Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 20;66(Pt 3):o660–o661. doi: 10.1107/S1600536810006173

2,25-Dioxo-27,28-diphenyl-30-oxa-29-thia-3,10,17,24-tetra­aza­penta­cyclo­[24.2.1.112,15.04,9.018,23]triaconta-5,7,9(4),10,12,14,16,18,20,22,26,28-dodeca­ene chloro­form disolvate

Rizvan K Askerov a,*, Vladimir V Roznyatovsky b, Evgeny A Katayev c, Abel M Maharramov a, Victor N Khrustalev c
PMCID: PMC2983673  PMID: 21580409

Abstract

The macrocycle of the title compound, C36H24N4O3S·2CHCl3, contains a rigid framework with the nitro­gen and oxygen heteroatoms pointing in towards the center of the macrocyclic cavity. The macrocycle is essentially planar (r.m.s. deviation = 0.027 Å) except for the thio­phene ring. The dihedral angle between the thio­phene ring plane and the mean plane of the central macrocyclic core including all atoms except sulfur is 21.6 (1)°. Four intra­molecular hydrogen bonds occur: two are between the amide hydrogen atoms and the Schiff base nitro­gen atoms, while the others are between the amide hydrogen atoms and the sulfur atom of the thio­phene. The two solvate chloro­form mol­ecules are bound to the carbonyl oxygen atoms of the ligand by weak C—H⋯O hydrogen bonding. In addition, the structure reveals inter­molecular Cl⋯Cl close contacts [3.308 (2), 3.404 (2) and 3.280 (2) Å] between the chloro­form solvate mol­ecules. In the crystal, the macrocycles form layers parallel to (101), with an inter­layer distance of 3.362 (3) Å. This short distance is determined by the stacking inter­actions between the amide carbonyl and imine fragments of neighboring ligands.

Related literature

For general background to biological anion–receptor inter­actions, see: Caltagirone & Gale (2009). For the synthesis of synthetic anion receptors, see: Aydogan et al. (2008). For related compounds, see: Sessler et al. (2005a ,b ).graphic file with name e-66-0o660-scheme1.jpg

Experimental

Crystal data

  • C36H24N4O3S·2CHCl3

  • M r = 831.40

  • Monoclinic, Inline graphic

  • a = 13.0957 (15) Å

  • b = 31.854 (3) Å

  • c = 8.7368 (9) Å

  • β = 98.857 (3)°

  • V = 3601.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 120 K

  • 0.30 × 0.24 × 0.21 mm

Data collection

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998) T min = 0.845, T max = 0.888

  • 29858 measured reflections

  • 7802 independent reflections

  • 4582 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.108

  • S = 1.01

  • 7802 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006173/rk2192sup1.cif

e-66-0o660-sup1.cif (29KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006173/rk2192Isup2.hkl

e-66-0o660-Isup2.hkl (381.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2 0.90 2.13 2.622 (3) 114
N1—H1N⋯S1 0.90 2.48 2.970 (3) 115
N4—H4N⋯N3 0.90 2.13 2.620 (3) 114
N4—H4N⋯S1 0.90 2.53 2.986 (3) 112
C32—H32⋯Cl6i 0.95 2.69 3.461 (3) 139
C37—H37⋯O1 1.00 2.34 3.149 (3) 137
C38—H38⋯O3 1.00 2.46 3.205 (3) 131

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The ubiquity of anions in nature makes an understanding of biological anion–receptor interactions a topic of considerable current interest (Caltagirone & Gale, 2009). It is also inspiring the synthesis of synthetic anion receptors, systems whose potential utility could span the full spectrum of applications from separations and waste remediation to biomedical analysis and therapy (Aydogan et al., 2008). We are particularly interested in the design of rigid macrocyclic hosts for anions and use for this purpose aromatics linked by amide or imine bonds. These bonds and pyrrole rings serve as efficient coordination site for anions functioning by means of hydrogen bonds. In our previous works, it has been shown that rigid scaffold of a receptor results in a higher selectivity that the one with flexible skeleton (Sessler et al., 2005a,b). In this work, we present the new receptor bearing furan and thiophen-2,5-dicarboxamide units in one macrocycle.

The target receptor was synthesized according to the method of template synthesis using chloride anion as a template. The dialdehyde (2,5–diformylfuran) and diamine (N,N'-bis(2-aminophenyl)-3,4-diphenylthiophen-2,5-dicarboxamide) were condensed in the presence of hydrochloric acid affording hydrochloric acid salt of the macrocyclic receptor I. The HCl that was subsequently neutralized by triethylamine to give free base ligand I (Fig. 1). The single crystals of I suitable for X–ray diffraction analysis were obtained by slow crystallization from chloroform–methanol mixture.

The title compound I crystallizes as a solvate with two chloroform molecules, i. e., C36H24N4O3S.2CHCl3. The macrocycle I contains a rigid framework with the N1, N2, O2, N3 and N4 heteroatoms pointing in toward the center of the macrocyclic cavity (Fig. 2). It is practically planar excepting for the thiophene ring. By the intermolecular C—H···O hydrogen bond (Table 1), the phenyl group at the C3 carbon atom of the thiophene forces this ring to deviate from the plane of the central macrocyclic core passed through the C1/C4/C5/N1/C6/C7/N2/C12/C13/O2/C16/C17/N3/C18/C19/N4/C24 atoms (the dihedral angle is 21.6 (1)°. There are four internal hydrogen bonds in I. Two are between the amide NH protons and the Schiff base nitrogen atoms, while the other are between the amide NH protons and the sulfur atom of the thiophene (Table 1). The two solvate chloroform molecules are bound to the carbonyl oxygen atoms of the ligand by weak C—H···O hydrogen bonding (Table 1). In addition to these effects, the structure reveals the intermolecular Cl···Cl attractive interactions between the chloroform solvate molecules (Cl1···Cl3ii, Cl1···Cl4iii and Cl2···Cl5iv distances are 3.308 (2)Å, 3.404 (2)Å and 3.280 (2)Å, respectively). In the crystal, the macrocycles I form the layers parallel to (101), with the interlayer distance of 3.362 (3)Å (Fig. 3). This short distance is determined by the stacking interactions between amide carbonyl and imine fragments of neighboring ligands. Symmetry codes: (ii) x, -y+1/2, z-1/2; (iii) x-1, y, z; (iv) x-1, y, z+1.

Experimental

Concentrated hydrochloric acid (21.5 µl, 0.18 mmol) was added to a mixture of 2,5-diformylfuran (13 mg, 0.1 mmol) and N,N'-bis(2-aminophenyl)-3,4-diphenylthiophen-2,5-dicarboxamide (51 mg, 0.1 mmol) in 20 ml dry MeOH. The colourless clear solution was stirred for overnight at 296 K. The precipitate formed was filtrated off and suspended in 1.5 ml dry dichloromethane. Then triethylamine (25.3 µl, 0.18 mmol) was added to the suspension affording yellow clear solution, which was passed through a plug of silica gel. Evaporation of the solvent yielded 44 mg (73%) of product I. M.p. > 623 K (decomp.). Found (%): C, 72.87; H, 4.08; N, 9.43. Calcd. for C36H24N4O3S (%): C, 72.96; H, 4.08; N, 9.45. 1H NMR (CDCl3, 293 K): \d = 7.05–7.24 (m, 16H), 7.36 (d, 2H), 8.50 (d, 2H), 8.52 (s, 2H), 10.38 (s, 2H). 13C NMR (CDCl3, 293 K): \d = 114.67, 119.41, 120.56, 123.68, 127.37, 127.54, 129.43, 130.12, 132.25, 134.41, 135.43, 135.82, 142.66, 148.52, 154.21, 157.99. Mass spectrum (MALDI–TOF), m/z (Ir, %): 593.10 [M+H]+.

Refinement

The hydrogen atoms were placed in calculated positions with N—H = 0.88Å and C—H = 0.95–1.00Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for CH3-groups and Uiso(H) = 1.2Ueq(N or C) for the other groups.

Figures

Fig. 1.

Fig. 1.

Synthesis of the macrocyclic ligand I.

Fig. 2.

Fig. 2.

Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed lines indicate the hydrogen bonds.

Fig. 3.

Fig. 3.

Crystal packing of I. Dashed lines indicate the hydrogen bonding and Cl···Cl interactions.

Crystal data

C36H24N4O3S·2CHCl3 F(000) = 1696
Mr = 831.40 Dx = 1.533 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5725 reflections
a = 13.0957 (15) Å θ = 2.5–26.6°
b = 31.854 (3) Å µ = 0.58 mm1
c = 8.7368 (9) Å T = 120 K
β = 98.857 (3)° Prism, dark–orange
V = 3601.1 (7) Å3 0.30 × 0.24 × 0.21 mm
Z = 4

Data collection

Bruker SMART 1K CCD diffractometer 7802 independent reflections
Radiation source: fine–focus sealed tube 4582 reflections with I > 2σ(I)
graphite Rint = 0.061
φ– and ω–scans θmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) h = −16→16
Tmin = 0.845, Tmax = 0.888 k = −40→40
29858 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.045P)2] where P = (Fo2 + 2Fc2)/3
7802 reflections (Δ/σ)max = 0.001
469 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.57191 (5) 0.45496 (2) 0.59993 (9) 0.02602 (18)
O1 0.38015 (15) 0.39570 (6) 0.8264 (2) 0.0325 (5)
O2 0.58881 (14) 0.58584 (5) 0.6945 (2) 0.0255 (4)
O3 0.80044 (15) 0.41512 (6) 0.4006 (2) 0.0338 (5)
N1 0.42143 (17) 0.46535 (7) 0.8191 (3) 0.0241 (5)
H1N 0.4641 0.4840 0.7846 0.029*
N2 0.43040 (17) 0.54752 (7) 0.8331 (3) 0.0255 (5)
N3 0.74814 (18) 0.56185 (7) 0.5267 (3) 0.0265 (6)
N4 0.76316 (17) 0.48108 (7) 0.4781 (3) 0.0258 (6)
H4N 0.7254 0.4959 0.5370 0.031*
C1 0.6697 (2) 0.42298 (8) 0.5574 (3) 0.0248 (7)
C2 0.6625 (2) 0.38325 (8) 0.6169 (3) 0.0238 (6)
C3 0.5764 (2) 0.37870 (8) 0.6978 (3) 0.0229 (6)
C4 0.5207 (2) 0.41545 (8) 0.6990 (3) 0.0228 (6)
C5 0.4332 (2) 0.42398 (8) 0.7865 (3) 0.0253 (7)
C6 0.3511 (2) 0.48458 (9) 0.9041 (3) 0.0260 (7)
C7 0.3535 (2) 0.52889 (8) 0.9089 (3) 0.0245 (6)
C8 0.2852 (2) 0.54974 (9) 0.9897 (3) 0.0286 (7)
H8 0.2848 0.5796 0.9918 0.034*
C9 0.2181 (2) 0.52777 (9) 1.0667 (3) 0.0326 (7)
H9A 0.1718 0.5424 1.1214 0.039*
C10 0.2181 (2) 0.48450 (9) 1.0643 (4) 0.0341 (8)
H10 0.1732 0.4695 1.1203 0.041*
C11 0.2827 (2) 0.46250 (9) 0.9815 (3) 0.0284 (7)
H11 0.2803 0.4327 0.9775 0.034*
C12 0.4479 (2) 0.58709 (9) 0.8440 (3) 0.0279 (7)
H12 0.4060 0.6035 0.9006 0.033*
C13 0.5266 (2) 0.60808 (8) 0.7761 (3) 0.0268 (7)
C14 0.5540 (2) 0.64955 (9) 0.7810 (3) 0.0314 (7)
H14 0.5227 0.6715 0.8308 0.038*
C15 0.6373 (2) 0.65331 (9) 0.6985 (3) 0.0300 (7)
H15 0.6730 0.6784 0.6810 0.036*
C16 0.6570 (2) 0.61423 (8) 0.6485 (3) 0.0255 (7)
C17 0.7350 (2) 0.60029 (9) 0.5601 (3) 0.0271 (7)
H17 0.7788 0.6207 0.5250 0.033*
C18 0.8263 (2) 0.54995 (9) 0.4407 (3) 0.0253 (7)
C19 0.8333 (2) 0.50648 (9) 0.4126 (3) 0.0269 (7)
C20 0.9060 (2) 0.49109 (9) 0.3278 (3) 0.0293 (7)
H20 0.9100 0.4618 0.3091 0.035*
C21 0.9727 (2) 0.51832 (9) 0.2706 (4) 0.0348 (8)
H21 1.0225 0.5077 0.2122 0.042*
C22 0.9675 (2) 0.56104 (9) 0.2977 (4) 0.0339 (8)
H22 1.0141 0.5795 0.2583 0.041*
C23 0.8952 (2) 0.57689 (9) 0.3816 (4) 0.0320 (7)
H23 0.8921 0.6063 0.3993 0.038*
C24 0.7509 (2) 0.43888 (9) 0.4706 (3) 0.0260 (7)
C25 0.7390 (2) 0.34909 (8) 0.6047 (3) 0.0258 (7)
C26 0.7238 (2) 0.31965 (9) 0.4887 (4) 0.0356 (8)
H26 0.6637 0.3210 0.4125 0.043*
C27 0.7960 (3) 0.28761 (9) 0.4816 (4) 0.0438 (9)
H27 0.7851 0.2674 0.4007 0.053*
C28 0.8824 (3) 0.28547 (10) 0.5916 (4) 0.0451 (9)
H28 0.9313 0.2636 0.5880 0.054*
C29 0.8980 (3) 0.31500 (11) 0.7067 (4) 0.0463 (9)
H29 0.9583 0.3136 0.7825 0.056*
C30 0.8277 (2) 0.34644 (9) 0.7135 (4) 0.0353 (8)
H30 0.8397 0.3667 0.7940 0.042*
C31 0.5545 (2) 0.33855 (8) 0.7748 (3) 0.0232 (6)
C32 0.6213 (2) 0.32491 (8) 0.9032 (3) 0.0274 (7)
H32 0.6791 0.3417 0.9442 0.033*
C33 0.6045 (2) 0.28673 (9) 0.9726 (4) 0.0330 (7)
H33 0.6496 0.2780 1.0628 0.040*
C34 0.5235 (2) 0.26168 (9) 0.9119 (4) 0.0330 (8)
H34 0.5131 0.2354 0.9584 0.040*
C35 0.4571 (2) 0.27476 (9) 0.7830 (4) 0.0311 (7)
H35 0.4010 0.2573 0.7404 0.037*
C36 0.4715 (2) 0.31338 (8) 0.7147 (3) 0.0250 (6)
H36 0.4246 0.3225 0.6271 0.030*
Cl1 0.18557 (6) 0.31001 (2) 0.69064 (9) 0.0365 (2)
Cl2 0.15795 (6) 0.35523 (2) 0.96738 (9) 0.0391 (2)
Cl3 0.24483 (7) 0.27221 (2) 0.99017 (10) 0.0428 (2)
C37 0.2369 (2) 0.31996 (9) 0.8865 (3) 0.0328 (7)
H37 0.3077 0.3322 0.8923 0.039*
Cl4 1.05290 (6) 0.31392 (3) 0.32391 (10) 0.0456 (2)
Cl5 1.01463 (7) 0.39768 (3) 0.20247 (12) 0.0556 (3)
Cl6 0.86232 (7) 0.33276 (3) 0.12830 (11) 0.0590 (3)
C38 0.9583 (2) 0.35249 (10) 0.2702 (4) 0.0385 (8)
H38 0.9263 0.3602 0.3632 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0279 (4) 0.0193 (3) 0.0321 (4) 0.0014 (3) 0.0086 (3) 0.0029 (3)
O1 0.0336 (12) 0.0225 (10) 0.0444 (14) 0.0006 (9) 0.0154 (10) 0.0023 (10)
O2 0.0273 (11) 0.0208 (10) 0.0294 (11) −0.0001 (8) 0.0077 (9) −0.0004 (9)
O3 0.0362 (12) 0.0253 (11) 0.0439 (13) 0.0022 (9) 0.0185 (11) 0.0012 (10)
N1 0.0263 (13) 0.0197 (12) 0.0277 (14) −0.0027 (10) 0.0080 (11) 0.0030 (10)
N2 0.0251 (13) 0.0217 (12) 0.0302 (14) −0.0007 (10) 0.0061 (11) 0.0017 (11)
N3 0.0296 (13) 0.0216 (12) 0.0289 (14) −0.0014 (10) 0.0063 (11) 0.0000 (11)
N4 0.0273 (13) 0.0202 (12) 0.0323 (14) 0.0012 (10) 0.0119 (11) 0.0009 (11)
C1 0.0267 (16) 0.0230 (15) 0.0258 (17) −0.0009 (12) 0.0072 (13) −0.0029 (13)
C2 0.0248 (15) 0.0216 (14) 0.0244 (16) 0.0005 (12) 0.0018 (13) −0.0023 (12)
C3 0.0285 (15) 0.0196 (14) 0.0206 (16) −0.0015 (12) 0.0035 (13) −0.0002 (12)
C4 0.0254 (15) 0.0198 (14) 0.0232 (16) −0.0017 (12) 0.0032 (13) −0.0005 (12)
C5 0.0242 (15) 0.0218 (15) 0.0299 (17) 0.0012 (13) 0.0047 (13) 0.0042 (13)
C6 0.0230 (15) 0.0290 (16) 0.0264 (17) 0.0030 (13) 0.0050 (13) −0.0007 (13)
C7 0.0236 (15) 0.0247 (15) 0.0246 (16) −0.0029 (12) 0.0019 (13) 0.0002 (13)
C8 0.0282 (16) 0.0231 (15) 0.0351 (18) −0.0020 (13) 0.0070 (14) −0.0052 (14)
C9 0.0304 (17) 0.0334 (17) 0.0363 (19) 0.0006 (14) 0.0130 (15) −0.0042 (15)
C10 0.0318 (17) 0.0328 (17) 0.040 (2) −0.0058 (14) 0.0138 (15) 0.0029 (15)
C11 0.0292 (16) 0.0262 (16) 0.0316 (17) 0.0009 (13) 0.0100 (14) 0.0039 (14)
C12 0.0304 (17) 0.0242 (16) 0.0306 (17) 0.0021 (13) 0.0096 (14) −0.0007 (13)
C13 0.0314 (16) 0.0232 (15) 0.0266 (17) 0.0017 (13) 0.0068 (14) −0.0022 (13)
C14 0.0396 (18) 0.0210 (15) 0.0353 (18) −0.0008 (13) 0.0107 (15) −0.0047 (14)
C15 0.0354 (17) 0.0223 (15) 0.0334 (18) −0.0041 (13) 0.0090 (15) 0.0008 (14)
C16 0.0292 (16) 0.0215 (15) 0.0253 (16) −0.0055 (13) 0.0031 (13) 0.0016 (13)
C17 0.0267 (16) 0.0255 (16) 0.0292 (17) −0.0023 (13) 0.0046 (14) 0.0022 (13)
C18 0.0241 (15) 0.0258 (16) 0.0259 (16) −0.0011 (12) 0.0030 (13) 0.0016 (13)
C19 0.0266 (16) 0.0251 (15) 0.0289 (17) −0.0030 (13) 0.0038 (14) 0.0007 (13)
C20 0.0292 (16) 0.0251 (15) 0.0351 (18) 0.0008 (13) 0.0095 (14) 0.0008 (14)
C21 0.0356 (18) 0.0314 (17) 0.041 (2) 0.0021 (14) 0.0182 (16) 0.0017 (15)
C22 0.0310 (17) 0.0286 (16) 0.045 (2) −0.0043 (14) 0.0158 (16) 0.0068 (15)
C23 0.0343 (17) 0.0231 (15) 0.0396 (19) −0.0022 (13) 0.0088 (15) 0.0018 (14)
C24 0.0305 (16) 0.0213 (14) 0.0264 (17) −0.0014 (13) 0.0048 (14) 0.0014 (13)
C25 0.0253 (16) 0.0192 (15) 0.0355 (18) −0.0024 (12) 0.0132 (14) 0.0044 (13)
C26 0.0327 (18) 0.0286 (17) 0.047 (2) 0.0010 (14) 0.0113 (16) −0.0046 (15)
C27 0.046 (2) 0.0222 (16) 0.068 (3) 0.0012 (15) 0.025 (2) −0.0064 (17)
C28 0.042 (2) 0.0302 (18) 0.069 (3) 0.0100 (16) 0.027 (2) 0.0088 (19)
C29 0.0312 (18) 0.049 (2) 0.060 (3) 0.0069 (16) 0.0106 (18) 0.010 (2)
C30 0.0305 (17) 0.0358 (18) 0.040 (2) −0.0005 (14) 0.0053 (15) 0.0002 (15)
C31 0.0262 (15) 0.0176 (14) 0.0276 (17) 0.0026 (12) 0.0103 (13) −0.0005 (13)
C32 0.0274 (16) 0.0243 (15) 0.0310 (18) 0.0001 (13) 0.0064 (14) −0.0031 (14)
C33 0.0365 (18) 0.0275 (16) 0.0358 (19) 0.0063 (14) 0.0080 (15) 0.0059 (14)
C34 0.0403 (19) 0.0204 (15) 0.041 (2) 0.0021 (14) 0.0141 (17) 0.0074 (14)
C35 0.0352 (17) 0.0224 (15) 0.0375 (19) −0.0069 (13) 0.0111 (15) −0.0031 (14)
C36 0.0270 (15) 0.0221 (15) 0.0256 (16) −0.0016 (13) 0.0028 (13) 0.0013 (13)
Cl1 0.0452 (5) 0.0326 (4) 0.0310 (4) 0.0049 (4) 0.0039 (4) −0.0022 (4)
Cl2 0.0468 (5) 0.0352 (4) 0.0373 (5) 0.0007 (4) 0.0129 (4) −0.0049 (4)
Cl3 0.0531 (5) 0.0313 (4) 0.0430 (5) −0.0014 (4) 0.0043 (4) 0.0102 (4)
C37 0.0353 (17) 0.0287 (17) 0.0343 (19) −0.0015 (14) 0.0049 (15) 0.0005 (14)
Cl4 0.0384 (5) 0.0557 (5) 0.0414 (5) 0.0030 (4) 0.0017 (4) 0.0052 (4)
Cl5 0.0587 (6) 0.0352 (5) 0.0798 (7) 0.0018 (4) 0.0321 (5) −0.0095 (5)
Cl6 0.0527 (6) 0.0570 (6) 0.0582 (6) −0.0022 (5) −0.0200 (5) −0.0019 (5)
C38 0.0342 (18) 0.045 (2) 0.037 (2) −0.0028 (15) 0.0050 (15) −0.0029 (16)

Geometric parameters (Å, °)

S1—C4 1.721 (3) C17—H17 0.9500
S1—C1 1.721 (3) C18—C23 1.401 (4)
O1—C5 1.221 (3) C18—C19 1.412 (4)
O2—C13 1.361 (3) C19—C20 1.384 (4)
O2—C16 1.374 (3) C20—C21 1.378 (4)
O3—C24 1.221 (3) C20—H20 0.9500
N1—C5 1.362 (3) C21—C22 1.385 (4)
N1—C6 1.409 (3) C21—H21 0.9500
N1—H1N 0.8999 C22—C23 1.379 (4)
N2—C12 1.282 (3) C22—H22 0.9500
N2—C7 1.418 (3) C23—H23 0.9500
N3—C17 1.276 (3) C25—C26 1.373 (4)
N3—C18 1.411 (3) C25—C30 1.385 (4)
N4—C24 1.354 (3) C26—C27 1.399 (4)
N4—C19 1.410 (3) C26—H26 0.9500
N4—H4N 0.8999 C27—C28 1.369 (5)
C1—C2 1.377 (4) C27—H27 0.9500
C1—C24 1.486 (4) C28—C29 1.369 (5)
C2—C3 1.427 (4) C28—H28 0.9500
C2—C25 1.495 (4) C29—C30 1.369 (4)
C3—C4 1.380 (4) C29—H29 0.9500
C3—C31 1.493 (4) C30—H30 0.9500
C4—C5 1.497 (4) C31—C32 1.383 (4)
C6—C11 1.393 (4) C31—C36 1.387 (4)
C6—C7 1.412 (4) C32—C33 1.392 (4)
C7—C8 1.391 (4) C32—H32 0.9500
C8—C9 1.377 (4) C33—C34 1.368 (4)
C8—H8 0.9500 C33—H33 0.9500
C9—C10 1.378 (4) C34—C35 1.377 (4)
C9—H9A 0.9500 C34—H34 0.9500
C10—C11 1.385 (4) C35—C36 1.393 (4)
C10—H10 0.9500 C35—H35 0.9500
C11—H11 0.9500 C36—H36 0.9500
C12—C13 1.431 (4) Cl1—C37 1.768 (3)
C12—H12 0.9500 Cl2—C37 1.748 (3)
C13—C14 1.368 (4) Cl3—C37 1.765 (3)
C14—C15 1.402 (4) C37—H37 1.0000
C14—H14 0.9500 Cl4—C38 1.757 (3)
C15—C16 1.357 (4) Cl5—C38 1.761 (3)
C15—H15 0.9500 Cl6—C38 1.741 (3)
C16—C17 1.442 (4) C38—H38 1.0000
C4—S1—C1 92.08 (13) C20—C19—C18 120.6 (3)
C13—O2—C16 106.2 (2) N4—C19—C18 115.4 (2)
C5—N1—C6 129.4 (2) C21—C20—C19 119.9 (3)
C5—N1—H1N 118.3 C21—C20—H20 120.1
C6—N1—H1N 112.3 C19—C20—H20 120.1
C12—N2—C7 120.6 (2) C20—C21—C22 120.4 (3)
C17—N3—C18 120.9 (2) C20—C21—H21 119.8
C24—N4—C19 129.0 (2) C22—C21—H21 119.8
C24—N4—H4N 118.4 C23—C22—C21 120.4 (3)
C19—N4—H4N 112.4 C23—C22—H22 119.8
C2—C1—C24 127.0 (2) C21—C22—H22 119.8
C2—C1—S1 111.4 (2) C22—C23—C18 120.4 (3)
C24—C1—S1 121.5 (2) C22—C23—H23 119.8
C1—C2—C3 112.7 (2) C18—C23—H23 119.8
C1—C2—C25 123.8 (2) O3—C24—N4 124.9 (3)
C3—C2—C25 123.5 (2) O3—C24—C1 121.4 (2)
C4—C3—C2 112.1 (2) N4—C24—C1 113.7 (2)
C4—C3—C31 125.8 (2) C26—C25—C30 118.5 (3)
C2—C3—C31 122.1 (2) C26—C25—C2 121.8 (3)
C3—C4—C5 127.2 (2) C30—C25—C2 119.7 (3)
C3—C4—S1 111.7 (2) C25—C26—C27 120.6 (3)
C5—C4—S1 120.81 (19) C25—C26—H26 119.7
O1—C5—N1 124.5 (3) C27—C26—H26 119.7
O1—C5—C4 121.7 (2) C28—C27—C26 119.8 (3)
N1—C5—C4 113.7 (2) C28—C27—H27 120.1
C11—C6—N1 123.9 (2) C26—C27—H27 120.1
C11—C6—C7 120.2 (3) C29—C28—C27 119.7 (3)
N1—C6—C7 115.9 (2) C29—C28—H28 120.1
C8—C7—C6 118.6 (3) C27—C28—H28 120.1
C8—C7—N2 126.6 (2) C30—C29—C28 120.6 (3)
C6—C7—N2 114.8 (2) C30—C29—H29 119.7
C9—C8—C7 120.9 (3) C28—C29—H29 119.7
C9—C8—H8 119.5 C29—C30—C25 120.9 (3)
C7—C8—H8 119.5 C29—C30—H30 119.6
C8—C9—C10 119.9 (3) C25—C30—H30 119.6
C8—C9—H9A 120.0 C32—C31—C36 119.1 (2)
C10—C9—H9A 120.0 C32—C31—C3 119.5 (2)
C9—C10—C11 121.1 (3) C36—C31—C3 121.2 (3)
C9—C10—H10 119.5 C31—C32—C33 120.3 (3)
C11—C10—H10 119.5 C31—C32—H32 119.8
C10—C11—C6 119.2 (3) C33—C32—H32 119.8
C10—C11—H11 120.4 C34—C33—C32 120.4 (3)
C6—C11—H11 120.4 C34—C33—H33 119.8
N2—C12—C13 124.1 (3) C32—C33—H33 119.8
N2—C12—H12 118.0 C33—C34—C35 119.7 (3)
C13—C12—H12 118.0 C33—C34—H34 120.2
O2—C13—C14 110.1 (2) C35—C34—H34 120.2
O2—C13—C12 120.1 (2) C34—C35—C36 120.5 (3)
C14—C13—C12 129.8 (3) C34—C35—H35 119.8
C13—C14—C15 106.7 (2) C36—C35—H35 119.8
C13—C14—H14 126.6 C31—C36—C35 119.9 (3)
C15—C14—H14 126.6 C31—C36—H36 120.0
C16—C15—C14 106.8 (2) C35—C36—H36 120.0
C16—C15—H15 126.6 Cl2—C37—Cl3 109.78 (16)
C14—C15—H15 126.6 Cl2—C37—Cl1 110.25 (16)
C15—C16—O2 110.1 (2) Cl3—C37—Cl1 109.00 (16)
C15—C16—C17 129.9 (3) Cl2—C37—H37 109.3
O2—C16—C17 120.0 (2) Cl3—C37—H37 109.3
N3—C17—C16 123.3 (3) Cl1—C37—H37 109.3
N3—C17—H17 118.3 Cl6—C38—Cl4 109.85 (17)
C16—C17—H17 118.3 Cl6—C38—Cl5 110.45 (18)
C23—C18—N3 126.4 (3) Cl4—C38—Cl5 110.26 (17)
C23—C18—C19 118.3 (3) Cl6—C38—H38 108.7
N3—C18—C19 115.3 (2) Cl4—C38—H38 108.7
C20—C19—N4 124.0 (3) Cl5—C38—H38 108.7
C4—S1—C1—C2 0.3 (2) C18—N3—C17—C16 −179.5 (3)
C4—S1—C1—C24 −178.1 (2) C15—C16—C17—N3 176.6 (3)
C24—C1—C2—C3 178.4 (3) O2—C16—C17—N3 −3.3 (4)
S1—C1—C2—C3 0.1 (3) C17—N3—C18—C23 −0.9 (4)
C24—C1—C2—C25 1.0 (5) C17—N3—C18—C19 179.5 (3)
S1—C1—C2—C25 −177.3 (2) C24—N4—C19—C20 −1.4 (5)
C1—C2—C3—C4 −0.6 (3) C24—N4—C19—C18 179.5 (3)
C25—C2—C3—C4 176.8 (3) C23—C18—C19—C20 −0.4 (4)
C1—C2—C3—C31 −178.7 (3) N3—C18—C19—C20 179.2 (3)
C25—C2—C3—C31 −1.4 (4) C23—C18—C19—N4 178.7 (3)
C2—C3—C4—C5 −172.8 (3) N3—C18—C19—N4 −1.7 (4)
C31—C3—C4—C5 5.3 (5) N4—C19—C20—C21 −178.8 (3)
C2—C3—C4—S1 0.8 (3) C18—C19—C20—C21 0.2 (4)
C31—C3—C4—S1 178.9 (2) C19—C20—C21—C22 0.2 (5)
C1—S1—C4—C3 −0.7 (2) C20—C21—C22—C23 −0.4 (5)
C1—S1—C4—C5 173.4 (2) C21—C22—C23—C18 0.2 (5)
C6—N1—C5—O1 1.3 (5) N3—C18—C23—C22 −179.3 (3)
C6—N1—C5—C4 −177.0 (3) C19—C18—C23—C22 0.2 (4)
C3—C4—C5—O1 −24.3 (4) C19—N4—C24—O3 −0.9 (5)
S1—C4—C5—O1 162.6 (2) C19—N4—C24—C1 178.9 (3)
C3—C4—C5—N1 154.1 (3) C2—C1—C24—O3 24.1 (5)
S1—C4—C5—N1 −19.0 (3) S1—C1—C24—O3 −157.8 (2)
C5—N1—C6—C11 4.6 (5) C2—C1—C24—N4 −155.7 (3)
C5—N1—C6—C7 −175.9 (3) S1—C1—C24—N4 22.5 (3)
C11—C6—C7—C8 −1.2 (4) C1—C2—C25—C26 −95.4 (4)
N1—C6—C7—C8 179.3 (2) C3—C2—C25—C26 87.5 (4)
C11—C6—C7—N2 176.6 (2) C1—C2—C25—C30 85.3 (4)
N1—C6—C7—N2 −2.9 (4) C3—C2—C25—C30 −91.8 (3)
C12—N2—C7—C8 5.3 (4) C30—C25—C26—C27 0.4 (4)
C12—N2—C7—C6 −172.3 (3) C2—C25—C26—C27 −178.9 (3)
C6—C7—C8—C9 1.5 (4) C25—C26—C27—C28 0.3 (5)
N2—C7—C8—C9 −175.9 (3) C26—C27—C28—C29 −0.7 (5)
C7—C8—C9—C10 0.0 (5) C27—C28—C29—C30 0.5 (5)
C8—C9—C10—C11 −2.0 (5) C28—C29—C30—C25 0.1 (5)
C9—C10—C11—C6 2.3 (5) C26—C25—C30—C29 −0.6 (4)
N1—C6—C11—C10 178.7 (3) C2—C25—C30—C29 178.8 (3)
C7—C6—C11—C10 −0.7 (4) C4—C3—C31—C32 −110.0 (3)
C7—N2—C12—C13 177.5 (3) C2—C3—C31—C32 67.9 (4)
C16—O2—C13—C14 0.3 (3) C4—C3—C31—C36 73.7 (4)
C16—O2—C13—C12 −178.4 (3) C2—C3—C31—C36 −108.4 (3)
N2—C12—C13—O2 −0.4 (5) C36—C31—C32—C33 −1.0 (4)
N2—C12—C13—C14 −178.9 (3) C3—C31—C32—C33 −177.4 (3)
O2—C13—C14—C15 0.1 (3) C31—C32—C33—C34 2.0 (4)
C12—C13—C14—C15 178.7 (3) C32—C33—C34—C35 −1.3 (4)
C13—C14—C15—C16 −0.4 (3) C33—C34—C35—C36 −0.4 (4)
C14—C15—C16—O2 0.7 (3) C32—C31—C36—C35 −0.6 (4)
C14—C15—C16—C17 −179.2 (3) C3—C31—C36—C35 175.7 (3)
C13—O2—C16—C15 −0.6 (3) C34—C35—C36—C31 1.3 (4)
C13—O2—C16—C17 179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···N2 0.90 2.13 2.622 (3) 114
N1—H1N···S1 0.90 2.48 2.970 (3) 115
N4—H4N···N3 0.90 2.13 2.620 (3) 114
N4—H4N···S1 0.90 2.53 2.986 (3) 112
C32—H32···Cl6i 0.95 2.69 3.461 (3) 139
C37—H37···O1 1.00 2.34 3.149 (3) 137
C38—H38···O3 1.00 2.46 3.205 (3) 131

Symmetry codes: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2192).

References

  1. Aydogan, A., Coady, D. J., Kim, S. K., Akar, A., Bielawski, C. W., Marquez, M. & Sessler, J. L. (2008). Angew. Chem. Int. Ed.47, 9648–9652. [DOI] [PMC free article] [PubMed]
  2. Bruker (1998). SMART and SAINT-Plus . Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Caltagirone, C. & Gale, P. A. (2009). Chem. Soc. Rev. 38, 520–563. [DOI] [PubMed]
  4. Sessler, J. L., Katayev, E., Pantos, G. D., Scherbakov, P., Reshetova, M. D., Khrustalev, V. N., Lynch, V. M. & Ustynyuk, Yu. A. (2005a). J. Am. Chem. Soc.127, 11442–11446. [DOI] [PubMed]
  5. Sessler, J. L., Roznyatovskiy, V., Pantos, G. D., Borisova, N. E., Reshetova, M. D., Lynch, V. M., Khrustalev, V. N. & Ustynyuk, Yu. A. (2005b). Org. Lett.7, 5277–5280. [DOI] [PubMed]
  6. Sheldrick, G. M. (1998). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006173/rk2192sup1.cif

e-66-0o660-sup1.cif (29KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006173/rk2192Isup2.hkl

e-66-0o660-Isup2.hkl (381.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES