Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 6;66(Pt 3):o528. doi: 10.1107/S160053681000111X

(E)-2-(4-Diethyl­amino-2-hydroxy­benzyl­idene­amino)benzonitrile

Xing-Cong Wang a,*, Hua Xu b, Kun Qian c
PMCID: PMC2983696  PMID: 21580300

Abstract

The mol­ecule of the title compound, C18H19N3O, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the planes of the two benzene rings is 2.62 (11)°. A strong intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation.

Related literature

For the properties of Schiff bases compounds, see: Weber et al. (2007). Chen et al. (2008). May et al. (2004).graphic file with name e-66-0o528-scheme1.jpg

Experimental

Crystal data

  • C18H19N3O

  • M r = 293.36

  • Monoclinic, Inline graphic

  • a = 7.185 (5) Å

  • b = 12.324 (9) Å

  • c = 18.490 (12) Å

  • β = 108.39 (2)°

  • V = 1553.6 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.984, T max = 0.984

  • 16730 measured reflections

  • 3546 independent reflections

  • 2694 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.152

  • S = 1.16

  • 3546 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000111X/bx2261sup1.cif

e-66-0o528-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000111X/bx2261Isup2.hkl

e-66-0o528-Isup2.hkl (173.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2 0.88 (3) 1.83 (3) 2.623 (3) 149 (3)

supplementary crystallographic information

Comment

Schiff bases compounds are of great interest in many fields of chemistry and biochemistry, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber, et al., 2007), catalysis (Chen, et al., 2008) and biological process (May, et al.,2004). Here, we report the synthesis and crystal structure of the title compound, (I).

Fig. 1 shows ORTEP plots of the title compounds. All the bond lengths and angles in the molecules are in the range of normal values. The molecule displays a trans configuration about the central C11=N2 bond and adopts the phenol-imine tautomeric form, with a strong intramolecular O—H···N hydrogen bonding interaction (Table 1). The dihedral angle between the mean planes of the two aromatic rings is 2.62 (11) ° indicating that the Schiff-base ligand adopts a coplanar conformation. In addition, two methyl groups are oriented to the same direction relative to the plane of the adjacent benzene ring. The crystal packing is stabilized by van der Waals interactions.

Experimental

4-aminobenzonitrile (0.590 g, 5 mmol)and 4-(diethylamino)-2-hydroxybenzaldehyde (0.996 g, 5 mmol) were dissolved in ethanol (20 ml). The reaction mixture was stirred for 6 h under reflux, and then cooled to room temperature slowly. The resulting yellow precipitate was filtered off and the yellow crystals of the title compound suitable for X-ray analysis were obtained from acetonitrile solution by slow evaporation.

Refinement

H atoms (for OH) were located in a difference Fourier map and refined isotropically. The remailing H atoms were located geometrically and treated as riding atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) for aromatic H atoms or 1.5 Ueq (C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C18H19N3O F(000) = 624
Mr = 293.36 Dx = 1.254 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3397 reflections
a = 7.185 (5) Å θ = 2.3–27.6°
b = 12.324 (9) Å µ = 0.08 mm1
c = 18.490 (12) Å T = 293 K
β = 108.39 (2)° Prism, yellow
V = 1553.6 (19) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 3546 independent reflections
Radiation source: fine-focus sealed tube 2694 reflections with I > 2σ(I)
graphite Rint = 0.062
Detector resolution: 13.6612 pixels mm-1 θmax = 27.4°, θmin = 2.9°
ω scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −15→15
Tmin = 0.984, Tmax = 0.984 l = −23→23
16730 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.4099P] where P = (Fo2 + 2Fc2)/3
3546 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.0254 (2) 0.40112 (14) 0.61866 (9) 0.0379 (4)
N1 0.4621 (3) 0.58450 (14) 0.81676 (10) 0.0349 (4)
N2 0.0535 (2) 0.35141 (13) 0.49350 (9) 0.0269 (4)
N3 −0.4028 (3) 0.26723 (17) 0.48643 (11) 0.0424 (5)
C1 0.2850 (3) 0.43963 (16) 0.59876 (11) 0.0255 (4)
C2 0.1595 (3) 0.44183 (16) 0.64441 (11) 0.0267 (4)
C3 0.2210 (3) 0.48662 (17) 0.71679 (11) 0.0292 (5)
H3A 0.1370 0.4851 0.7461 0.035*
C4 0.4072 (3) 0.53439 (16) 0.74698 (11) 0.0289 (5)
C5 0.5361 (3) 0.52898 (17) 0.70227 (12) 0.0305 (5)
H5A 0.6625 0.5568 0.7214 0.037*
C6 0.4742 (3) 0.48286 (16) 0.63105 (11) 0.0290 (5)
H6A 0.5612 0.4801 0.6030 0.035*
C7 0.6397 (4) 0.6504 (2) 0.84374 (14) 0.0460 (6)
H7A 0.6146 0.7105 0.8733 0.055*
H7B 0.6681 0.6806 0.7999 0.055*
C8 0.8184 (4) 0.5898 (3) 0.89198 (16) 0.0615 (8)
H8A 0.9280 0.6386 0.9078 0.092*
H8B 0.8478 0.5317 0.8627 0.092*
H8C 0.7930 0.5606 0.9361 0.092*
C9 0.3349 (4) 0.58173 (19) 0.86478 (13) 0.0414 (6)
H9A 0.2019 0.5989 0.8338 0.050*
H9B 0.3772 0.6373 0.9037 0.050*
C10 0.3350 (4) 0.4732 (2) 0.90292 (13) 0.0492 (7)
H10A 0.2488 0.4762 0.9334 0.074*
H10B 0.4656 0.4565 0.9349 0.074*
H10C 0.2908 0.4179 0.8647 0.074*
C11 0.2253 (3) 0.39466 (16) 0.52344 (11) 0.0265 (4)
H11A 0.3120 0.3965 0.4953 0.032*
C12 −0.0049 (3) 0.30557 (15) 0.41992 (11) 0.0255 (4)
C13 −0.1936 (3) 0.25907 (16) 0.39549 (11) 0.0274 (4)
C14 −0.2688 (3) 0.21019 (17) 0.32369 (12) 0.0335 (5)
H14A −0.3934 0.1796 0.3088 0.040*
C15 −0.1567 (3) 0.20773 (17) 0.27517 (12) 0.0350 (5)
H15A −0.2049 0.1754 0.2274 0.042*
C16 0.0289 (3) 0.25409 (17) 0.29866 (12) 0.0338 (5)
H16A 0.1037 0.2531 0.2658 0.041*
C17 0.1058 (3) 0.30176 (17) 0.36960 (11) 0.0317 (5)
H17A 0.2312 0.3314 0.3840 0.038*
C18 −0.3098 (3) 0.26378 (17) 0.44614 (12) 0.0319 (5)
H1A −0.044 (4) 0.378 (2) 0.5719 (17) 0.071 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0314 (8) 0.0568 (11) 0.0272 (8) −0.0084 (7) 0.0117 (7) −0.0068 (8)
N1 0.0439 (11) 0.0333 (10) 0.0276 (9) −0.0074 (8) 0.0116 (8) −0.0066 (8)
N2 0.0304 (9) 0.0274 (9) 0.0234 (8) 0.0018 (7) 0.0091 (7) 0.0008 (7)
N3 0.0390 (11) 0.0513 (13) 0.0398 (11) 0.0015 (9) 0.0168 (9) 0.0065 (9)
C1 0.0295 (11) 0.0240 (10) 0.0239 (10) 0.0009 (8) 0.0096 (9) 0.0030 (8)
C2 0.0259 (10) 0.0274 (11) 0.0263 (10) 0.0005 (8) 0.0078 (9) 0.0029 (8)
C3 0.0331 (11) 0.0320 (12) 0.0248 (10) 0.0018 (9) 0.0125 (9) 0.0020 (8)
C4 0.0369 (12) 0.0231 (11) 0.0260 (10) −0.0001 (9) 0.0091 (9) 0.0009 (8)
C5 0.0288 (11) 0.0310 (11) 0.0301 (11) −0.0037 (9) 0.0069 (9) 0.0014 (9)
C6 0.0311 (11) 0.0291 (11) 0.0292 (10) 0.0006 (9) 0.0133 (9) 0.0028 (8)
C7 0.0565 (16) 0.0399 (14) 0.0440 (14) −0.0184 (12) 0.0191 (12) −0.0163 (11)
C8 0.0448 (16) 0.081 (2) 0.0523 (17) −0.0146 (15) 0.0062 (13) −0.0122 (15)
C9 0.0550 (15) 0.0426 (14) 0.0287 (11) −0.0043 (11) 0.0162 (11) −0.0083 (10)
C10 0.0609 (17) 0.0565 (17) 0.0289 (12) −0.0107 (13) 0.0121 (12) 0.0017 (11)
C11 0.0309 (11) 0.0260 (11) 0.0254 (10) 0.0042 (8) 0.0128 (9) 0.0037 (8)
C12 0.0312 (11) 0.0214 (10) 0.0246 (10) 0.0044 (8) 0.0098 (9) 0.0023 (8)
C13 0.0330 (11) 0.0233 (10) 0.0266 (10) 0.0014 (8) 0.0104 (9) 0.0021 (8)
C14 0.0376 (12) 0.0295 (12) 0.0314 (11) −0.0030 (9) 0.0079 (10) −0.0014 (9)
C15 0.0461 (13) 0.0280 (12) 0.0287 (11) −0.0005 (9) 0.0089 (10) −0.0061 (9)
C16 0.0418 (13) 0.0329 (12) 0.0303 (11) 0.0018 (10) 0.0166 (10) −0.0025 (9)
C17 0.0321 (11) 0.0347 (12) 0.0294 (11) 0.0000 (9) 0.0111 (9) −0.0008 (9)
C18 0.0325 (11) 0.0309 (12) 0.0303 (11) −0.0025 (9) 0.0071 (10) 0.0019 (9)

Geometric parameters (Å, °)

O1—C2 1.358 (2) C8—H8A 0.9600
O1—H1A 0.88 (3) C8—H8B 0.9600
N1—C4 1.371 (3) C8—H8C 0.9600
N1—C7 1.461 (3) C9—C10 1.512 (3)
N1—C9 1.462 (3) C9—H9A 0.9700
N2—C11 1.297 (3) C9—H9B 0.9700
N2—C12 1.409 (3) C10—H10A 0.9600
N3—C18 1.148 (3) C10—H10B 0.9600
C1—C6 1.406 (3) C10—H10C 0.9600
C1—C2 1.416 (3) C11—H11A 0.9300
C1—C11 1.433 (3) C12—C17 1.403 (3)
C2—C3 1.385 (3) C12—C13 1.409 (3)
C3—C4 1.406 (3) C13—C14 1.402 (3)
C3—H3A 0.9300 C13—C18 1.439 (3)
C4—C5 1.424 (3) C14—C15 1.382 (3)
C5—C6 1.373 (3) C14—H14A 0.9300
C5—H5A 0.9300 C15—C16 1.388 (3)
C6—H6A 0.9300 C15—H15A 0.9300
C7—C8 1.509 (4) C16—C17 1.383 (3)
C7—H7A 0.9700 C16—H16A 0.9300
C7—H7B 0.9700 C17—H17A 0.9300
C2—O1—H1A 107.1 (19) N1—C9—C10 113.3 (2)
C4—N1—C7 122.16 (19) N1—C9—H9A 108.9
C4—N1—C9 120.78 (19) C10—C9—H9A 108.9
C7—N1—C9 116.85 (18) N1—C9—H9B 108.9
C11—N2—C12 122.03 (17) C10—C9—H9B 108.9
C6—C1—C2 116.85 (18) H9A—C9—H9B 107.7
C6—C1—C11 120.79 (18) C9—C10—H10A 109.5
C2—C1—C11 122.35 (19) C9—C10—H10B 109.5
O1—C2—C3 117.68 (18) H10A—C10—H10B 109.5
O1—C2—C1 121.33 (18) C9—C10—H10C 109.5
C3—C2—C1 120.99 (19) H10A—C10—H10C 109.5
C2—C3—C4 121.58 (19) H10B—C10—H10C 109.5
C2—C3—H3A 119.2 N2—C11—C1 121.77 (18)
C4—C3—H3A 119.2 N2—C11—H11A 119.1
N1—C4—C3 121.13 (19) C1—C11—H11A 119.1
N1—C4—C5 121.4 (2) C17—C12—C13 117.61 (19)
C3—C4—C5 117.49 (19) C17—C12—N2 126.53 (19)
C6—C5—C4 120.2 (2) C13—C12—N2 115.86 (17)
C6—C5—H5A 119.9 C14—C13—C12 121.52 (19)
C4—C5—H5A 119.9 C14—C13—C18 120.3 (2)
C5—C6—C1 122.75 (19) C12—C13—C18 118.17 (18)
C5—C6—H6A 118.6 C15—C14—C13 119.7 (2)
C1—C6—H6A 118.6 C15—C14—H14A 120.2
N1—C7—C8 114.6 (2) C13—C14—H14A 120.2
N1—C7—H7A 108.6 C14—C15—C16 119.1 (2)
C8—C7—H7A 108.6 C14—C15—H15A 120.4
N1—C7—H7B 108.6 C16—C15—H15A 120.4
C8—C7—H7B 108.6 C17—C16—C15 121.9 (2)
H7A—C7—H7B 107.6 C17—C16—H16A 119.1
C7—C8—H8A 109.5 C15—C16—H16A 119.1
C7—C8—H8B 109.5 C16—C17—C12 120.2 (2)
H8A—C8—H8B 109.5 C16—C17—H17A 119.9
C7—C8—H8C 109.5 C12—C17—H17A 119.9
H8A—C8—H8C 109.5 N3—C18—C13 179.8 (3)
H8B—C8—H8C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N2 0.88 (3) 1.83 (3) 2.623 (3) 149 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2261).

References

  1. Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [DOI] [PubMed]
  2. May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc.126, 4145–4156. [DOI] [PubMed]
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem.633, 1159–1162.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000111X/bx2261sup1.cif

e-66-0o528-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000111X/bx2261Isup2.hkl

e-66-0o528-Isup2.hkl (173.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES