Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 6;66(Pt 3):o562. doi: 10.1107/S1600536810004216

4-(4-Chloro­phen­yl)piperidin-4-ol

Grzegorz Dutkiewicz a, B P Siddaraju b, H S Yathirajan c, M S Siddegowda c, Maciej Kubicki a,*
PMCID: PMC2983646  PMID: 21580330

Abstract

In the title compound, C11H14ClNO, the piperidine ring adopts a chair conformation: the hydroxyl substituent and the N-bound H atom occupy the axial positions, while the benzene ring occupies the equatorial position. In the crystal, the mol­ecules are linked into a centrosymmetric tetra­mer through strong O—H⋯N and weak N—H⋯O hydrogen bonds; the N and O atoms act as both donor and acceptor for these inter­actions. The tetra­mers are further joined by hydrogen bonds into a layer parallel to (100).

Related literature

For related structures, see: De Camp & Ahmed (1972a ,b ); Friederich et al. (1993); Kimura & Okabayashi (1986). For details of the asymmetry parameters for chair conformations, see: Duax & Norton (1975). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-66-0o562-scheme1.jpg

Experimental

Crystal data

  • C11H14ClNO

  • M r = 211.68

  • Monoclinic, Inline graphic

  • a = 11.3706 (10) Å

  • b = 9.5204 (8) Å

  • c = 10.6164 (9) Å

  • β = 108.458 (8)°

  • V = 1090.13 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.83 mm−1

  • T = 295 K

  • 0.3 × 0.2 × 0.15 mm

Data collection

  • Oxford Diffraction SuperNova, single source at offset, Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.401, T max = 0.654

  • 4068 measured reflections

  • 2190 independent reflections

  • 2014 reflections with I > 2σ(I)

  • R int = 0.011

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.111

  • S = 1.07

  • 2190 reflections

  • 183 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810004216/is2520sup1.cif

e-66-0o562-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004216/is2520Isup2.hkl

e-66-0o562-Isup2.hkl (105.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.89 (2) 2.41 (2) 3.2036 (16) 147.2 (17)
O4—H4A⋯N1ii 0.84 (2) 1.97 (2) 2.8089 (17) 174 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BPS thanks R. L. FineChem, Bangalore, India, for the gift of a sample of the title compound.

supplementary crystallographic information

Comment

The title compound, (1, Scheme 1), 4-(4-chlorophenyl)piperidin-4-ol is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (neuroleptic drug used to treat psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide which is effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease.

The piperidine ring adopts an almost ideal chair conformation (Fig. 1); the asymmetry parameters (Duax & Norton, 1975) are all smaller than 2.5°. The hydroxy group and N—H hydrogen atom occupy the axial positions [torsion angles: C2—C3—C4—O4 -64.46 (15)°, C6—C5—C4—O4 60.81 (15)°, C5—C6—N1—H1 65.0 (13)°, and C3—C2—N1—H1 -64.8 (14)°]. Such a mutual conformation of hydroxyl and phenyl groups is very typical, in the Cambridge Database (Allen, 2002; ver. 5.30 of Nov. 2008, last update Sep. 2009) there are 65 crystal structures of six-membered saturated rings with both OH and aromatic substituent in one position, only in three of them the hydroxyl group adopts the equatorial position [two polymorphs of (±)-β-1,2,5-trimethyl-4-phenylpiperidin-4-ol (De Camp & Ahmed, 1972a,b), cis-1,4-bis(4-bromophenyl)-1,4-dimethoxycyclohexane (Friederich et al., 1993), and cis-1-phenyl-3-piperidinocyclohexan-1-ol hydrochloride (Kimura & Okabayashi, 1986)].

The relatively strong and directional O—H···N hydrogen bonds join the molecules of 1, related by two-fold screw axis, into the chains along [010] directions. These chains are interconnected by far weaker N—H···O hydrogen bonds. These two kinds of contacts form centrosymmetric tetramers of the molecules (Fig. 2). In the crystal structures there are the hydrogen-bonded layers of molecules, created by interconnecting chains, in the bc plane (Fig. 3a). There are no directional interactions between neighbouring layers (Fig. 3b).

Experimental

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. X-ray quality crystals were obtained by a slow evaporation from an ethyl acetate solution (m.p. 410–413 K).

Refinement

Hydrogen atoms were found in the subsequent difference Fourier maps, and freely refined.

Figures

Fig. 1.

Fig. 1.

Anisotropic ellipsoid representation of the compound 1 together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.

Fig. 2.

Fig. 2.

Hydrogen-bonded tetramer [symmetry codes: (i) x, 1/2 - y, 1/2 + z; (ii) 2 - x, 1 - y, 1 - z; (iii) 2 - x, 1/2 + y, 1/2 - z].

Fig. 3.

Fig. 3.

The packing of the molecules of 1. (a) Hydrogen-boded layer; (b) the packing as seen along the y-direction.

Crystal data

C11H14ClNO F(000) = 448
Mr = 211.68 Dx = 1.290 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 3304 reflections
a = 11.3706 (10) Å θ = 4.1–75.2°
b = 9.5204 (8) Å µ = 2.83 mm1
c = 10.6164 (9) Å T = 295 K
β = 108.458 (8)° Prism, yellow
V = 1090.13 (16) Å3 0.3 × 0.2 × 0.15 mm
Z = 4

Data collection

Oxford Diffraction SuperNova, single source at offset, Atlas diffractometer 2190 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2014 reflections with I > 2σ(I)
mirror Rint = 0.011
Detector resolution: 10.5357 pixels mm-1 θmax = 75.3°, θmin = 4.1°
ω scans h = −13→14
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −11→7
Tmin = 0.401, Tmax = 0.654 l = −12→13
4068 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.250P] where P = (Fo2 + 2Fc2)/3
2190 reflections (Δ/σ)max < 0.001
183 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.92832 (13) 0.42199 (14) 0.33836 (13) 0.0530 (3)
H1 0.8930 (19) 0.430 (2) 0.402 (2) 0.069 (5)*
C2 0.83116 (16) 0.40784 (17) 0.20917 (16) 0.0537 (4)
H21 0.8738 (17) 0.4069 (19) 0.1413 (18) 0.058 (5)*
H22 0.7767 (18) 0.491 (2) 0.1973 (18) 0.065 (5)*
C3 0.75467 (14) 0.27404 (16) 0.19461 (16) 0.0507 (3)
H31 0.7086 (19) 0.277 (2) 0.255 (2) 0.072 (6)*
H32 0.6977 (17) 0.2675 (19) 0.0997 (19) 0.061 (5)*
C4 0.83678 (12) 0.14272 (14) 0.22350 (12) 0.0414 (3)
O4 0.89540 (10) 0.13797 (11) 0.12224 (9) 0.0476 (3)
H4A 0.949 (2) 0.073 (2) 0.140 (2) 0.074 (6)*
C5 0.93538 (14) 0.16101 (17) 0.36010 (13) 0.0462 (3)
H51 0.9930 (16) 0.0777 (19) 0.3783 (16) 0.052 (4)*
H52 0.8963 (17) 0.1649 (19) 0.4293 (18) 0.058 (5)*
C6 1.00732 (15) 0.29679 (18) 0.36784 (15) 0.0534 (4)
H61 1.0557 (17) 0.2932 (19) 0.3036 (18) 0.059 (5)*
H62 1.0676 (18) 0.307 (2) 0.457 (2) 0.066 (5)*
C41 0.75873 (12) 0.01087 (15) 0.21490 (13) 0.0433 (3)
C42 0.76509 (17) −0.0736 (2) 0.32296 (16) 0.0604 (4)
H42 0.818 (2) −0.051 (2) 0.409 (2) 0.080 (6)*
C43 0.69364 (19) −0.1934 (2) 0.3105 (2) 0.0715 (5)
H43 0.699 (2) −0.251 (2) 0.384 (2) 0.084 (6)*
C44 0.61247 (15) −0.22890 (18) 0.18927 (19) 0.0600 (4)
Cl44 0.52022 (5) −0.37870 (6) 0.17414 (7) 0.0901 (2)
C45 0.60313 (16) −0.14761 (19) 0.07924 (18) 0.0601 (4)
H45 0.550 (2) −0.174 (2) −0.007 (2) 0.081 (6)*
C46 0.67646 (14) −0.02996 (18) 0.09244 (15) 0.0536 (4)
H46 0.6735 (18) 0.028 (2) 0.014 (2) 0.072 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0619 (8) 0.0540 (7) 0.0485 (7) −0.0073 (6) 0.0250 (6) −0.0050 (5)
C2 0.0587 (9) 0.0478 (8) 0.0548 (8) 0.0021 (7) 0.0181 (7) 0.0037 (6)
C3 0.0468 (7) 0.0509 (8) 0.0539 (8) 0.0038 (6) 0.0152 (6) 0.0030 (6)
C4 0.0446 (7) 0.0485 (7) 0.0339 (6) 0.0023 (5) 0.0163 (5) 0.0033 (5)
O4 0.0558 (6) 0.0550 (6) 0.0377 (5) 0.0044 (5) 0.0227 (4) 0.0064 (4)
C5 0.0492 (7) 0.0539 (8) 0.0356 (6) −0.0010 (6) 0.0136 (5) 0.0032 (5)
C6 0.0508 (8) 0.0627 (9) 0.0451 (7) −0.0073 (7) 0.0129 (6) −0.0003 (7)
C41 0.0435 (6) 0.0479 (7) 0.0407 (6) 0.0032 (6) 0.0167 (5) 0.0004 (5)
C42 0.0649 (10) 0.0668 (10) 0.0459 (8) −0.0133 (8) 0.0123 (7) 0.0086 (7)
C43 0.0746 (11) 0.0722 (12) 0.0672 (10) −0.0159 (9) 0.0216 (9) 0.0162 (9)
C44 0.0495 (8) 0.0533 (9) 0.0805 (11) −0.0037 (7) 0.0253 (8) −0.0041 (8)
Cl44 0.0732 (3) 0.0695 (3) 0.1295 (5) −0.0240 (2) 0.0349 (3) −0.0071 (3)
C45 0.0515 (8) 0.0656 (10) 0.0609 (9) −0.0039 (7) 0.0145 (7) −0.0124 (8)
C46 0.0540 (8) 0.0600 (9) 0.0453 (7) −0.0006 (7) 0.0138 (6) −0.0004 (7)

Geometric parameters (Å, °)

N1—C6 1.465 (2) C5—H52 0.972 (19)
N1—C2 1.470 (2) C6—H61 1.003 (19)
N1—H1 0.89 (2) C6—H62 0.99 (2)
C2—C3 1.522 (2) C41—C42 1.384 (2)
C2—H21 0.987 (19) C41—C46 1.395 (2)
C2—H22 0.99 (2) C42—C43 1.382 (3)
C3—C4 1.5322 (19) C42—H42 0.95 (2)
C3—H31 0.95 (2) C43—C44 1.368 (3)
C3—H32 1.013 (18) C43—H43 0.94 (2)
C4—O4 1.4337 (15) C44—C45 1.377 (3)
C4—C41 1.5233 (19) C44—Cl44 1.7473 (17)
C4—C5 1.5365 (18) C45—C46 1.377 (2)
O4—H4A 0.84 (2) C45—H45 0.96 (2)
C5—C6 1.518 (2) C46—H46 0.99 (2)
C5—H51 1.008 (17)
C6—N1—C2 110.71 (12) C4—C5—H52 110.2 (11)
C6—N1—H1 107.4 (13) H51—C5—H52 108.1 (14)
C2—N1—H1 109.3 (13) N1—C6—C5 113.44 (13)
N1—C2—C3 114.07 (13) N1—C6—H61 108.3 (10)
N1—C2—H21 106.5 (10) C5—C6—H61 109.6 (10)
C3—C2—H21 108.4 (11) N1—C6—H62 108.6 (11)
N1—C2—H22 107.6 (11) C5—C6—H62 109.5 (11)
C3—C2—H22 110.0 (11) H61—C6—H62 107.2 (15)
H21—C2—H22 110.3 (15) C42—C41—C46 117.02 (14)
C2—C3—C4 111.72 (12) C42—C41—C4 123.54 (13)
C2—C3—H31 109.2 (13) C46—C41—C4 119.44 (12)
C4—C3—H31 108.6 (12) C43—C42—C41 121.70 (15)
C2—C3—H32 108.5 (10) C43—C42—H42 117.1 (13)
C4—C3—H32 107.8 (10) C41—C42—H42 121.2 (13)
H31—C3—H32 111.1 (15) C44—C43—C42 119.67 (16)
O4—C4—C41 109.23 (10) C44—C43—H43 119.2 (14)
O4—C4—C3 105.91 (11) C42—C43—H43 121.1 (14)
C41—C4—C3 110.72 (11) C43—C44—C45 120.47 (16)
O4—C4—C5 109.74 (11) C43—C44—Cl44 119.66 (14)
C41—C4—C5 112.78 (11) C45—C44—Cl44 119.87 (14)
C3—C4—C5 108.23 (12) C46—C45—C44 119.30 (15)
C4—O4—H4A 109.3 (14) C46—C45—H45 119.4 (13)
C6—C5—C4 111.55 (12) C44—C45—H45 121.3 (13)
C6—C5—H51 110.7 (10) C45—C46—C41 121.82 (15)
C4—C5—H51 109.1 (9) C45—C46—H46 120.8 (12)
C6—C5—H52 107.1 (11) C41—C46—H46 117.4 (12)
C6—N1—C2—C3 53.23 (17) O4—C4—C41—C46 −49.35 (16)
N1—C2—C3—C4 −54.44 (18) C3—C4—C41—C46 66.91 (16)
C2—C3—C4—O4 −64.46 (15) C5—C4—C41—C46 −171.65 (13)
C2—C3—C4—C41 177.25 (12) C46—C41—C42—C43 0.2 (3)
C2—C3—C4—C5 53.16 (15) C4—C41—C42—C43 −179.21 (17)
O4—C4—C5—C6 60.81 (15) C41—C42—C43—C44 −1.3 (3)
C41—C4—C5—C6 −177.17 (11) C42—C43—C44—C45 1.2 (3)
C3—C4—C5—C6 −54.33 (15) C42—C43—C44—Cl44 −178.91 (16)
C2—N1—C6—C5 −54.19 (16) C43—C44—C45—C46 0.0 (3)
C4—C5—C6—N1 56.56 (16) Cl44—C44—C45—C46 −179.90 (13)
O4—C4—C41—C42 130.07 (15) C44—C45—C46—C41 −1.1 (3)
C3—C4—C41—C42 −113.68 (16) C42—C41—C46—C45 1.0 (2)
C5—C4—C41—C42 7.76 (19) C4—C41—C46—C45 −179.54 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4i 0.89 (2) 2.41 (2) 3.2036 (16) 147.2 (17)
O4—H4A···N1ii 0.84 (2) 1.97 (2) 2.8089 (17) 174 (2)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2520).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  3. De Camp, W. H. & Ahmed, F. R. (1972a). Acta Cryst. B28, 1796–1800.
  4. De Camp, W. H. & Ahmed, F. R. (1972b). Acta Cryst. B28, 3484–3489.
  5. Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures New York: Plenum.
  6. Friederich, R., Nieger, M. & Vögtle, F. (1993). Chem. Ber.126, 1723–1732.
  7. Kimura, M. & Okabayashi, I. (1986). J. Heterocycl. Chem.23, 1287–1289.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  9. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd. Yarnton, England.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Siemens (1989). Stereochemical Workstation Operation Manual Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810004216/is2520sup1.cif

e-66-0o562-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810004216/is2520Isup2.hkl

e-66-0o562-Isup2.hkl (105.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES