Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 6;66(Pt 3):m255. doi: 10.1107/S1600536810003764

[μ-N,N′-Bis(2-pyridylmethyl­ene)ethane-1,2-diamine]bis­{aqua­[N,N′-bis­(2-pyridyl­methyl­ene)ethane-1,2-diamine]manganese(II)} tetra­kis(perchlorate)

Kwang Ha a,*
PMCID: PMC2983616  PMID: 21580209

Abstract

The cation of the salt, [Mn2(C14H14N4)3(H2O)2](ClO4)4, lies on a center of inversion, the center lying midway along the ethyl­ene chain of the bridging N,N′-bis­(2-pyridylmethyl­ene)ethane-1,2-diamine ligand. The Mn atom is chelated by two atoms N atoms of this bridging ligand, and is also coordinated by four N atoms of another ligand. The Mn atom is seven-coordinated in a penta­gonal-bipyramidal environment. The crystal structure displays inter­molecular π–π inter­actions between adjacent pyridine rings, with a shortest centroid–centroid distance of 3.784 (3) Å. The perchlorate is linked to the dinuclear cation by O—H⋯O hydrogen bonds.

Related literature

For the crystal structures of Mn(II), Ag(I), Cu(II) and Pd(II) complexes with related ligands, see: Baar et al. (2001); Bowyer et al. (1998); Hwang & Ha (2009); Nguyen & Jeong (2006); Schoumacker et al. (2003).graphic file with name e-66-0m255-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C14H14N4)3(H2O)2](ClO4)4

  • M r = 1258.59

  • Monoclinic, Inline graphic

  • a = 11.3698 (6) Å

  • b = 19.026 (1) Å

  • c = 12.8628 (7) Å

  • β = 110.218 (1)°

  • V = 2611.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 200 K

  • 0.24 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.873, T max = 1.000

  • 19343 measured reflections

  • 6468 independent reflections

  • 3281 reflections with I > 2σ(I)

  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.178

  • S = 1.04

  • 6468 reflections

  • 360 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.84 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003764/ng2727sup1.cif

e-66-0m255-sup1.cif (26.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003764/ng2727Isup2.hkl

e-66-0m255-Isup2.hkl (316.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—O1 2.215 (3)
Mn1—N6 2.257 (3)
Mn1—N3 2.278 (3)
Mn1—N2 2.278 (4)
Mn1—N5 2.280 (3)
Mn1—N1 2.504 (3)
Mn1—N4 2.639 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.84 (1) 1.95 (1) 2.787 (5) 177 (6)
O1—H1B⋯O7ii 0.84 (1) 1.92 (2) 2.721 (6) 159 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0074570).

supplementary crystallographic information

Comment

The title compound, [Mn2(C14H14N4)2(H2O)2(µ-C14H14N4)](ClO4)4, consists of a structurally centrosymmetric dinuclear MnII complex and four perchlorate anions, and the asymmetric unit contains one half of the formula unit (Fig. 1). In the cationic complex, the two MnII ions are bridged by the symmetry-related tetradentate N,N'-bis(2-pyridylmethylene)ethane-1,2-diamine ligand, thus each Mn ion is seven-coordinated by six N atoms from the two tetradentate ligands and one O atom of the water molecule in an approximately pentagonal-bipyramidal environment, in which the five N1–N5 atoms form the pentagonal plane with O1 and N6 atoms at the apices. The six Mn—N bond lengths are considerably different and lie in the range of 2.257 (3)–2.639 (4) Å (Table 1). The N—Mn1—N chelating angles lie in the range of 66.69 (12)°–74.08 (12)° and the apical O1—Mn1—N6 bond angle is 159.64 (13)°. The crystal structure displays intermolecular π-π interactions between adjacent pyridine rings, with a shortest centroid-centroid distance of 3.784 (3) Å. The component ions interact by means of intermolecular O—H···O hydrogen bonds (Fig. 2 and Table 2).

Experimental

To a solution of N,N'-bis(2-pyridylmethylene)ethane-1,2-diamine (0.66 g, 2.77 mmol) in EtOH (30 ml) was added Mn(ClO4)2.6H2O (1.00 g, 2.76 mmol) and stirred for 1 h at room temparature. The formed precipitate was separated by filtration and washed with acetone and dried under vacuum, to give a yellow powder (0.63 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution. IR (KBr): 3394 cm-1 (broad).

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligand were localized from Fourier difference maps and refined with the two restraints instructions using the following SHELXL97 (Sheldrick, 2008) command: DFIX 0.84 0.01 O1 H1A and O1 H1B.

Figures

Fig. 1.

Fig. 1.

The asymmetric structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Fig. 2.

Fig. 2.

View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[Mn2(C14H14N4)3(H2O)2](ClO4)4 F(000) = 1288
Mr = 1258.59 Dx = 1.601 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3474 reflections
a = 11.3698 (6) Å θ = 2.2–23.2°
b = 19.026 (1) Å µ = 0.77 mm1
c = 12.8628 (7) Å T = 200 K
β = 110.218 (1)° Block, yellow
V = 2611.1 (2) Å3 0.24 × 0.18 × 0.12 mm
Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer 6468 independent reflections
Radiation source: fine-focus sealed tube 3281 reflections with I > 2σ(I)
graphite Rint = 0.080
φ and ω scans θmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −15→15
Tmin = 0.873, Tmax = 1.000 k = −25→22
19343 measured reflections l = −12→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0701P)2] where P = (Fo2 + 2Fc2)/3
6468 reflections (Δ/σ)max < 0.001
360 parameters Δρmax = 0.82 e Å3
2 restraints Δρmin = −0.84 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.71734 (6) 0.12570 (3) 0.16693 (5) 0.0293 (2)
O1 0.8064 (3) 0.21764 (17) 0.2697 (3) 0.0391 (8)
H1A 0.8820 (18) 0.224 (3) 0.277 (5) 0.07 (2)*
H1B 0.772 (4) 0.2559 (15) 0.245 (4) 0.07 (2)*
N1 0.9113 (3) 0.07794 (18) 0.1423 (3) 0.0329 (8)
N2 0.7713 (3) 0.18591 (17) 0.0370 (3) 0.0356 (9)
N3 0.5461 (3) 0.18634 (17) 0.0586 (3) 0.0339 (9)
N4 0.5358 (3) 0.13162 (17) 0.2506 (3) 0.0354 (9)
N5 0.7905 (3) 0.06251 (17) 0.3271 (3) 0.0292 (8)
N6 0.6439 (3) 0.01543 (17) 0.1226 (3) 0.0286 (8)
C1 0.9807 (4) 0.0233 (2) 0.1909 (4) 0.0377 (11)
H1 0.9533 −0.0042 0.2399 0.045*
C2 1.0901 (4) 0.0035 (2) 0.1753 (4) 0.0398 (11)
H2 1.1366 −0.0360 0.2130 0.048*
C3 1.1302 (4) 0.0422 (2) 0.1039 (4) 0.0403 (11)
H3 1.2059 0.0306 0.0921 0.048*
C4 1.0579 (4) 0.0986 (2) 0.0496 (4) 0.0395 (11)
H4 1.0819 0.1256 −0.0019 0.047*
C5 0.9507 (4) 0.1147 (2) 0.0714 (4) 0.0317 (10)
C6 0.8697 (4) 0.1738 (2) 0.0151 (4) 0.0370 (11)
H6 0.8909 0.2022 −0.0366 0.044*
C7 0.6868 (4) 0.2436 (2) −0.0174 (4) 0.0446 (12)
H7A 0.7010 0.2579 −0.0861 0.054*
H7B 0.7013 0.2848 0.0325 0.054*
C8 0.5549 (5) 0.2163 (2) −0.0439 (4) 0.0466 (13)
H8A 0.4937 0.2550 −0.0709 0.056*
H8B 0.5365 0.1798 −0.1022 0.056*
C9 0.4538 (4) 0.2018 (2) 0.0877 (4) 0.0375 (11)
H9 0.3927 0.2339 0.0442 0.045*
C10 0.4393 (4) 0.1714 (2) 0.1861 (4) 0.0332 (10)
C11 0.3316 (4) 0.1822 (2) 0.2109 (4) 0.0420 (12)
H11 0.2674 0.2122 0.1658 0.050*
C12 0.3181 (4) 0.1489 (3) 0.3016 (5) 0.0460 (13)
H12 0.2442 0.1551 0.3193 0.055*
C13 0.4139 (4) 0.1066 (2) 0.3659 (4) 0.0432 (12)
H13 0.4071 0.0818 0.4277 0.052*
C14 0.5207 (4) 0.1013 (2) 0.3373 (4) 0.0395 (11)
H14 0.5881 0.0737 0.3837 0.047*
C15 0.8513 (4) 0.0865 (2) 0.4293 (4) 0.0337 (10)
H15 0.8819 0.1334 0.4378 0.040*
C16 0.8714 (4) 0.0463 (3) 0.5229 (4) 0.0474 (13)
H16 0.9131 0.0654 0.5944 0.057*
C17 0.8300 (5) −0.0219 (3) 0.5110 (4) 0.0552 (14)
H17 0.8423 −0.0507 0.5743 0.066*
C18 0.7702 (4) −0.0484 (2) 0.4056 (4) 0.0438 (12)
H18 0.7442 −0.0962 0.3955 0.053*
C19 0.7489 (4) −0.0046 (2) 0.3157 (4) 0.0309 (10)
C20 0.6763 (4) −0.0278 (2) 0.2030 (4) 0.0315 (10)
H20 0.6530 −0.0758 0.1899 0.038*
C21 0.5679 (4) −0.0107 (2) 0.0132 (3) 0.0328 (10)
H21A 0.5740 −0.0626 0.0116 0.039*
H21B 0.5996 0.0088 −0.0435 0.039*
Cl1 0.08812 (12) 0.30361 (7) 0.26378 (13) 0.0569 (4)
O2 −0.0050 (5) 0.3509 (2) 0.2687 (4) 0.0965 (16)
O3 0.0551 (3) 0.2349 (2) 0.2846 (5) 0.0951 (17)
O4 0.2057 (4) 0.3200 (3) 0.3388 (5) 0.129 (2)
O5 0.0906 (5) 0.3027 (3) 0.1535 (5) 0.128 (2)
Cl2 0.59876 (11) 0.10876 (6) 0.70262 (10) 0.0395 (3)
O6 0.4879 (4) 0.1474 (3) 0.6685 (5) 0.118 (2)
O7 0.6953 (6) 0.1538 (3) 0.7445 (6) 0.160 (3)
O8 0.6025 (5) 0.0622 (2) 0.7867 (4) 0.115 (2)
O9 0.6180 (7) 0.0730 (3) 0.6164 (4) 0.153 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0341 (4) 0.0249 (3) 0.0255 (4) −0.0003 (3) 0.0060 (3) 0.0016 (3)
O1 0.046 (2) 0.0335 (19) 0.038 (2) −0.0055 (16) 0.0145 (17) −0.0053 (15)
N1 0.035 (2) 0.036 (2) 0.026 (2) 0.0007 (16) 0.0077 (16) 0.0027 (16)
N2 0.045 (2) 0.031 (2) 0.031 (2) 0.0033 (17) 0.0137 (18) 0.0018 (15)
N3 0.036 (2) 0.030 (2) 0.032 (2) 0.0051 (16) 0.0068 (17) 0.0027 (15)
N4 0.033 (2) 0.032 (2) 0.037 (2) 0.0020 (16) 0.0070 (17) −0.0012 (17)
N5 0.0282 (18) 0.0297 (19) 0.027 (2) 0.0031 (15) 0.0061 (15) 0.0006 (15)
N6 0.0263 (18) 0.0294 (19) 0.028 (2) −0.0009 (15) 0.0069 (15) −0.0027 (15)
C1 0.039 (3) 0.040 (3) 0.034 (3) 0.002 (2) 0.012 (2) 0.004 (2)
C2 0.033 (2) 0.042 (3) 0.042 (3) 0.004 (2) 0.011 (2) −0.001 (2)
C3 0.030 (2) 0.048 (3) 0.045 (3) −0.006 (2) 0.015 (2) −0.011 (2)
C4 0.037 (3) 0.049 (3) 0.035 (3) −0.009 (2) 0.015 (2) −0.009 (2)
C5 0.032 (2) 0.035 (2) 0.027 (2) −0.0035 (19) 0.0090 (19) −0.0028 (18)
C6 0.043 (3) 0.037 (3) 0.030 (3) −0.004 (2) 0.012 (2) 0.0022 (19)
C7 0.064 (3) 0.033 (3) 0.040 (3) 0.011 (2) 0.022 (3) 0.016 (2)
C8 0.053 (3) 0.045 (3) 0.037 (3) 0.014 (2) 0.010 (2) 0.014 (2)
C9 0.034 (2) 0.026 (2) 0.044 (3) 0.0029 (19) 0.003 (2) −0.003 (2)
C10 0.029 (2) 0.028 (2) 0.037 (3) −0.0018 (18) 0.005 (2) −0.0100 (19)
C11 0.034 (3) 0.032 (3) 0.056 (3) 0.003 (2) 0.011 (2) −0.006 (2)
C12 0.031 (2) 0.048 (3) 0.060 (4) −0.005 (2) 0.017 (2) −0.016 (3)
C13 0.040 (3) 0.042 (3) 0.051 (3) −0.009 (2) 0.019 (2) −0.005 (2)
C14 0.035 (2) 0.042 (3) 0.041 (3) −0.001 (2) 0.012 (2) 0.001 (2)
C15 0.031 (2) 0.043 (3) 0.025 (2) −0.0028 (19) 0.0078 (19) −0.0011 (19)
C16 0.042 (3) 0.066 (4) 0.030 (3) −0.005 (3) 0.008 (2) 0.002 (2)
C17 0.050 (3) 0.075 (4) 0.032 (3) −0.005 (3) 0.004 (2) 0.022 (3)
C18 0.045 (3) 0.044 (3) 0.040 (3) −0.004 (2) 0.011 (2) 0.014 (2)
C19 0.025 (2) 0.033 (2) 0.034 (3) 0.0033 (18) 0.0093 (19) 0.0007 (18)
C20 0.028 (2) 0.025 (2) 0.042 (3) 0.0006 (17) 0.014 (2) −0.0002 (19)
C21 0.036 (2) 0.033 (2) 0.027 (2) −0.0004 (19) 0.008 (2) −0.0072 (18)
Cl1 0.0494 (8) 0.0436 (8) 0.0833 (11) 0.0007 (6) 0.0301 (8) −0.0063 (7)
O2 0.112 (4) 0.066 (3) 0.127 (4) 0.047 (3) 0.060 (3) 0.009 (3)
O3 0.051 (2) 0.049 (3) 0.179 (5) 0.0034 (19) 0.032 (3) 0.017 (3)
O4 0.069 (3) 0.104 (4) 0.175 (6) −0.042 (3) −0.006 (3) −0.006 (4)
O5 0.146 (5) 0.158 (5) 0.107 (5) 0.044 (4) 0.078 (4) 0.011 (4)
Cl2 0.0421 (7) 0.0335 (6) 0.0423 (7) −0.0021 (5) 0.0139 (5) 0.0033 (5)
O6 0.063 (3) 0.126 (4) 0.161 (6) 0.037 (3) 0.036 (3) 0.055 (4)
O7 0.127 (5) 0.116 (4) 0.208 (7) −0.086 (4) 0.022 (5) 0.007 (4)
O8 0.174 (5) 0.092 (3) 0.122 (4) 0.061 (3) 0.106 (4) 0.072 (3)
O9 0.262 (8) 0.137 (5) 0.064 (4) 0.096 (5) 0.062 (4) −0.001 (3)

Geometric parameters (Å, °)

Mn1—O1 2.215 (3) C8—H8A 0.9900
Mn1—N6 2.257 (3) C8—H8B 0.9900
Mn1—N3 2.278 (3) C9—C10 1.452 (6)
Mn1—N2 2.278 (4) C9—H9 0.9500
Mn1—N5 2.280 (3) C10—C11 1.382 (6)
Mn1—N1 2.504 (3) C11—C12 1.383 (7)
Mn1—N4 2.639 (4) C11—H11 0.9500
O1—H1A 0.840 (10) C12—C13 1.377 (7)
O1—H1B 0.837 (10) C12—H12 0.9500
N1—C1 1.325 (5) C13—C14 1.390 (6)
N1—C5 1.343 (5) C13—H13 0.9500
N2—C6 1.266 (5) C14—H14 0.9500
N2—C7 1.467 (5) C15—C16 1.378 (6)
N3—C9 1.264 (5) C15—H15 0.9500
N3—C8 1.471 (6) C16—C17 1.370 (7)
N4—C14 1.318 (6) C16—H16 0.9500
N4—C10 1.355 (5) C17—C18 1.384 (7)
N5—C15 1.337 (5) C17—H17 0.9500
N5—C19 1.352 (5) C18—C19 1.379 (6)
N6—C20 1.272 (5) C18—H18 0.9500
N6—C21 1.461 (5) C19—C20 1.466 (6)
C1—C2 1.379 (6) C20—H20 0.9500
C1—H1 0.9500 C21—C21i 1.517 (8)
C2—C3 1.372 (6) C21—H21A 0.9900
C2—H2 0.9500 C21—H21B 0.9900
C3—C4 1.385 (6) Cl1—O4 1.387 (5)
C3—H3 0.9500 Cl1—O2 1.408 (4)
C4—C5 1.376 (6) Cl1—O3 1.411 (4)
C4—H4 0.9500 Cl1—O5 1.429 (6)
C5—C6 1.476 (6) Cl2—O7 1.349 (5)
C6—H6 0.9500 Cl2—O9 1.381 (5)
C7—C8 1.511 (6) Cl2—O8 1.387 (4)
C7—H7A 0.9900 Cl2—O6 1.393 (4)
C7—H7B 0.9900
O1—Mn1—N6 159.64 (13) N2—C7—H7B 110.4
O1—Mn1—N3 94.76 (13) C8—C7—H7B 110.4
N6—Mn1—N3 98.80 (12) H7A—C7—H7B 108.6
O1—Mn1—N2 81.80 (12) N3—C8—C7 107.5 (4)
N6—Mn1—N2 116.87 (13) N3—C8—H8A 110.2
N3—Mn1—N2 71.73 (13) C7—C8—H8A 110.2
O1—Mn1—N5 85.88 (12) N3—C8—H8B 110.2
N6—Mn1—N5 74.08 (12) C7—C8—H8B 110.2
N3—Mn1—N5 141.99 (13) H8A—C8—H8B 108.5
N2—Mn1—N5 145.21 (13) N3—C9—C10 121.5 (4)
O1—Mn1—N1 96.96 (12) N3—C9—H9 119.3
N6—Mn1—N1 84.01 (11) C10—C9—H9 119.3
N3—Mn1—N1 135.25 (13) N4—C10—C11 122.4 (4)
N2—Mn1—N1 67.51 (12) N4—C10—C9 116.3 (4)
N5—Mn1—N1 81.98 (12) C11—C10—C9 121.3 (4)
O1—Mn1—N4 89.06 (12) C10—C11—C12 119.5 (4)
N6—Mn1—N4 82.51 (11) C10—C11—H11 120.2
N3—Mn1—N4 66.69 (12) C12—C11—H11 120.2
N2—Mn1—N4 136.42 (12) C13—C12—C11 118.6 (4)
N5—Mn1—N4 75.33 (11) C13—C12—H12 120.7
N1—Mn1—N4 156.05 (11) C11—C12—H12 120.7
Mn1—O1—H1A 114 (4) C12—C13—C14 117.8 (5)
Mn1—O1—H1B 114 (4) C12—C13—H13 121.1
H1A—O1—H1B 105 (5) C14—C13—H13 121.1
C1—N1—C5 116.4 (4) N4—C14—C13 125.0 (4)
C1—N1—Mn1 129.2 (3) N4—C14—H14 117.5
C5—N1—Mn1 114.3 (3) C13—C14—H14 117.5
C6—N2—C7 120.9 (4) N5—C15—C16 122.9 (4)
C6—N2—Mn1 123.7 (3) N5—C15—H15 118.5
C7—N2—Mn1 115.3 (3) C16—C15—H15 118.5
C9—N3—C8 119.7 (4) C17—C16—C15 118.8 (5)
C9—N3—Mn1 123.9 (3) C17—C16—H16 120.6
C8—N3—Mn1 115.9 (3) C15—C16—H16 120.6
C14—N4—C10 116.6 (4) C16—C17—C18 119.2 (5)
C14—N4—Mn1 132.4 (3) C16—C17—H17 120.4
C10—N4—Mn1 110.9 (3) C18—C17—H17 120.4
C15—N5—C19 118.1 (4) C19—C18—C17 119.1 (4)
C15—N5—Mn1 127.7 (3) C19—C18—H18 120.5
C19—N5—Mn1 113.3 (3) C17—C18—H18 120.5
C20—N6—C21 118.2 (4) N5—C19—C18 121.8 (4)
C20—N6—Mn1 114.7 (3) N5—C19—C20 116.6 (4)
C21—N6—Mn1 127.1 (3) C18—C19—C20 121.6 (4)
N1—C1—C2 124.4 (4) N6—C20—C19 121.0 (4)
N1—C1—H1 117.8 N6—C20—H20 119.5
C2—C1—H1 117.8 C19—C20—H20 119.5
C3—C2—C1 118.5 (4) N6—C21—C21i 110.0 (4)
C3—C2—H2 120.8 N6—C21—H21A 109.7
C1—C2—H2 120.8 C21i—C21—H21A 109.7
C2—C3—C4 118.5 (4) N6—C21—H21B 109.7
C2—C3—H3 120.8 C21i—C21—H21B 109.7
C4—C3—H3 120.8 H21A—C21—H21B 108.2
C5—C4—C3 118.9 (4) O4—Cl1—O2 112.6 (3)
C5—C4—H4 120.6 O4—Cl1—O3 109.4 (3)
C3—C4—H4 120.6 O2—Cl1—O3 109.3 (3)
N1—C5—C4 123.3 (4) O4—Cl1—O5 110.4 (4)
N1—C5—C6 115.6 (4) O2—Cl1—O5 109.0 (3)
C4—C5—C6 121.1 (4) O3—Cl1—O5 106.0 (3)
N2—C6—C5 118.6 (4) O7—Cl2—O9 107.5 (5)
N2—C6—H6 120.7 O7—Cl2—O8 107.0 (4)
C5—C6—H6 120.7 O9—Cl2—O8 110.0 (3)
N2—C7—C8 106.6 (4) O7—Cl2—O6 108.3 (4)
N2—C7—H7A 110.4 O9—Cl2—O6 112.6 (4)
C8—C7—H7A 110.4 O8—Cl2—O6 111.3 (3)
O1—Mn1—N1—C1 104.0 (4) N2—Mn1—N6—C20 144.2 (3)
N6—Mn1—N1—C1 −55.5 (4) N5—Mn1—N6—C20 −0.2 (3)
N3—Mn1—N1—C1 −152.0 (3) N1—Mn1—N6—C20 83.1 (3)
N2—Mn1—N1—C1 −177.9 (4) N4—Mn1—N6—C20 −77.0 (3)
N5—Mn1—N1—C1 19.2 (4) O1—Mn1—N6—C21 171.0 (3)
N4—Mn1—N1—C1 0.5 (5) N3—Mn1—N6—C21 39.8 (3)
O1—Mn1—N1—C5 −74.2 (3) N2—Mn1—N6—C21 −34.1 (3)
N6—Mn1—N1—C5 126.3 (3) N5—Mn1—N6—C21 −178.5 (3)
N3—Mn1—N1—C5 29.8 (4) N1—Mn1—N6—C21 −95.2 (3)
N2—Mn1—N1—C5 3.9 (3) N4—Mn1—N6—C21 104.7 (3)
N5—Mn1—N1—C5 −159.0 (3) C5—N1—C1—C2 1.6 (6)
N4—Mn1—N1—C5 −177.7 (3) Mn1—N1—C1—C2 −176.6 (3)
O1—Mn1—N2—C6 96.9 (4) N1—C1—C2—C3 −0.6 (7)
N6—Mn1—N2—C6 −74.5 (4) C1—C2—C3—C4 −1.1 (7)
N3—Mn1—N2—C6 −165.3 (4) C2—C3—C4—C5 1.7 (6)
N5—Mn1—N2—C6 26.4 (5) C1—N1—C5—C4 −0.9 (6)
N1—Mn1—N2—C6 −4.2 (3) Mn1—N1—C5—C4 177.6 (3)
N4—Mn1—N2—C6 176.8 (3) C1—N1—C5—C6 177.9 (4)
O1—Mn1—N2—C7 −80.0 (3) Mn1—N1—C5—C6 −3.7 (5)
N6—Mn1—N2—C7 108.6 (3) C3—C4—C5—N1 −0.8 (7)
N3—Mn1—N2—C7 17.9 (3) C3—C4—C5—C6 −179.4 (4)
N5—Mn1—N2—C7 −150.4 (3) C7—N2—C6—C5 −179.4 (4)
N1—Mn1—N2—C7 179.0 (3) Mn1—N2—C6—C5 3.9 (6)
N4—Mn1—N2—C7 −0.1 (4) N1—C5—C6—N2 0.3 (6)
O1—Mn1—N3—C9 −79.5 (3) C4—C5—C6—N2 179.1 (4)
N6—Mn1—N3—C9 85.3 (3) C6—N2—C7—C8 139.5 (4)
N2—Mn1—N3—C9 −159.2 (4) Mn1—N2—C7—C8 −43.6 (4)
N5—Mn1—N3—C9 10.0 (4) C9—N3—C8—C7 133.0 (4)
N1—Mn1—N3—C9 175.7 (3) Mn1—N3—C8—C7 −39.0 (4)
N4—Mn1—N3—C9 7.5 (3) N2—C7—C8—N3 51.7 (5)
O1—Mn1—N3—C8 92.2 (3) C8—N3—C9—C10 177.8 (4)
N6—Mn1—N3—C8 −103.0 (3) Mn1—N3—C9—C10 −10.9 (6)
N2—Mn1—N3—C8 12.5 (3) C14—N4—C10—C11 2.1 (6)
N5—Mn1—N3—C8 −178.4 (3) Mn1—N4—C10—C11 179.1 (3)
N1—Mn1—N3—C8 −12.7 (4) C14—N4—C10—C9 −177.0 (4)
N4—Mn1—N3—C8 179.1 (3) Mn1—N4—C10—C9 0.1 (4)
O1—Mn1—N4—C14 −91.4 (4) N3—C9—C10—N4 6.4 (6)
N6—Mn1—N4—C14 70.0 (4) N3—C9—C10—C11 −172.6 (4)
N3—Mn1—N4—C14 173.0 (4) N4—C10—C11—C12 −3.0 (7)
N2—Mn1—N4—C14 −168.5 (4) C9—C10—C11—C12 176.0 (4)
N5—Mn1—N4—C14 −5.4 (4) C10—C11—C12—C13 0.9 (7)
N1—Mn1—N4—C14 13.7 (6) C11—C12—C13—C14 1.8 (7)
O1—Mn1—N4—C10 92.2 (3) C10—N4—C14—C13 0.8 (7)
N6—Mn1—N4—C10 −106.4 (3) Mn1—N4—C14—C13 −175.4 (3)
N3—Mn1—N4—C10 −3.4 (3) C12—C13—C14—N4 −2.8 (7)
N2—Mn1—N4—C10 15.2 (3) C19—N5—C15—C16 −1.0 (6)
N5—Mn1—N4—C10 178.2 (3) Mn1—N5—C15—C16 167.8 (3)
N1—Mn1—N4—C10 −162.6 (3) N5—C15—C16—C17 1.6 (7)
O1—Mn1—N5—C15 3.9 (3) C15—C16—C17—C18 0.4 (7)
N6—Mn1—N5—C15 −172.5 (4) C16—C17—C18—C19 −2.8 (7)
N3—Mn1—N5—C15 −88.6 (4) C15—N5—C19—C18 −1.6 (6)
N2—Mn1—N5—C15 73.1 (4) Mn1—N5—C19—C18 −171.9 (3)
N1—Mn1—N5—C15 101.5 (3) C15—N5—C19—C20 176.5 (4)
N4—Mn1—N5—C15 −86.2 (3) Mn1—N5—C19—C20 6.1 (4)
O1—Mn1—N5—C19 173.0 (3) C17—C18—C19—N5 3.5 (7)
N6—Mn1—N5—C19 −3.3 (3) C17—C18—C19—C20 −174.5 (4)
N3—Mn1—N5—C19 80.6 (3) C21—N6—C20—C19 −177.9 (4)
N2—Mn1—N5—C19 −117.7 (3) Mn1—N6—C20—C19 3.6 (5)
N1—Mn1—N5—C19 −89.3 (3) N5—C19—C20—N6 −6.9 (6)
N4—Mn1—N5—C19 82.9 (3) C18—C19—C20—N6 171.2 (4)
O1—Mn1—N6—C20 −10.7 (5) C20—N6—C21—C21i 102.6 (5)
N3—Mn1—N6—C20 −141.9 (3) Mn1—N6—C21—C21i −79.2 (5)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O3ii 0.84 (1) 1.95 (1) 2.787 (5) 177 (6)
O1—H1B···O7iii 0.84 (1) 1.92 (2) 2.721 (6) 159 (6)

Symmetry codes: (ii) x+1, y, z; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2727).

References

  1. Baar, C. R., Jennings, M. C. & Puddephatt, R. J. (2001). Organometallics, 20, 3459–3465.
  2. Bowyer, P. K., Porter, K. A., Rae, A. D., Willis, A. C. & Wild, S. B. (1998). Chem. Commun. pp. 1153–1154.
  3. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m64–m65. [DOI] [PMC free article] [PubMed]
  6. Nguyen, Q. T. & Jeong, J. H. (2006). Polyhedron, 25, 1787–1790.
  7. Schoumacker, S., Hamelin, O., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem.42, 8110–8116. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003764/ng2727sup1.cif

e-66-0m255-sup1.cif (26.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003764/ng2727Isup2.hkl

e-66-0m255-Isup2.hkl (316.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES