Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Nov;86(22):8758–8762. doi: 10.1073/pnas.86.22.8758

Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers.

Z Y Peng 1, V Simplaceanu 1, S R Dowd 1, C Ho 1
PMCID: PMC298369  PMID: 2479029

Abstract

Nuclear spin-lattice relaxation both in the rotating frame and in the laboratory frame is used to investigate the slow and fast molecular motions of phospholipids in oriented bilayers in the liquid crystalline phase. The bilayers are prepared from a perdeuterated phospholipid labeled with a pair of 19F atoms at the 7 position of the 2-sn acyl chain. Phospholipid-cholesterol or phospholipid-gramicidin interactions are characterized by measuring the relaxation rates as a function of the bilayer orientation, the locking field, and the temperature. Our studies show that cholesterol or gramicidin can specifically enhance the relaxation due to slow motions in phospholipid bilayers with correlation times tau s longer than 10(-8) sec. The perturbations of the geometry of the slow motions induced by cholesterol are qualitatively different from those induced by gramicidin. In contrast, the presence of cholesterol or gramicidin slightly suppresses the fast motions with correlation times tau f = 10(-9) to 10(-10) sec without significantly affecting their geometry. Weak locking-field and temperature dependences are observed for both pure lipid bilayers and bilayers containing either cholesterol or gramicidin, suggesting that the motions of phospholipid acyl chains may have dispersed correlation times.

Full text

PDF
8758

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. F., Deese A. J., Dratz E. A. Proton, carbon-13, and phosphorus-31 NMR methods for the investigation of rhodopsin--lipid interactions in retinal rod outer segment membranes. Methods Enzymol. 1982;81:709–728. doi: 10.1016/s0076-6879(82)81098-7. [DOI] [PubMed] [Google Scholar]
  2. Brown M. F., Ribeiro A. A., Williams G. D. New view of lipid bilayer dynamics from 2H and 13C NMR relaxation time measurements. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4325–4329. doi: 10.1073/pnas.80.14.4325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornell B. A., Davenport J. B., Separovic F. Low-frequency motion in membranes. The effect of cholesterol and proteins. Biochim Biophys Acta. 1982 Jul 28;689(2):337–345. doi: 10.1016/0005-2736(82)90267-x. [DOI] [PubMed] [Google Scholar]
  4. Cornell B. A., Hiller R. G., Raison J., Separovic F., Smith R., Vary J. C., Morris C. Biological membranes are rich in low-frequency motion. Biochim Biophys Acta. 1983 Jul 27;732(2):473–478. doi: 10.1016/0005-2736(83)90065-2. [DOI] [PubMed] [Google Scholar]
  5. Cornell B. A., Separovic F. A model for gramicidin A'-phospholipid interactions in bilayers. Eur Biophys J. 1988;16(5):299–306. doi: 10.1007/BF00254066. [DOI] [PubMed] [Google Scholar]
  6. Cornell B. Gramicidin A--phospholipid model systems. J Bioenerg Biomembr. 1987 Dec;19(6):655–676. doi: 10.1007/BF00762301. [DOI] [PubMed] [Google Scholar]
  7. Davis J. H. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta. 1983 Mar 21;737(1):117–171. doi: 10.1016/0304-4157(83)90015-1. [DOI] [PubMed] [Google Scholar]
  8. Dufourc E. J., Smith I. C. A detailed analysis of the motions of cholesterol in biological membranes by 2H-NMR relaxation. Chem Phys Lipids. 1986 Sep;41(2):123–135. doi: 10.1016/0009-3084(86)90004-6. [DOI] [PubMed] [Google Scholar]
  9. Feigenson G. W., Chan S. I. Nuclear magnetic relaxation behavior of lecithin multilayers. J Am Chem Soc. 1974 Mar 6;96(5):1312–1319. doi: 10.1021/ja00812a009. [DOI] [PubMed] [Google Scholar]
  10. Fisher R. W., James T. L. Lateral diffusion of the phospholipid molecule in dipalmitoylphosphatidylcholine bilayers. An investigation using nuclear spin--lattice relaxation in the rotating frame. Biochemistry. 1978 Apr 4;17(7):1177–1183. doi: 10.1021/bi00600a007. [DOI] [PubMed] [Google Scholar]
  11. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  12. Jacobs R., Oldfield E. Deuterium nuclear magnetic resonance investigation of dimyristoyllecithin--dipalmitoyllecithin and dimyristoyllecithin--cholesterol mixtures. Biochemistry. 1979 Jul 24;18(15):3280–3285. doi: 10.1021/bi00582a013. [DOI] [PubMed] [Google Scholar]
  13. Killian J. A., de Kruijff B. The influence of proteins and peptides on the phase properties of lipids. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):259–284. doi: 10.1016/0009-3084(86)90073-3. [DOI] [PubMed] [Google Scholar]
  14. Morrow M. R., Davis J. H. Differential scanning calorimetry and 2H NMR studies of the phase behavior of gramicidin-phosphatidylcholine mixtures. Biochemistry. 1988 Mar 22;27(6):2024–2032. doi: 10.1021/bi00406a032. [DOI] [PubMed] [Google Scholar]
  15. Ogielski AT. Dynamics of three-dimensional Ising spin glasses in thermal equilibrium. Phys Rev B Condens Matter. 1985 Dec 1;32(11):7384–7398. doi: 10.1103/physrevb.32.7384. [DOI] [PubMed] [Google Scholar]
  16. Peng Z. Y., Simplaceanu V., Lowe I. J., Ho C. Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes. Biophys J. 1988 Jul;54(1):81–95. doi: 10.1016/S0006-3495(88)82933-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Petersen N. O., Chan S. I. More on the motional state of lipid bilayer membranes: interpretation of order parameters obtained from nuclear magnetic resonance experiments. Biochemistry. 1977 Jun 14;16(12):2657–2667. doi: 10.1021/bi00631a012. [DOI] [PubMed] [Google Scholar]
  18. Recktenwald D. J., McConnell H. M. Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry. 1981 Jul 21;20(15):4505–4510. doi: 10.1021/bi00518a042. [DOI] [PubMed] [Google Scholar]
  19. Rice D., Oldfield E. Deuterium nuclear magnetic resonance studies of the interaction between dimyristoylphosphatidylcholine and gramicidin A'. Biochemistry. 1979 Jul 24;18(15):3272–3279. doi: 10.1021/bi00582a012. [DOI] [PubMed] [Google Scholar]
  20. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  21. Shimshick E. J., McConnell H. M. Lateral phase separations in binary mixtures of cholesterol and phospholipids. Biochem Biophys Res Commun. 1973 Jul 17;53(2):446–451. doi: 10.1016/0006-291x(73)90682-7. [DOI] [PubMed] [Google Scholar]
  22. Smith R. L., Oldfield E. Dynamic structure of membranes by deuterium NMR. Science. 1984 Jul 20;225(4659):280–288. doi: 10.1126/science.6740310. [DOI] [PubMed] [Google Scholar]
  23. Szabo A. Nuclear magnetic resonance relaxation and the dynamics of proteins and membranes: theory and experiment. Ann N Y Acad Sci. 1986;482:44–59. doi: 10.1111/j.1749-6632.1986.tb20935.x. [DOI] [PubMed] [Google Scholar]
  24. Tamm L. K., Seelig J. Lipid solvation of cytochrome c oxidase. Deuterium, nitrogen-14, and phosphorus-31 nuclear magnetic resonance studies on the phosphocholine head group and on cis-unsaturated fatty acyl chains. Biochemistry. 1983 Mar 15;22(6):1474–1483. doi: 10.1021/bi00275a023. [DOI] [PubMed] [Google Scholar]
  25. Yeagle P. L. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985 Dec 9;822(3-4):267–287. doi: 10.1016/0304-4157(85)90011-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES