 0.0005 (5) −0.0006 (5) 0.0049 (5)
C5 0.0208 (5) 0.0189 (6) 0.0193 (5) −0.0018 (5) 0.0012 (4) 0.0010 (5)
O1 0.0320 (5) 0.0243 (5) 0.0148 (4) 0.0045 (4) 0.0059 (3) 0.0020 (4)
O2 0.0225 (4) 0.0211 (4) 0.0178 (4) 0.0043 (4) 0.0055 (3) 0.0031 (4)
C6 0.0207 (5) 0.0203 (6) 0.0182 (5) 0.0006 (5) 0.0063 (4) 0.0022 (5)
C7 0.0219 (6) 0.0267 (7) 0.0191 (6) 0.0010 (5) 0.0037 (4) 0.0056 (5)
C8 0.0197 (6) 0.0206 (6) 0.0291 (7) 0.0010 (5) 0.0034 (5) 0.0065 (5)
C9 0.0210 (6) 0.0182 (6) 0.0289 (7) 0.0010 (5) 0.0044 (5) −0.0018 (5)
C10 0.0210 (5) 0.0195 (6) 0.0200 (5) −0.0013 (5) 0.0033 (4) −0.0026 (5)
C11 0.0165 (5) 0.0158 (5) 0.0187 (5) −0.0029 (4) 0.0030 (4) 0.0015 (4)
C12 0.0179 (5) 0.0167 (6) 0.0172 (5) −0.0025 (4) 0.0027 (4) 0.0001 (4)

Geometric parameters (Å, °)

Cl1—C2 1.7382 (13) O2—C12 1.3190 (15)
N1—C5 1.3454 (16) O2—H1O2 0.98 (2)
N1—C1 1.3532 (17) C6—C11 1.3936 (17)
N2—C5 1.3530 (18) C6—C7 1.3946 (18)
N2—H1N2 0.88 (2) C6—H6 0.907 (18)
N2—H2N2 0.881 (19) C7—C8 1.392 (2)
C1—C2 1.3705 (18) C7—H7 0.945 (17)
C1—H1 0.970 (18) C8—C9 1.395 (2)
C2—C3 1.4006 (19) C8—H8 1.015 (18)
C3—C4 1.368 (2) C9—C10 1.3854 (19)
C3—H3 0.99 (2) C9—H9 0.962 (18)
C4—C5 1.4149 (18) C10—C11 1.4005 (18)
C4—H4 0.936 (18) C10—H10 0.972 (16)
O1—C12 1.2250 (15) C11—C12 1.4913 (17)
C5—N1—C1 118.92 (11) C11—C6—H6 120.1 (11)
C5—N2—H1N2 120.0 (13) C7—C6—H6 120.1 (11)
C5—N2—H2N2 119.3 (13) C8—C7—C6 120.33 (12)
H1N2—N2—H2N2 117.8 (18) C8—C7—H7 120.9 (11)
N1—C1—C2 122.21 (12) C6—C7—H7 118.7 (11)
N1—C1—H1 118.2 (11) C7—C8—C9 119.92 (12)
C2—C1—H1 119.5 (11) C7—C8—H8 119.6 (10)
C1—C2—C3 119.61 (12) C9—C8—H8 120.5 (10)
C1—C2—Cl1 120.10 (10) C10—C9—C8 119.96 (12)
C3—C2—Cl1 120.25 (10) C10—C9—H9 119.2 (11)
C4—C3—C2 118.61 (12) C8—C9—H9 120.8 (11)
C4—C3—H3 118.7 (11) C9—C10—C11 120.26 (12)
C2—C3—H3 122.6 (11) C9—C10—H10 121.5 (10)
C3—C4—C5 119.45 (12) C11—C10—H10 118.3 (10)
C3—C4—H4 121.2 (11) C6—C11—C10 119.82 (12)
C5—C4—H4 119.3 (11) C6—C11—C12 122.12 (11)
N1—C5—N2 117.98 (12) C10—C11—C12 118.04 (11)
N1—C5—C4 121.20 (12) O1—C12—O2 123.17 (11)
N2—C5—C4 120.81 (12) O1—C12—C11 120.66 (11)
C12—O2—H1O2 111.7 (14) O2—C12—C11 116.17 (10)
C11—C6—C7 119.69 (12)
C5—N1—C1—C2 −0.16 (19) C6—C7—C8—C9 0.6 (2)
N1—C1—C2—C3 −0.2 (2) C7—C8—C9—C10 0.0 (2)
N1—C1—C2—Cl1 −178.03 (10) C8—C9—C10—C11 −0.3 (2)
C1—C2—C3—C4 0.34 (19) C7—C6—C11—C10 0.60 (19)
Cl1—C2—C3—C4 178.12 (10) C7—C6—C11—C12 −177.84 (11)
C2—C3—C4—C5 −0.04 (19) C9—C10—C11—C6 −0.01 (19)
C1—N1—C5—N2 −178.39 (12) C9—C10—C11—C12 178.49 (11)
C1—N1—C5—C4 0.47 (19) C6—C11—C12—O1 165.21 (12)
C3—C4—C5—N1 −0.37 (19) C10—C11—C12—O1 −13.25 (18)
C3—C4—C5—N2 178.46 (13) C6—C11—C12—O2 −14.87 (17)
C11—C6—C7—C8 −0.9 (2) C10—C11—C12—O2 166.67 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H1O2···N1i 0.98 (2) 1.65 (2) 2.629 (1) 175 (2)
N2—H1N2···O1ii 0.88 (2) 2.04 (2) 2.898 (2) 165.4 (18)
N2—H2N2···O2iii 0.88 (2) 2.37 (2) 3.231 (2) 165.8 (17)
C3—H3···Cl1iv 0.99 (2) 2.82 (2) 3.780 (2) 163.4 (16)
C6—H6···O1v 0.91 (2) 2.58 (2) 3.095 (2) 116.3 (15)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) x, −y+1/2, z−1/2; (iv) −x, −y+1, −z; (v) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2376).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  6. Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  7. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  8. Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. [DOI] [PubMed]
  9. Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
  10. Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810004447/wn2376sup1.cif

e-66-0o578-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004447/wn2376Isup2.hkl

e-66-0o578-Isup2.hkl (163.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES