Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 17;66(Pt 3):o639–o640. doi: 10.1107/S1600536810005556

4-Amino-3-ammonio­pyridinium dinitrate

Madhukar Hemamalini a, Hoong-Kun Fun a,*,
PMCID: PMC2983652  PMID: 21580395

Abstract

In the crystal structure of the title compound, C5H9N3 2+·2NO3 , the cations and anions are connected by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. The crystal structure is further stabilized by π⋯π inter­actions between pyridinium rings [centroid–centroid distance = 3.775 (4) Å].

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Abu Zuhri & Cox (1989). For related structures, see: Fun & Balasubramani (2009); Rubin-Preminger & Englert (2007); Qin & Wang (2009). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-0o639-scheme1.jpg

Experimental

Crystal data

  • C5H9N3 2+·2NO3

  • M r = 235.17

  • Monoclinic, Inline graphic

  • a = 12.3008 (5) Å

  • b = 10.5086 (5) Å

  • c = 7.1411 (3) Å

  • β = 97.546 (1)°

  • V = 915.09 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.65 × 0.37 × 0.28 mm

Data collection

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.906, T max = 0.958

  • 18234 measured reflections

  • 4796 independent reflections

  • 4129 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.096

  • S = 1.06

  • 4796 reflections

  • 181 parameters

  • All H-atom parameters refined

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005556/rz2419sup1.cif

e-66-0o639-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005556/rz2419Isup2.hkl

e-66-0o639-Isup2.hkl (230.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.874 (13) 2.001 (13) 2.7750 (7) 147.0 (12)
N2—H1N2⋯O5 0.935 (14) 2.105 (15) 2.9070 (8) 143.1 (12)
N2—H1N2⋯O2ii 0.935 (14) 2.211 (14) 2.7767 (7) 118.1 (11)
N2—H2N2⋯O3iii 0.881 (14) 2.193 (14) 3.0006 (7) 152.3 (12)
N2—H2N2⋯O3iv 0.881 (14) 2.482 (14) 2.9231 (7) 111.6 (11)
N3—H1N3⋯O4 0.844 (16) 2.054 (16) 2.8653 (8) 161.0 (14)
N3—H2N3⋯O6v 0.827 (12) 2.130 (12) 2.9442 (7) 168.0 (12)
N2—H3N2⋯O5iv 0.871 (12) 1.963 (12) 2.8227 (8) 169.0 (12)
N2—H3N2⋯O6iv 0.871 (12) 2.494 (12) 3.1217 (7) 129.5 (10)
C2—H2⋯O3iii 0.910 (11) 2.439 (11) 3.0489 (8) 124.6 (9)
C2—H2⋯O1vi 0.910 (11) 2.552 (11) 3.1834 (8) 127.0 (9)
C2—H2⋯O3iv 0.910 (11) 2.570 (11) 3.1277 (8) 120.2 (9)
C3—H3⋯O6i 0.979 (12) 2.253 (12) 3.1170 (8) 146.6 (10)
C4—H4⋯O4v 0.926 (12) 2.559 (12) 3.4274 (8) 156.3 (10)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). In particular, diaminopyridines play an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007), 3,4-diaminopyridinium hydrogen succinate (Fun & Balasubramani, 2009) and 4-amino-3-ammoniopyridinium dichloride (Qin & Wang, 2009) have been reported in the literature. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title salt is presented here.

The asymmetric unit of the title compound (Fig. 1) consists of a diprotonated 3,4-diaminopyridine cation and two nitrate anions. In the 3,4-diaminopyridinium cation, protonation at atom N1 has lead to a slight increase in the C2—N1—C3 angle to 121.45 (5)° compared to those of an unprotonated structure (Rubin-Preminger & Englert, 2007). The 3-amino N atom (N2) is also protonated. This type of protonation has also been observed in the crystal structure of 4-amino-3-ammoniopyridinium dichloride (Qin & Wang, 2009). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the anions and cations are connected by intermolecular strong N—H···O and weak C—H···O hydrogen bonds, forming a three-dimensional network. The crystal structure is further stabilized by π···π interactions between the pyridinium rings (N1/C1–C5) [centroid-to-centroid (x, 3/2-y, -1/2+z and x, 3/2-y, 1/2+z) distance = 3.775 (4)Å].

Experimental

To a hot methanol solution (20 ml) of 3,4-diaminopyridine (27 mg, Aldrich) was added a few drops of nitric acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement

All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.827 (13) - 0.934 (15)Å, C—H = 0.91 (11) - 0.978 (12) Å].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.

Crystal data

C5H9N32+·2NO3 F(000) = 488
Mr = 235.17 Dx = 1.707 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9066 reflections
a = 12.3008 (5) Å θ = 3.3–37.5°
b = 10.5086 (5) Å µ = 0.16 mm1
c = 7.1411 (3) Å T = 100 K
β = 97.546 (1)° Block, colourless
V = 915.09 (7) Å3 0.65 × 0.37 × 0.28 mm
Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer 4796 independent reflections
Radiation source: fine-focus sealed tube 4129 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 37.6°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −21→20
Tmin = 0.906, Tmax = 0.958 k = −17→17
18234 measured reflections l = −10→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.1242P] where P = (Fo2 + 2Fc2)/3
4796 reflections (Δ/σ)max = 0.001
181 parameters Δρmax = 0.66 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.18671 (4) 0.78615 (5) 0.42895 (7) 0.01262 (9)
N2 0.17802 (4) 0.43778 (5) 0.39491 (7) 0.01067 (8)
N3 0.39285 (4) 0.50229 (5) 0.29631 (9) 0.01537 (10)
C1 0.21985 (4) 0.56747 (5) 0.39298 (8) 0.00969 (9)
C2 0.15309 (5) 0.66472 (5) 0.43549 (8) 0.01097 (9)
C3 0.28652 (5) 0.81587 (6) 0.38180 (9) 0.01366 (10)
C4 0.35654 (5) 0.72296 (6) 0.33967 (9) 0.01302 (10)
C5 0.32559 (5) 0.59285 (5) 0.34337 (8) 0.01084 (9)
N4 0.07181 (4) 0.08353 (5) 0.36523 (7) 0.01101 (8)
O1 0.03294 (4) 0.19166 (5) 0.37605 (8) 0.01831 (10)
O2 0.12811 (4) 0.03373 (5) 0.50656 (7) 0.01704 (9)
O3 0.05534 (4) 0.02013 (5) 0.21333 (7) 0.01419 (8)
N5 0.34927 (4) 0.17325 (5) 0.27032 (7) 0.01208 (9)
O4 0.41357 (4) 0.23657 (5) 0.38374 (8) 0.01818 (9)
O5 0.25728 (4) 0.21885 (5) 0.20404 (8) 0.01714 (9)
O6 0.37509 (4) 0.06465 (4) 0.21848 (7) 0.01541 (9)
H2 0.0849 (9) 0.6508 (11) 0.4677 (16) 0.015 (2)*
H3 0.3044 (10) 0.9065 (11) 0.3781 (17) 0.019 (3)*
H4 0.4245 (10) 0.7452 (11) 0.3072 (17) 0.018 (2)*
H1N1 0.1431 (11) 0.8483 (12) 0.4515 (19) 0.024 (3)*
H1N2 0.1923 (12) 0.3916 (14) 0.289 (2) 0.036 (3)*
H2N2 0.1064 (11) 0.4422 (13) 0.393 (2) 0.030 (3)*
H1N3 0.3832 (12) 0.4256 (15) 0.325 (2) 0.036 (4)*
H2N3 0.4547 (10) 0.5255 (11) 0.2771 (18) 0.022 (3)*
H3N2 0.2027 (10) 0.3986 (12) 0.4994 (17) 0.022 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0158 (2) 0.00975 (18) 0.01202 (19) 0.00126 (15) 0.00078 (15) −0.00025 (14)
N2 0.01164 (19) 0.00934 (17) 0.01122 (19) −0.00130 (14) 0.00219 (15) −0.00007 (14)
N3 0.0131 (2) 0.0132 (2) 0.0209 (2) 0.00103 (16) 0.00640 (18) 0.00051 (17)
C1 0.01061 (19) 0.00874 (19) 0.00967 (19) −0.00068 (14) 0.00112 (15) 0.00042 (15)
C2 0.0119 (2) 0.0106 (2) 0.0102 (2) 0.00047 (15) 0.00092 (16) 0.00022 (15)
C3 0.0177 (2) 0.0110 (2) 0.0120 (2) −0.00248 (17) 0.00083 (18) 0.00069 (17)
C4 0.0137 (2) 0.0124 (2) 0.0130 (2) −0.00291 (17) 0.00193 (17) 0.00085 (16)
C5 0.0109 (2) 0.0114 (2) 0.0102 (2) −0.00046 (15) 0.00145 (16) 0.00062 (16)
N4 0.01104 (18) 0.01129 (18) 0.01079 (18) 0.00072 (14) 0.00182 (14) −0.00057 (14)
O1 0.0205 (2) 0.01273 (19) 0.0212 (2) 0.00626 (15) 0.00077 (17) −0.00324 (15)
O2 0.0227 (2) 0.0157 (2) 0.01131 (18) 0.00386 (16) −0.00316 (16) 0.00055 (14)
O3 0.01560 (19) 0.01632 (19) 0.01055 (17) 0.00110 (14) 0.00129 (14) −0.00395 (14)
N5 0.01301 (19) 0.01063 (18) 0.0129 (2) −0.00098 (14) 0.00270 (15) −0.00080 (14)
O4 0.0181 (2) 0.0161 (2) 0.0189 (2) −0.00316 (15) −0.00271 (16) −0.00424 (16)
O5 0.01401 (19) 0.0165 (2) 0.0200 (2) 0.00356 (15) −0.00103 (15) −0.00464 (16)
O6 0.0170 (2) 0.00960 (17) 0.0202 (2) 0.00105 (13) 0.00446 (16) −0.00208 (14)

Geometric parameters (Å, °)

N1—C2 1.3442 (7) C2—H2 0.910 (11)
N1—C3 1.3516 (8) C3—C4 1.3615 (9)
N1—H1N1 0.873 (13) C3—H3 0.978 (12)
N2—C1 1.4575 (7) C4—C5 1.4205 (8)
N2—H1N2 0.934 (15) C4—H4 0.926 (12)
N2—H2N2 0.881 (14) N4—O1 1.2392 (7)
N2—H3N2 0.871 (13) N4—O2 1.2603 (7)
N3—C5 1.3327 (8) N4—O3 1.2664 (7)
N3—H1N3 0.844 (16) N5—O4 1.2474 (7)
N3—H2N3 0.827 (13) N5—O6 1.2534 (7)
C1—C2 1.3698 (8) N5—O5 1.2623 (7)
C1—C5 1.4176 (8)
C2—N1—C3 121.45 (5) C1—C2—H2 122.4 (7)
C2—N1—H1N1 120.3 (9) N1—C3—C4 120.74 (5)
C3—N1—H1N1 118.3 (9) N1—C3—H3 116.5 (7)
C1—N2—H1N2 111.9 (9) C4—C3—H3 122.7 (7)
C1—N2—H2N2 107.7 (9) C3—C4—C5 120.48 (5)
H1N2—N2—H2N2 108.1 (13) C3—C4—H4 119.5 (7)
C1—N2—H3N2 111.5 (8) C5—C4—H4 120.1 (7)
H1N2—N2—H3N2 111.5 (12) N3—C5—C1 123.30 (5)
H2N2—N2—H3N2 105.8 (12) N3—C5—C4 120.39 (5)
C5—N3—H1N3 120.6 (10) C1—C5—C4 116.28 (5)
C5—N3—H2N3 116.5 (8) O1—N4—O2 120.45 (5)
H1N3—N3—H2N3 118.9 (13) O1—N4—O3 121.07 (5)
C2—C1—C5 120.77 (5) O2—N4—O3 118.47 (5)
C2—C1—N2 118.22 (5) O4—N5—O6 120.92 (5)
C5—C1—N2 120.99 (5) O4—N5—O5 120.11 (5)
N1—C2—C1 120.29 (5) O6—N5—O5 118.97 (5)
N1—C2—H2 117.3 (7)
C3—N1—C2—C1 −0.36 (9) N2—C1—C5—N3 −0.09 (9)
C5—C1—C2—N1 0.63 (9) C2—C1—C5—C4 −0.38 (8)
N2—C1—C2—N1 −177.64 (5) N2—C1—C5—C4 177.85 (5)
C2—N1—C3—C4 −0.16 (9) C3—C4—C5—N3 177.88 (6)
N1—C3—C4—C5 0.40 (9) C3—C4—C5—C1 −0.13 (9)
C2—C1—C5—N3 −178.32 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2i 0.874 (13) 2.001 (13) 2.7750 (7) 147.0 (12)
N2—H1N2···O5 0.935 (14) 2.105 (15) 2.9070 (8) 143.1 (12)
N2—H1N2···O2ii 0.935 (14) 2.211 (14) 2.7767 (7) 118.1 (11)
N2—H2N2···O3iii 0.881 (14) 2.193 (14) 3.0006 (7) 152.3 (12)
N2—H2N2···O3iv 0.881 (14) 2.482 (14) 2.9231 (7) 111.6 (11)
N3—H1N3···O4 0.844 (16) 2.054 (16) 2.8653 (8) 161.0 (14)
N3—H2N3···O6v 0.827 (12) 2.130 (12) 2.9442 (7) 168.0 (12)
N2—H3N2···O5iv 0.871 (12) 1.963 (12) 2.8227 (8) 169.0 (12)
N2—H3N2···O6iv 0.871 (12) 2.494 (12) 3.1217 (7) 129.5 (10)
C2—H2···O3iii 0.910 (11) 2.439 (11) 3.0489 (8) 124.6 (9)
C2—H2···O1vi 0.910 (11) 2.552 (11) 3.1834 (8) 127.0 (9)
C2—H2···O3iv 0.910 (11) 2.570 (11) 3.1277 (8) 120.2 (9)
C3—H3···O6i 0.979 (12) 2.253 (12) 3.1170 (8) 146.6 (10)
C4—H4···O4v 0.926 (12) 2.559 (12) 3.4274 (8) 156.3 (10)

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z−1/2; (iii) −x, y+1/2, −z+1/2; (iv) x, −y+1/2, z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2419).

References

  1. Abu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta.11, 277–283.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1531–o1532. [DOI] [PMC free article] [PubMed]
  6. Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  7. Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  8. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  9. Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
  10. Qin, J.-H. & Wang, J.-G. (2009). Acta Cryst. E65, o131. [DOI] [PMC free article] [PubMed]
  11. Rubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757–o758.
  12. Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810005556/rz2419sup1.cif

e-66-0o639-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005556/rz2419Isup2.hkl

e-66-0o639-Isup2.hkl (230.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES