Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 27;66(Pt 3):o694. doi: 10.1107/S1600536810002667

Methyl 7-chloro-2-ethyl­sulfanyl-6-fluoro-4-oxo-4H-thio­chromene-3-carboxyl­ate

Yang Li a, Tao Xiao a,*, Dong-liang Liu a, Guang-yan Yu a
PMCID: PMC2983649  PMID: 21580435

Abstract

In the title compound, C13H10ClFO3S2, the two-ring system is essentially planar, the mean plane of the benzene ring being inclined at 6.0 (2)° to the plane of the remaining four atoms. The ethyl­sulfanyl group is almost coplanar with the two rings [dihedral angle = 6.4 (2)°], while the carboxyl­ate group is almost perpendicular to it [dihedral angle = 72.4 (2)°]. In the crystal structure, inter­molecular C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules in a stacked arrangement along the a axis.

Related literature

For related compounds containing a 4H-thio­chromen-4-one fragment, see: Adams et al. (1991); Nakazumi et al. (1992); Weiss et al. (2008). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-0o694-scheme1.jpg

Experimental

Crystal data

  • C13H10ClFO3S2

  • M r = 332.78

  • Triclinic, Inline graphic

  • a = 7.6740 (15) Å

  • b = 9.3880 (19) Å

  • c = 10.368 (2) Å

  • α = 85.18 (3)°

  • β = 80.93 (3)°

  • γ = 71.24 (3)°

  • V = 698.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.892, T max = 0.944

  • 2735 measured reflections

  • 2531 independent reflections

  • 1908 reflections with I > 2σ(I)

  • R int = 0.016

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.138

  • S = 1.00

  • 2531 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002667/zq2029sup1.cif

e-66-0o694-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002667/zq2029Isup2.hkl

e-66-0o694-Isup2.hkl (124.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.60 3.292 (4) 132
C13—H13C⋯Fii 0.96 2.52 3.144 (5) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound, methyl 7-chloro-2-(ethylsulfanyl)-6-fluoro-4-oxo-4H- thiochromene-3-carboxylate (I), is a new molecule which has a potential use as antifungal. We herein report its crystal structure. The molecular structure of (I) is shown in Fig. 1, and selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The molecule is essentially planar, the atoms C7, C8, C9 and S1 form a plane inclined at 6.0 (2)° with the mean plane of the phenyl ring. The ethylsulfanyl group is almost coplanar with the two rings while the carboxylate group is almost perpendicular. In the crystal structure, intermolecular C—H···O and C—H···F hydrogen bonds (Table 2) link the molecules in a stacked arrangement along the a axis (Fig. 2).

Experimental

CS2 (1.0 g, 13.1 mmol) was dropwise added to a solution of methyl 3-(4-chloro-3-fluorophenyl)-3-oxopropanoate (4 g, 17.3 mmol) in DMSO (20 ml) containing KOH (1 g, 17.8 mmol). The yellow solution was stirred for about 2 h at room temperature. Then bromoethane (1.9 g, 17.3 mmol) was dropwise added to the intermediate. After 3 h, the solution was poured into water (50 ml). The crystalline product was isolated by filtration, washed with water (300 ml). The crystals were obtained by dissolving (I) in acetone (20 ml) and slow evaporation of the solvent at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C13H10ClFO3S2 Z = 2
Mr = 332.78 F(000) = 340
Triclinic, P1 Dx = 1.583 Mg m3
Hall symbol: -P 1 Melting point: 421 K
a = 7.6740 (15) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.3880 (19) Å Cell parameters from 25 reflections
c = 10.368 (2) Å θ = 10–13°
α = 85.18 (3)° µ = 0.59 mm1
β = 80.93 (3)° T = 293 K
γ = 71.24 (3)° Block, colourless
V = 698.0 (2) Å3 0.20 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1908 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.016
graphite θmax = 25.3°, θmin = 2.0°
ω/2θ scans h = 0→9
Absorption correction: ψ scan (North et al., 1968) k = −10→11
Tmin = 0.892, Tmax = 0.944 l = −12→12
2735 measured reflections 3 standard reflections every 200 reflections
2531 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.085P)2] where P = (Fo2 + 2Fc2)/3
2531 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.32919 (13) 0.43804 (11) −0.25035 (9) 0.0614 (3)
F −0.0661 (3) 0.5608 (2) −0.2592 (2) 0.0679 (6)
S1 0.13971 (10) 0.07054 (9) 0.12622 (8) 0.0409 (3)
S2 −0.04493 (12) −0.08554 (10) 0.33572 (9) 0.0515 (3)
O1 −0.4369 (3) 0.3010 (3) 0.0513 (2) 0.0541 (6)
O2 −0.4884 (3) 0.2281 (3) 0.3453 (2) 0.0572 (7)
O3 −0.4571 (4) 0.0067 (3) 0.2676 (3) 0.0738 (8)
C1 0.0642 (4) 0.2176 (3) 0.0132 (3) 0.0353 (7)
C2 0.2053 (4) 0.2628 (3) −0.0640 (3) 0.0403 (7)
H2A 0.3289 0.2153 −0.0531 0.048*
C3 0.1606 (4) 0.3769 (3) −0.1554 (3) 0.0409 (7)
C4 −0.0260 (5) 0.4468 (4) −0.1690 (3) 0.0460 (8)
C5 −0.1641 (4) 0.4052 (3) −0.0954 (3) 0.0433 (8)
H5A −0.2871 0.4546 −0.1070 0.052*
C6 −0.1220 (4) 0.2881 (3) −0.0019 (3) 0.0357 (7)
C7 −0.2770 (4) 0.2453 (3) 0.0767 (3) 0.0394 (7)
C8 −0.2374 (4) 0.1375 (3) 0.1842 (3) 0.0364 (7)
C9 −0.0653 (4) 0.0524 (3) 0.2103 (3) 0.0359 (7)
C10 0.1994 (4) −0.1669 (4) 0.3475 (3) 0.0478 (8)
H10A 0.2680 −0.2038 0.2638 0.057*
H10B 0.2482 −0.0928 0.3750 0.057*
C11 0.2151 (5) −0.2962 (4) 0.4489 (4) 0.0616 (10)
H11A 0.3432 −0.3439 0.4593 0.092*
H11B 0.1659 −0.3683 0.4203 0.092*
H11C 0.1459 −0.2578 0.5310 0.092*
C12 −0.4059 (4) 0.1142 (4) 0.2676 (3) 0.0435 (8)
C13 −0.6523 (5) 0.2191 (5) 0.4322 (4) 0.0650 (11)
H13A −0.7010 0.3066 0.4843 0.097*
H13B −0.6200 0.1305 0.4882 0.097*
H13C −0.7445 0.2141 0.3815 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0607 (6) 0.0691 (6) 0.0557 (6) −0.0309 (5) 0.0054 (4) 0.0070 (4)
F 0.0703 (15) 0.0607 (13) 0.0659 (13) −0.0157 (11) −0.0153 (11) 0.0271 (11)
S1 0.0278 (4) 0.0440 (5) 0.0476 (5) −0.0082 (3) −0.0062 (3) 0.0060 (3)
S2 0.0359 (5) 0.0571 (6) 0.0557 (5) −0.0118 (4) −0.0047 (4) 0.0164 (4)
O1 0.0323 (12) 0.0591 (15) 0.0699 (16) −0.0121 (11) −0.0163 (11) 0.0109 (12)
O2 0.0491 (14) 0.0657 (16) 0.0583 (15) −0.0270 (12) 0.0139 (12) −0.0153 (12)
O3 0.0476 (15) 0.0571 (16) 0.119 (2) −0.0274 (13) 0.0101 (15) −0.0153 (16)
C1 0.0362 (16) 0.0339 (16) 0.0375 (16) −0.0114 (13) −0.0077 (13) −0.0044 (13)
C2 0.0356 (16) 0.0406 (17) 0.0454 (18) −0.0115 (14) −0.0061 (14) −0.0058 (14)
C3 0.0462 (18) 0.0416 (17) 0.0374 (16) −0.0179 (15) −0.0024 (14) −0.0040 (14)
C4 0.057 (2) 0.0418 (18) 0.0398 (18) −0.0144 (16) −0.0116 (16) 0.0019 (14)
C5 0.0384 (17) 0.0396 (18) 0.0499 (19) −0.0059 (14) −0.0125 (15) −0.0032 (15)
C6 0.0349 (16) 0.0340 (15) 0.0384 (16) −0.0088 (13) −0.0075 (13) −0.0052 (12)
C7 0.0306 (16) 0.0392 (17) 0.0467 (18) −0.0071 (13) −0.0068 (14) −0.0048 (14)
C8 0.0293 (15) 0.0395 (16) 0.0429 (17) −0.0133 (13) −0.0051 (13) −0.0050 (13)
C9 0.0346 (16) 0.0373 (16) 0.0369 (16) −0.0127 (13) −0.0044 (13) −0.0025 (13)
C10 0.0395 (18) 0.050 (2) 0.054 (2) −0.0131 (15) −0.0134 (15) 0.0088 (16)
C11 0.054 (2) 0.063 (2) 0.065 (2) −0.0148 (19) −0.0194 (19) 0.0168 (19)
C12 0.0283 (16) 0.0442 (18) 0.058 (2) −0.0108 (14) −0.0100 (14) 0.0046 (16)
C13 0.049 (2) 0.079 (3) 0.059 (2) −0.019 (2) 0.0107 (18) 0.002 (2)

Geometric parameters (Å, °)

Cl—C3 1.719 (3) C5—C6 1.394 (4)
F—C4 1.352 (4) C5—H5A 0.9300
S1—C9 1.726 (3) C6—C7 1.480 (4)
S1—C1 1.744 (3) C7—C8 1.441 (4)
S2—C9 1.744 (3) C8—C9 1.362 (4)
S2—C10 1.802 (3) C8—C12 1.505 (4)
O1—C7 1.231 (4) C10—C11 1.524 (4)
O2—C12 1.320 (4) C10—H10A 0.9700
O2—C13 1.448 (4) C10—H10B 0.9700
O3—C12 1.195 (4) C11—H11A 0.9600
C1—C6 1.396 (4) C11—H11B 0.9600
C1—C2 1.400 (4) C11—H11C 0.9600
C2—C3 1.363 (4) C13—H13A 0.9600
C2—H2A 0.9300 C13—H13B 0.9600
C3—C4 1.394 (5) C13—H13C 0.9600
C4—C5 1.349 (5)
C9—S1—C1 103.12 (15) C7—C8—C12 114.8 (3)
C9—S2—C10 106.87 (15) C8—C9—S1 124.2 (2)
C12—O2—C13 116.1 (3) C8—C9—S2 119.3 (2)
C6—C1—C2 120.8 (3) S1—C9—S2 116.45 (17)
C6—C1—S1 124.0 (2) C11—C10—S2 105.9 (2)
C2—C1—S1 115.1 (2) C11—C10—H10A 110.6
C3—C2—C1 119.7 (3) S2—C10—H10A 110.6
C3—C2—H2A 120.2 C11—C10—H10B 110.6
C1—C2—H2A 120.2 S2—C10—H10B 110.6
C2—C3—C4 118.9 (3) H10A—C10—H10B 108.7
C2—C3—Cl 121.1 (3) C10—C11—H11A 109.5
C4—C3—Cl 119.9 (3) C10—C11—H11B 109.5
C5—C4—F 120.0 (3) H11A—C11—H11B 109.5
C5—C4—C3 122.4 (3) C10—C11—H11C 109.5
F—C4—C3 117.5 (3) H11A—C11—H11C 109.5
C4—C5—C6 119.8 (3) H11B—C11—H11C 109.5
C4—C5—H5A 120.1 O3—C12—O2 123.8 (3)
C6—C5—H5A 120.1 O3—C12—C8 125.7 (3)
C5—C6—C1 118.4 (3) O2—C12—C8 110.4 (3)
C5—C6—C7 118.3 (3) O2—C13—H13A 109.5
C1—C6—C7 123.3 (3) O2—C13—H13B 109.5
O1—C7—C8 120.6 (3) H13A—C13—H13B 109.5
O1—C7—C6 120.7 (3) O2—C13—H13C 109.5
C8—C7—C6 118.7 (3) H13A—C13—H13C 109.5
C9—C8—C7 125.9 (3) H13B—C13—H13C 109.5
C9—C8—C12 119.1 (3)
C9—S1—C1—C6 −3.7 (3) C1—C6—C7—C8 7.3 (4)
C9—S1—C1—C2 176.1 (2) O1—C7—C8—C9 169.8 (3)
C6—C1—C2—C3 −0.2 (4) C6—C7—C8—C9 −10.5 (5)
S1—C1—C2—C3 180.0 (2) O1—C7—C8—C12 −6.3 (4)
C1—C2—C3—C4 0.5 (4) C6—C7—C8—C12 173.4 (3)
C1—C2—C3—Cl 178.9 (2) C7—C8—C9—S1 6.0 (5)
C2—C3—C4—C5 −0.3 (5) C12—C8—C9—S1 −178.0 (2)
Cl—C3—C4—C5 −178.8 (3) C7—C8—C9—S2 −173.7 (2)
C2—C3—C4—F 179.2 (3) C12—C8—C9—S2 2.3 (4)
Cl—C3—C4—F 0.7 (4) C1—S1—C9—C8 1.0 (3)
F—C4—C5—C6 −179.6 (3) C1—S1—C9—S2 −179.22 (16)
C3—C4—C5—C6 −0.2 (5) C10—S2—C9—C8 −176.9 (2)
C4—C5—C6—C1 0.5 (5) C10—S2—C9—S1 3.3 (2)
C4—C5—C6—C7 −179.8 (3) C9—S2—C10—C11 −175.0 (2)
C2—C1—C6—C5 −0.3 (4) C13—O2—C12—O3 −1.3 (5)
S1—C1—C6—C5 179.6 (2) C13—O2—C12—C8 −179.4 (3)
C2—C1—C6—C7 180.0 (3) C9—C8—C12—O3 −70.7 (5)
S1—C1—C6—C7 −0.1 (4) C7—C8—C12—O3 105.7 (4)
C5—C6—C7—O1 7.3 (4) C9—C8—C12—O2 107.4 (3)
C1—C6—C7—O1 −173.0 (3) C7—C8—C12—O2 −76.2 (3)
C5—C6—C7—C8 −172.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O1i 0.93 2.60 3.292 (4) 132
C13—H13C···Fii 0.96 2.52 3.144 (5) 123

Symmetry codes: (i) x+1, y, z; (ii) −x−1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2029).

References

  1. Adams, H., Bailey, N. A., Giles, P. R. & Marson, C. M. (1991). Acta Cryst. C47, 1332–1334.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Nakazumi, H., Watanabe, S. & Kitao, T. (1992). J. Chem. Res.212, 1616–1641.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Weiss, R., Bess, M., Huber, S. M. & Heinemann, F. W. (2008). J. Am. Chem. Soc.130, 4610–4617. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002667/zq2029sup1.cif

e-66-0o694-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002667/zq2029Isup2.hkl

e-66-0o694-Isup2.hkl (124.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES