Abstract
In the title compound, C6H9N2 +·C6H4NO2 −, the 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.023 (2) Å. In the crystal, the cations and anions are linked via strong N—H⋯O hydrogen bonds, forming a two dimensional network parallel to (100). In addition, π⋯π interactions involving the pyridinium and pyridine rings, with centroid–centroid distances of 3.6383 (8) Å, are observed.
Related literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 ▶); Katritzky et al. (1996 ▶). For nicotinic acid, see: Athimoolam & Rajaram (2005 ▶); Lorenzen et al. (2001 ▶); Gielen et al. (1992 ▶); Kim et al. (2004 ▶). For a related structure, see: Nahringbauer & Kvick (1977 ▶). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 ▶); Jeffrey (1997 ▶); Scheiner (1997 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶). For bond-length data, see: Allen et al. (1987 ▶).
Experimental
Crystal data
C6H9N2 +·C6H4NO2 −
M r = 231.25
Monoclinic,
a = 9.4877 (3) Å
b = 11.1403 (3) Å
c = 11.7611 (3) Å
β = 110.113 (2)°
V = 1167.29 (6) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 296 K
0.63 × 0.11 × 0.11 mm
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.944, T max = 0.990
14482 measured reflections
3870 independent reflections
2240 reflections with I > 2σ(I)
R int = 0.026
Refinement
R[F 2 > 2σ(F 2)] = 0.050
wR(F 2) = 0.144
S = 1.05
3870 reflections
195 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.20 e Å−3
Δρmin = −0.20 e Å−3
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005970/sj2728sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005970/sj2728Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1N1⋯O2i | 0.988 (16) | 1.703 (16) | 2.6899 (15) | 176.8 (16) |
| N2—H1N2⋯O2ii | 0.883 (16) | 1.999 (16) | 2.8756 (17) | 171.7 (15) |
| N2—H2N2⋯O1i | 0.936 (18) | 1.878 (18) | 2.8122 (17) | 176.6 (17) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
supplementary crystallographic information
Comment
Pyridine and its derivatives play important roles in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Nicotinic acid (vitamin B3), known as niacin, is a lipid lowering agent widely used to treat hypertriglyceridemia by the inhibition of lipolysis in adipose tissue (Athimoolam & Rajaram, 2005). The nicotinic acid complex 5-methylpyrazine-2-carboxylic acid-4-oxide is a commonly used drug for the treatment of hypercholesterolemia (Lorenzen et al., 2001). Coordination complexes of nicotinic acid with metals such as Sn possess antitumour activity greater than the well known cisplatin or doxorubicin (Gielen et al., 1992). The enzyme nicotinic acid mononucleotide adenyltransferase is essential for the synthesis of nicotinamide adenine dinucleotide in all living cells and is a potential target for antibiotics (Kim et al., 2004). Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.
The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one nicotinate anion. The proton transfer from the carboxyl group to atom N1 of 2-amino-5-methylpyridine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 122.61 (11)°, compared to the corresponding angle of 117.4° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.023 (2)Å for atom C6. The bond lengths are normal (Allen et al., 1987).
In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O2 and N2—H2N2···O1 hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The intermolecular N2—H1N2···O2 hydrogen bonds connect these molecules into 2-dimensional networks parallel to the (100)-plane (see Table 1). The crystal structure is further stabilized by π···π interactions involving the pyridine (C7–C11/N3) and pyridinium (C1–C5/N1) rings, with centroid to centroid distance of 3.6383 (8)Å [symmetry code: 1-x, 1-y, 1-z].
Experimental
A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and nicotinic acid (62 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.
Refinement
The methyl H atoms were positioned geometrically and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group. The remaining H atoms were located in a difference map and refined freely [N–H = 0.883 (16)–0.988 (16)Å, C–H = 0.946 (13)–1.015 (17)Å].
Figures
Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.
Crystal data
| C6H9N2+·C6H4NO2− | F(000) = 488 |
| Mr = 231.25 | Dx = 1.316 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 4062 reflections |
| a = 9.4877 (3) Å | θ = 2.6–26.7° |
| b = 11.1403 (3) Å | µ = 0.09 mm−1 |
| c = 11.7611 (3) Å | T = 296 K |
| β = 110.113 (2)° | Needle, colourless |
| V = 1167.29 (6) Å3 | 0.63 × 0.11 × 0.11 mm |
| Z = 4 |
Data collection
| Bruker SMART APEXII CCD area-detector diffractometer | 3870 independent reflections |
| Radiation source: fine-focus sealed tube | 2240 reflections with I > 2σ(I) |
| graphite | Rint = 0.026 |
| φ and ω scans | θmax = 31.6°, θmin = 2.3° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −13→13 |
| Tmin = 0.944, Tmax = 0.990 | k = −15→16 |
| 14482 measured reflections | l = −17→17 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.144 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0668P)2 + 0.0299P] where P = (Fo2 + 2Fc2)/3 |
| 3870 reflections | (Δ/σ)max < 0.001 |
| 195 parameters | Δρmax = 0.20 e Å−3 |
| 0 restraints | Δρmin = −0.20 e Å−3 |
Special details
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.02188 (12) | 0.19316 (10) | 0.05859 (9) | 0.0442 (3) | |
| N2 | −0.10328 (14) | 0.22434 (12) | 0.19337 (12) | 0.0585 (3) | |
| C1 | −0.00012 (14) | 0.16474 (11) | 0.16305 (10) | 0.0442 (3) | |
| C2 | 0.08966 (14) | 0.07300 (12) | 0.23423 (12) | 0.0491 (3) | |
| C3 | 0.19225 (14) | 0.01646 (12) | 0.19651 (12) | 0.0503 (3) | |
| C4 | 0.21339 (13) | 0.04715 (12) | 0.08710 (11) | 0.0478 (3) | |
| C5 | 0.12592 (14) | 0.13727 (12) | 0.02171 (11) | 0.0459 (3) | |
| C6 | 0.33142 (17) | −0.01226 (17) | 0.04856 (14) | 0.0688 (4) | |
| H6A | 0.3313 | 0.0225 | −0.0262 | 0.103* | |
| H6B | 0.3105 | −0.0966 | 0.0373 | 0.103* | |
| H6C | 0.4280 | −0.0007 | 0.1098 | 0.103* | |
| O1 | 0.72673 (12) | 0.39748 (10) | 1.02919 (8) | 0.0659 (3) | |
| O2 | 0.86277 (12) | 0.36701 (9) | 0.91118 (8) | 0.0617 (3) | |
| N3 | 0.68920 (14) | 0.67197 (11) | 0.70931 (11) | 0.0599 (3) | |
| C7 | 0.58423 (16) | 0.73306 (14) | 0.73619 (15) | 0.0627 (4) | |
| C8 | 0.53402 (17) | 0.70341 (14) | 0.82858 (16) | 0.0661 (4) | |
| C9 | 0.59378 (16) | 0.60379 (13) | 0.89864 (14) | 0.0559 (4) | |
| C10 | 0.70147 (13) | 0.53689 (11) | 0.87228 (11) | 0.0434 (3) | |
| C11 | 0.74469 (15) | 0.57565 (12) | 0.77763 (12) | 0.0514 (3) | |
| C12 | 0.76845 (14) | 0.42525 (11) | 0.94349 (11) | 0.0462 (3) | |
| H2A | 0.0757 (14) | 0.0528 (11) | 0.3103 (13) | 0.053 (4)* | |
| H3A | 0.2576 (15) | −0.0480 (13) | 0.2476 (13) | 0.059 (4)* | |
| H5A | 0.1359 (14) | 0.1651 (11) | −0.0511 (12) | 0.047 (3)* | |
| H7A | 0.5424 (18) | 0.8056 (15) | 0.6832 (15) | 0.076 (5)* | |
| H8A | 0.458 (2) | 0.7512 (15) | 0.8436 (15) | 0.082 (5)* | |
| H9A | 0.5651 (16) | 0.5825 (13) | 0.9650 (15) | 0.069 (5)* | |
| H11A | 0.8211 (16) | 0.5323 (13) | 0.7567 (12) | 0.061 (4)* | |
| H1N1 | −0.0397 (17) | 0.2561 (14) | 0.0051 (14) | 0.069 (4)* | |
| H1N2 | −0.1231 (16) | 0.1988 (13) | 0.2573 (15) | 0.065 (4)* | |
| H2N2 | −0.159 (2) | 0.2841 (16) | 0.1413 (16) | 0.081 (5)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0485 (5) | 0.0474 (6) | 0.0391 (5) | 0.0001 (5) | 0.0180 (4) | 0.0027 (5) |
| N2 | 0.0715 (8) | 0.0654 (8) | 0.0503 (6) | 0.0121 (6) | 0.0358 (6) | 0.0098 (6) |
| C1 | 0.0494 (6) | 0.0474 (7) | 0.0389 (6) | −0.0066 (5) | 0.0191 (5) | −0.0013 (5) |
| C2 | 0.0515 (7) | 0.0553 (8) | 0.0425 (6) | −0.0048 (6) | 0.0186 (5) | 0.0082 (6) |
| C3 | 0.0462 (7) | 0.0532 (8) | 0.0502 (7) | −0.0018 (6) | 0.0150 (6) | 0.0085 (6) |
| C4 | 0.0437 (6) | 0.0549 (8) | 0.0461 (7) | −0.0036 (6) | 0.0171 (5) | −0.0009 (6) |
| C5 | 0.0468 (7) | 0.0558 (8) | 0.0380 (6) | −0.0039 (6) | 0.0183 (5) | 0.0002 (6) |
| C6 | 0.0611 (8) | 0.0880 (11) | 0.0618 (9) | 0.0186 (8) | 0.0268 (7) | 0.0076 (8) |
| O1 | 0.0818 (7) | 0.0743 (7) | 0.0557 (6) | 0.0160 (5) | 0.0417 (5) | 0.0135 (5) |
| O2 | 0.0788 (6) | 0.0671 (6) | 0.0499 (5) | 0.0249 (5) | 0.0358 (5) | 0.0115 (4) |
| N3 | 0.0668 (7) | 0.0543 (7) | 0.0576 (7) | 0.0011 (6) | 0.0199 (6) | 0.0071 (6) |
| C7 | 0.0590 (8) | 0.0479 (8) | 0.0726 (10) | −0.0014 (7) | 0.0117 (7) | 0.0052 (7) |
| C8 | 0.0556 (8) | 0.0504 (8) | 0.0954 (12) | 0.0041 (7) | 0.0299 (8) | −0.0050 (8) |
| C9 | 0.0571 (8) | 0.0506 (8) | 0.0680 (9) | −0.0019 (6) | 0.0318 (7) | −0.0043 (7) |
| C10 | 0.0427 (6) | 0.0455 (7) | 0.0425 (6) | −0.0028 (5) | 0.0154 (5) | −0.0048 (5) |
| C11 | 0.0545 (7) | 0.0530 (8) | 0.0495 (7) | 0.0018 (6) | 0.0214 (6) | 0.0005 (6) |
| C12 | 0.0519 (7) | 0.0514 (8) | 0.0376 (6) | 0.0001 (6) | 0.0185 (5) | −0.0050 (5) |
Geometric parameters (Å, °)
| N1—C1 | 1.3526 (14) | C6—H6B | 0.9600 |
| N1—C5 | 1.3582 (16) | C6—H6C | 0.9600 |
| N1—H1N1 | 0.988 (16) | O1—C12 | 1.2420 (14) |
| N2—C1 | 1.3289 (17) | O2—C12 | 1.2650 (15) |
| N2—H1N2 | 0.883 (16) | N3—C7 | 1.331 (2) |
| N2—H2N2 | 0.936 (19) | N3—C11 | 1.3354 (17) |
| C1—C2 | 1.4073 (18) | C7—C8 | 1.368 (2) |
| C2—C3 | 1.3558 (18) | C7—H7A | 1.015 (17) |
| C2—H2A | 0.974 (14) | C8—C9 | 1.382 (2) |
| C3—C4 | 1.4108 (18) | C8—H8A | 0.964 (18) |
| C3—H3A | 1.002 (14) | C9—C10 | 1.3832 (18) |
| C4—C5 | 1.3598 (18) | C9—H9A | 0.941 (16) |
| C4—C6 | 1.4989 (19) | C10—C11 | 1.3812 (17) |
| C5—H5A | 0.946 (13) | C10—C12 | 1.5121 (18) |
| C6—H6A | 0.9600 | C11—H11A | 0.970 (15) |
| C1—N1—C5 | 122.61 (11) | H6A—C6—H6B | 109.5 |
| C1—N1—H1N1 | 120.1 (8) | C4—C6—H6C | 109.5 |
| C5—N1—H1N1 | 117.3 (8) | H6A—C6—H6C | 109.5 |
| C1—N2—H1N2 | 117.4 (10) | H6B—C6—H6C | 109.5 |
| C1—N2—H2N2 | 119.0 (10) | C7—N3—C11 | 116.12 (13) |
| H1N2—N2—H2N2 | 123.2 (14) | N3—C7—C8 | 123.94 (14) |
| N2—C1—N1 | 118.99 (12) | N3—C7—H7A | 115.3 (9) |
| N2—C1—C2 | 123.65 (11) | C8—C7—H7A | 120.7 (9) |
| N1—C1—C2 | 117.35 (11) | C7—C8—C9 | 118.93 (14) |
| C3—C2—C1 | 119.90 (12) | C7—C8—H8A | 120.1 (10) |
| C3—C2—H2A | 122.2 (7) | C9—C8—H8A | 120.9 (10) |
| C1—C2—H2A | 117.9 (7) | C8—C9—C10 | 118.82 (14) |
| C2—C3—C4 | 121.95 (13) | C8—C9—H9A | 121.4 (9) |
| C2—C3—H3A | 120.2 (8) | C10—C9—H9A | 119.8 (9) |
| C4—C3—H3A | 117.9 (8) | C11—C10—C9 | 117.33 (13) |
| C5—C4—C3 | 116.37 (12) | C11—C10—C12 | 121.26 (11) |
| C5—C4—C6 | 121.94 (12) | C9—C10—C12 | 121.41 (12) |
| C3—C4—C6 | 121.61 (12) | N3—C11—C10 | 124.84 (13) |
| N1—C5—C4 | 121.81 (12) | N3—C11—H11A | 114.9 (8) |
| N1—C5—H5A | 116.7 (8) | C10—C11—H11A | 120.2 (8) |
| C4—C5—H5A | 121.5 (8) | O1—C12—O2 | 124.88 (12) |
| C4—C6—H6A | 109.5 | O1—C12—C10 | 117.64 (11) |
| C4—C6—H6B | 109.5 | O2—C12—C10 | 117.48 (10) |
| C5—N1—C1—N2 | 179.41 (11) | N3—C7—C8—C9 | −0.5 (2) |
| C5—N1—C1—C2 | −0.22 (18) | C7—C8—C9—C10 | −0.5 (2) |
| N2—C1—C2—C3 | 179.87 (12) | C8—C9—C10—C11 | 1.1 (2) |
| N1—C1—C2—C3 | −0.52 (18) | C8—C9—C10—C12 | −178.48 (12) |
| C1—C2—C3—C4 | 0.4 (2) | C7—N3—C11—C10 | −0.3 (2) |
| C2—C3—C4—C5 | 0.46 (19) | C9—C10—C11—N3 | −0.7 (2) |
| C2—C3—C4—C6 | 177.42 (13) | C12—C10—C11—N3 | 178.87 (12) |
| C1—N1—C5—C4 | 1.14 (19) | C11—C10—C12—O1 | 178.34 (12) |
| C3—C4—C5—N1 | −1.21 (18) | C9—C10—C12—O1 | −2.15 (19) |
| C6—C4—C5—N1 | −178.16 (12) | C11—C10—C12—O2 | −1.73 (19) |
| C11—N3—C7—C8 | 0.9 (2) | C9—C10—C12—O2 | 177.79 (12) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1N1···O2i | 0.988 (16) | 1.703 (16) | 2.6899 (15) | 176.8 (16) |
| N2—H1N2···O2ii | 0.883 (16) | 1.999 (16) | 2.8756 (17) | 171.7 (15) |
| N2—H2N2···O1i | 0.936 (18) | 1.878 (18) | 2.8122 (17) | 176.6 (17) |
Symmetry codes: (i) x−1, y, z−1; (ii) x−1, −y+1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2728).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764–o2767.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Gielen, M., Khloufi, A. E., Biesemans, M. & Willem, R. (1992). Polyhedron, 11, 1861–1868.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
- Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
- Kim, H.-L., Yoon, H.-J., Ha, J. Y., Lee, B. I., Lee, H. H., Mikami, B. & Suh, S. W. (2004). Acta Cryst. D60, 948–949. [DOI] [PubMed]
- Lorenzen, A., Stannek, C., Lang, H., Andrianov, V., Kalvinsh, I. & Schwabe, U. (2001). Mol. Pharmacol.59, 349–357. [DOI] [PubMed]
- Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.
- Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
- Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005970/sj2728sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005970/sj2728Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


