Abstract
The title compound, C8H13Br2NO3, crystallizes as a non-merohedral twin with twin law −0.6 0 0.4/0 − 1 0 /1.6 0 0.6, and the structure has a refined twin domain ratio of 0.546 (5). The structure shows a compact conformation, with the ester unit roughly coplanar with a mean plane fitted through the non-H atoms of the pyrrolidine ring [dihedral angle = 8.23 (9)°]. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate an R 2 2(12) motif.
Related literature
For details of the synthesis, see: Magnus et al. (1994 ▶); Salamant & Hulme (2006 ▶). For puckering parameters, see: Cremer & Pople (1975 ▶). For hydrogen-bonding motifs, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
C8H13Br2NO3
M r = 331.01
Monoclinic,
a = 10.1061 (5) Å
b = 5.9914 (3) Å
c = 18.5496 (9) Å
β = 95.880 (2)°
V = 1117.26 (10) Å3
Z = 4
Mo Kα radiation
μ = 7.24 mm−1
T = 100 K
0.44 × 0.16 × 0.11 mm
Data collection
Bruker Kappa APEXII DUO CCD diffractometer
Absorption correction: multi-scan (TWINABS; Sheldrick, 1996 ▶) T min = 0.144, T max = 0.514
34994 measured reflections
9572 independent reflections
7956 reflections with I > 2σ(I)
R int = 0.042
Refinement
R[F 2 > 2σ(F 2)] = 0.032
wR(F 2) = 0.082
S = 1.03
9572 reflections
138 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 1.41 e Å−3
Δρmin = −0.77 e Å−3
Data collection: APEX2 (Bruker, 2007 ▶); cell refinement: SAINT (Bruker, 2007 ▶); data reduction: SAINT and CELL_NOW (Sheldrick, 2004 ▶); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and Mercury (Macrae et al., 2008 ▶); software used to prepare material for publication: SHELXTL and local programs.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810005106/fj2278sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005106/fj2278Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1O⋯O2i | 0.83 (3) | 1.92 (3) | 2.7479 (16) | 176 (3) |
Symmetry code: (i)
.
Acknowledgments
The diffractometer was purchased with funding from NSF grant No. CHE-0741837.
supplementary crystallographic information
Comment
We are working to develop new synthetic methodology by application of hypervalent iodine reagents (oxidation state III) in conjunction with bromotrimethylsilane (TMSBr). Specifically, iodosobenzene (Magnus et al., 1994) or iodobenzenediacetate in the presence of TMSBr promotes controlled formation of an oxidized product in one pot, derived from cyclic amides. The transformation represents an α, β, β oxidative process, and the yield of the product, (I), was optimized by varying reaction parameters (Salamant & Hulme, 2006). The structure of this molecule generated from one simple microwave-assisted protocol was confirmed by X-ray crystallography.
The molecular structure of (I) is shown in Fig. 1. Molecular dimensions are unexceptional and the compound has a compact conformation; as evidenced by the torsion angle C2—N—C5—O2 = 0.1 (2)° the ester moiety is essentially co-planar with the pyrrolidine ring. Furthermore the angle between a least-squares plane fitted through all non-hydrogen atoms of the pyrrolidine ring (r.m.s. deviation = 0.1666 Å) and the ester moiety (r.m.s. deviation = 0.0226 Å) is 8.23 (9)°. The pyrrolidine ring adopts an envelope conformation with a Cremer–Pople puckering parameter Q of 0.4053 (15) Å (Cremer & Pople, 1975). The compound forms a hydrogen-bonded dimer by means of an R22(12) motif (Fig. 2; Bernstein et al., 1995) although there is no further hydrogen bonding in the crystal structure.
Experimental
To a solution of isopropyloxypyrrolidine (0.050 g, 0.318 mmol) in anhydrous dichloromethane (1 ml) was added iodobenzene diacetate (0.410 g, 1.272 mmol). Bromotrimethylsilane (0.330 ml, 2.540 mmol) was added dropwise and the mixture irradiated with a Biotage InitiatorTM for 20 min at 120°C. The red-brown solution was then dissolved in EtOAc (25 ml) and quenched with 1M Na2S2O3 (2 × 10 ml). The organic layer was washed with 1M NaHCO3 (2 × 20 ml), saturated Na2CO3 (20 ml), brine solution (20 ml), and dried (MgSO4). The solvent was evaporated in vacuo and purified by column chromatography (CHCl3) to afford the α,β,β product (0.068 g, 0.207 mmol, 65%) as a white solid. MS (+ESI) m/z 354 [M+Na]+
Refinement
The crystal used was a two-component non-merohedral twin. The two components of the diffraction pattern were easily separated using CELL_NOW (Sheldrick, 2004) with twin law -0.6 0 0.4/0 -1 0 /1.6 0 0.6 and the structure has a refined twin scale factor of 0.546 (5). H atoms were identified from a difference Fourier map. The O—H H atom was freely refined with O—H = 0.83 (3) Å. C—H atoms were refined with Uiso(H) = 1.5Ueq(C) (methyl) Uiso(H) = 1.5Ueq(C) (all others) with constrained C—H distances in the range 0.98–1 Å.
Figures
Fig. 1.
The molecular structure of (I) with anisotropic displacement ellipsoids at the 50% probability level.
Fig. 2.
An a-axis packing plot of (I). Blue dotted lines indicate hydrogen bonds; red dotted lines indicate hydrogen bond continuation.
Crystal data
| C8H13Br2NO3 | F(000) = 648 |
| Mr = 331.01 | Dx = 1.968 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 4995 reflections |
| a = 10.1061 (5) Å | θ = 2.2–36.3° |
| b = 5.9914 (3) Å | µ = 7.24 mm−1 |
| c = 18.5496 (9) Å | T = 100 K |
| β = 95.880 (2)° | Rod, colourless |
| V = 1117.26 (10) Å3 | 0.44 × 0.16 × 0.11 mm |
| Z = 4 |
Data collection
| Bruker Kappa APEXII DUO CCD diffractometer | 9572 independent reflections |
| Radiation source: fine-focus sealed tube with Miracol optics | 7956 reflections with I > 2σ(I) |
| graphite | Rint = 0.042 |
| φ and ω scans | θmax = 36.4°, θmin = 2.2° |
| Absorption correction: multi-scan (TWINABS; Sheldrick, 1996) | h = −16→16 |
| Tmin = 0.144, Tmax = 0.514 | k = 0→9 |
| 34994 measured reflections | l = 0→30 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: difference Fourier map |
| wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.041P)2 + 0.6397P] where P = (Fo2 + 2Fc2)/3 |
| 9572 reflections | (Δ/σ)max < 0.001 |
| 138 parameters | Δρmax = 1.41 e Å−3 |
| 0 restraints | Δρmin = −0.77 e Å−3 |
Special details
| Experimental. 1H- NMR (300 MHz, CDCl3) δ ppm 1.26 (d, J = 6.0 Hz, 6H), 2.78 (m, 1H), 3.00 (m, 1H), 3.55 (m, 2H), 4.65 (s, 1H), 5.00 (m, 1H), 5.66 (d, J = 18.6 Hz, 1H)13 C-NMR (75 MHz, CDCl3) δ ppm 22.6, 43.4, 44.6, 64.9, 70.2, 77.9, 155.3 |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.276925 (16) | 0.10387 (3) | 0.190848 (8) | 0.01807 (4) | |
| Br2 | 0.113078 (15) | 0.17803 (3) | 0.039208 (9) | 0.01933 (4) | |
| O1 | 0.39288 (12) | 0.2381 (2) | −0.01016 (6) | 0.01668 (19) | |
| H1O | 0.371 (3) | 0.120 (5) | −0.0310 (15) | 0.029 (7)* | |
| O2 | 0.68184 (12) | 0.16332 (19) | 0.07343 (7) | 0.0190 (2) | |
| O3 | 0.69480 (10) | 0.47225 (18) | 0.14461 (6) | 0.01432 (18) | |
| N | 0.49624 (12) | 0.3442 (2) | 0.10291 (7) | 0.0134 (2) | |
| C1 | 0.27415 (14) | 0.2599 (2) | 0.09769 (7) | 0.0137 (2) | |
| C2 | 0.40238 (14) | 0.1940 (2) | 0.06403 (7) | 0.0125 (2) | |
| H2 | 0.4265 | 0.0345 | 0.0745 | 0.015* | |
| C3 | 0.43486 (14) | 0.5339 (2) | 0.13709 (8) | 0.0153 (2) | |
| H3A | 0.4716 | 0.6776 | 0.1219 | 0.018* | |
| H3B | 0.4479 | 0.5230 | 0.1906 | 0.018* | |
| C4 | 0.28818 (15) | 0.5100 (2) | 0.10886 (8) | 0.0156 (2) | |
| H4A | 0.2297 | 0.5644 | 0.1448 | 0.019* | |
| H4B | 0.2673 | 0.5919 | 0.0628 | 0.019* | |
| C5 | 0.62874 (14) | 0.3155 (2) | 0.10427 (8) | 0.0137 (2) | |
| C6 | 0.84008 (14) | 0.4710 (2) | 0.14715 (8) | 0.0146 (2) | |
| H6 | 0.862 (2) | 0.423 (4) | 0.1000 (12) | 0.014 (5)* | |
| C7 | 0.88361 (16) | 0.7097 (2) | 0.16218 (9) | 0.0185 (3) | |
| H7A | 0.8399 | 0.8076 | 0.1247 | 0.028* | |
| H7B | 0.9803 | 0.7206 | 0.1619 | 0.028* | |
| H7C | 0.8588 | 0.7553 | 0.2097 | 0.028* | |
| C8 | 0.89639 (17) | 0.3118 (3) | 0.20548 (10) | 0.0223 (3) | |
| H8A | 0.9936 | 0.3090 | 0.2069 | 0.033* | |
| H8B | 0.8610 | 0.1617 | 0.1949 | 0.033* | |
| H8C | 0.8711 | 0.3613 | 0.2525 | 0.033* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.02072 (7) | 0.02068 (7) | 0.01338 (6) | −0.00119 (5) | 0.00450 (5) | 0.00190 (5) |
| Br2 | 0.01232 (6) | 0.02662 (8) | 0.01853 (7) | −0.00274 (5) | −0.00098 (5) | −0.00543 (5) |
| O1 | 0.0195 (5) | 0.0195 (5) | 0.0112 (4) | −0.0029 (4) | 0.0021 (4) | −0.0022 (4) |
| O2 | 0.0149 (5) | 0.0183 (5) | 0.0239 (5) | 0.0008 (4) | 0.0017 (4) | −0.0089 (4) |
| O3 | 0.0113 (4) | 0.0153 (4) | 0.0160 (4) | −0.0003 (3) | −0.0004 (3) | −0.0044 (4) |
| N | 0.0116 (5) | 0.0136 (5) | 0.0150 (5) | −0.0012 (4) | 0.0007 (4) | −0.0046 (4) |
| C1 | 0.0126 (5) | 0.0162 (5) | 0.0119 (5) | −0.0013 (4) | −0.0003 (4) | −0.0009 (4) |
| C2 | 0.0120 (5) | 0.0142 (5) | 0.0113 (5) | −0.0017 (4) | 0.0016 (4) | −0.0021 (4) |
| C3 | 0.0142 (6) | 0.0137 (5) | 0.0179 (6) | 0.0002 (4) | 0.0018 (5) | −0.0047 (5) |
| C4 | 0.0148 (6) | 0.0145 (6) | 0.0173 (6) | 0.0018 (4) | 0.0010 (5) | −0.0021 (5) |
| C5 | 0.0127 (5) | 0.0149 (5) | 0.0132 (5) | 0.0000 (4) | 0.0004 (4) | −0.0014 (4) |
| C6 | 0.0106 (5) | 0.0160 (5) | 0.0170 (6) | −0.0002 (4) | 0.0009 (4) | −0.0011 (5) |
| C7 | 0.0160 (6) | 0.0165 (6) | 0.0226 (7) | −0.0032 (5) | −0.0006 (5) | 0.0003 (5) |
| C8 | 0.0187 (7) | 0.0180 (6) | 0.0286 (8) | 0.0002 (5) | −0.0052 (6) | 0.0022 (6) |
Geometric parameters (Å, °)
| Br1—C1 | 1.9624 (14) | C3—H3B | 0.990 |
| Br2—C1 | 1.9250 (14) | C3—C4 | 1.527 (2) |
| O1—H1O | 0.83 (3) | C4—H4A | 0.990 |
| O1—C2 | 1.3949 (17) | C4—H4B | 0.990 |
| O2—C5 | 1.2286 (18) | C6—H6 | 0.97 (2) |
| O3—C5 | 1.3360 (17) | C6—C7 | 1.513 (2) |
| O3—C6 | 1.4641 (18) | C6—C8 | 1.510 (2) |
| N—C2 | 1.4457 (18) | C7—H7A | 0.980 |
| N—C3 | 1.4695 (19) | C7—H7B | 0.980 |
| N—C5 | 1.3478 (19) | C7—H7C | 0.980 |
| C1—C2 | 1.546 (2) | C8—H8A | 0.980 |
| C1—C4 | 1.517 (2) | C8—H8B | 0.980 |
| C2—H2 | 1.000 | C8—H8C | 0.980 |
| C3—H3A | 0.990 | ||
| H1O—O1—C2 | 106.6 (19) | C1—C4—H4B | 111.3 |
| C5—O3—C6 | 117.15 (11) | C3—C4—H4A | 111.3 |
| C2—N—C3 | 114.36 (12) | C3—C4—H4B | 111.3 |
| C2—N—C5 | 121.99 (12) | H4A—C4—H4B | 109.2 |
| C3—N—C5 | 123.58 (12) | O2—C5—O3 | 124.43 (13) |
| Br1—C1—Br2 | 108.05 (7) | O2—C5—N | 124.50 (13) |
| Br1—C1—C2 | 107.27 (9) | O3—C5—N | 111.06 (12) |
| Br1—C1—C4 | 110.95 (9) | O3—C6—H6 | 107.0 (13) |
| Br2—C1—C2 | 113.74 (9) | O3—C6—C7 | 105.83 (12) |
| Br2—C1—C4 | 112.98 (10) | O3—C6—C8 | 109.23 (12) |
| C2—C1—C4 | 103.71 (12) | H6—C6—C7 | 111.1 (13) |
| O1—C2—N | 110.45 (12) | H6—C6—C8 | 110.8 (13) |
| O1—C2—C1 | 111.97 (11) | C7—C6—C8 | 112.58 (13) |
| O1—C2—H2 | 111.3 | C6—C7—H7A | 109.5 |
| N—C2—C1 | 99.99 (11) | C6—C7—H7B | 109.5 |
| N—C2—H2 | 111.3 | C6—C7—H7C | 109.5 |
| C1—C2—H2 | 111.3 | H7A—C7—H7B | 109.5 |
| N—C3—H3A | 111.3 | H7A—C7—H7C | 109.5 |
| N—C3—H3B | 111.3 | H7B—C7—H7C | 109.5 |
| N—C3—C4 | 102.54 (11) | C6—C8—H8A | 109.5 |
| H3A—C3—H3B | 109.2 | C6—C8—H8B | 109.5 |
| H3A—C3—C4 | 111.3 | C6—C8—H8C | 109.5 |
| H3B—C3—C4 | 111.3 | H8A—C8—H8B | 109.5 |
| C1—C4—C3 | 102.32 (11) | H8A—C8—H8C | 109.5 |
| C1—C4—H4A | 111.3 | H8B—C8—H8C | 109.5 |
| C3—N—C2—O1 | 99.81 (14) | Br1—C1—C4—C3 | 73.49 (12) |
| C3—N—C2—C1 | −18.30 (15) | Br2—C1—C4—C3 | −165.00 (10) |
| C5—N—C2—O1 | −77.31 (17) | C2—C1—C4—C3 | −41.39 (13) |
| C5—N—C2—C1 | 164.59 (13) | N—C3—C4—C1 | 29.33 (14) |
| Br1—C1—C2—O1 | 161.81 (9) | C6—O3—C5—O2 | 5.0 (2) |
| Br1—C1—C2—N | −81.21 (11) | C6—O3—C5—N | −176.05 (12) |
| Br2—C1—C2—O1 | 42.39 (14) | C2—N—C5—O2 | 0.1 (2) |
| Br2—C1—C2—N | 159.37 (9) | C2—N—C5—O3 | −178.85 (12) |
| C4—C1—C2—O1 | −80.72 (13) | C3—N—C5—O2 | −176.76 (14) |
| C4—C1—C2—N | 36.26 (13) | C3—N—C5—O3 | 4.3 (2) |
| C2—N—C3—C4 | −6.68 (16) | C5—O3—C6—C7 | 152.87 (13) |
| C5—N—C3—C4 | 170.38 (13) | C5—O3—C6—C8 | −85.69 (15) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1O···O2i | 0.83 (3) | 1.92 (3) | 2.7479 (16) | 176 (3) |
Symmetry codes: (i) −x+1, −y, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2278).
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
- Magnus, P., Hulme, C. & Weber, W. (1994). J. Am. Chem. Soc.116, 4501–4502.
- Salamant, W. & Hulme, C. (2006). Tetrahedron Lett.47, 605–609.
- Sheldrick, G. M. (1996). TWINABS University of Göttingen, Germany.
- Sheldrick, G. M. (2004). CELL_NOW University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810005106/fj2278sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005106/fj2278Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


