Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 13;66(Pt 3):o597. doi: 10.1107/S1600536810005106

2-Propyl 3,3-dibromo-2-hydroxy­pyrrolidine-1-carboxyl­ate

Gary S Nichol a,*, Steven Gunawan b, Zhigang Xu b, Justin Dietrich b, Christopher Hulme b
PMCID: PMC2983708  PMID: 21580358

Abstract

The title compound, C8H13Br2NO3, crystallizes as a non-merohedral twin with twin law −0.6 0 0.4/0 − 1 0 /1.6 0 0.6, and the structure has a refined twin domain ratio of 0.546 (5). The structure shows a compact conformation, with the ester unit roughly coplanar with a mean plane fitted through the non-H atoms of the pyrrolidine ring [dihedral angle = 8.23 (9)°]. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate an R 2 2(12) motif.

Related literature

For details of the synthesis, see: Magnus et al. (1994); Salamant & Hulme (2006). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bonding motifs, see: Bernstein et al. (1995).graphic file with name e-66-0o597-scheme1.jpg

Experimental

Crystal data

  • C8H13Br2NO3

  • M r = 331.01

  • Monoclinic, Inline graphic

  • a = 10.1061 (5) Å

  • b = 5.9914 (3) Å

  • c = 18.5496 (9) Å

  • β = 95.880 (2)°

  • V = 1117.26 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.24 mm−1

  • T = 100 K

  • 0.44 × 0.16 × 0.11 mm

Data collection

  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 1996) T min = 0.144, T max = 0.514

  • 34994 measured reflections

  • 9572 independent reflections

  • 7956 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.082

  • S = 1.03

  • 9572 reflections

  • 138 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.41 e Å−3

  • Δρmin = −0.77 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT and CELL_NOW (Sheldrick, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810005106/fj2278sup1.cif

e-66-0o597-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005106/fj2278Isup2.hkl

e-66-0o597-Isup2.hkl (468.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.83 (3) 1.92 (3) 2.7479 (16) 176 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The diffractometer was purchased with funding from NSF grant No. CHE-0741837.

supplementary crystallographic information

Comment

We are working to develop new synthetic methodology by application of hypervalent iodine reagents (oxidation state III) in conjunction with bromotrimethylsilane (TMSBr). Specifically, iodosobenzene (Magnus et al., 1994) or iodobenzenediacetate in the presence of TMSBr promotes controlled formation of an oxidized product in one pot, derived from cyclic amides. The transformation represents an α, β, β oxidative process, and the yield of the product, (I), was optimized by varying reaction parameters (Salamant & Hulme, 2006). The structure of this molecule generated from one simple microwave-assisted protocol was confirmed by X-ray crystallography.

The molecular structure of (I) is shown in Fig. 1. Molecular dimensions are unexceptional and the compound has a compact conformation; as evidenced by the torsion angle C2—N—C5—O2 = 0.1 (2)° the ester moiety is essentially co-planar with the pyrrolidine ring. Furthermore the angle between a least-squares plane fitted through all non-hydrogen atoms of the pyrrolidine ring (r.m.s. deviation = 0.1666 Å) and the ester moiety (r.m.s. deviation = 0.0226 Å) is 8.23 (9)°. The pyrrolidine ring adopts an envelope conformation with a Cremer–Pople puckering parameter Q of 0.4053 (15) Å (Cremer & Pople, 1975). The compound forms a hydrogen-bonded dimer by means of an R22(12) motif (Fig. 2; Bernstein et al., 1995) although there is no further hydrogen bonding in the crystal structure.

Experimental

To a solution of isopropyloxypyrrolidine (0.050 g, 0.318 mmol) in anhydrous dichloromethane (1 ml) was added iodobenzene diacetate (0.410 g, 1.272 mmol). Bromotrimethylsilane (0.330 ml, 2.540 mmol) was added dropwise and the mixture irradiated with a Biotage InitiatorTM for 20 min at 120°C. The red-brown solution was then dissolved in EtOAc (25 ml) and quenched with 1M Na2S2O3 (2 × 10 ml). The organic layer was washed with 1M NaHCO3 (2 × 20 ml), saturated Na2CO3 (20 ml), brine solution (20 ml), and dried (MgSO4). The solvent was evaporated in vacuo and purified by column chromatography (CHCl3) to afford the α,β,β product (0.068 g, 0.207 mmol, 65%) as a white solid. MS (+ESI) m/z 354 [M+Na]+

Refinement

The crystal used was a two-component non-merohedral twin. The two components of the diffraction pattern were easily separated using CELL_NOW (Sheldrick, 2004) with twin law -0.6 0 0.4/0 -1 0 /1.6 0 0.6 and the structure has a refined twin scale factor of 0.546 (5). H atoms were identified from a difference Fourier map. The O—H H atom was freely refined with O—H = 0.83 (3) Å. C—H atoms were refined with Uiso(H) = 1.5Ueq(C) (methyl) Uiso(H) = 1.5Ueq(C) (all others) with constrained C—H distances in the range 0.98–1 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with anisotropic displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

An a-axis packing plot of (I). Blue dotted lines indicate hydrogen bonds; red dotted lines indicate hydrogen bond continuation.

Crystal data

C8H13Br2NO3 F(000) = 648
Mr = 331.01 Dx = 1.968 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4995 reflections
a = 10.1061 (5) Å θ = 2.2–36.3°
b = 5.9914 (3) Å µ = 7.24 mm1
c = 18.5496 (9) Å T = 100 K
β = 95.880 (2)° Rod, colourless
V = 1117.26 (10) Å3 0.44 × 0.16 × 0.11 mm
Z = 4

Data collection

Bruker Kappa APEXII DUO CCD diffractometer 9572 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics 7956 reflections with I > 2σ(I)
graphite Rint = 0.042
φ and ω scans θmax = 36.4°, θmin = 2.2°
Absorption correction: multi-scan (TWINABS; Sheldrick, 1996) h = −16→16
Tmin = 0.144, Tmax = 0.514 k = 0→9
34994 measured reflections l = 0→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: difference Fourier map
wR(F2) = 0.082 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.041P)2 + 0.6397P] where P = (Fo2 + 2Fc2)/3
9572 reflections (Δ/σ)max < 0.001
138 parameters Δρmax = 1.41 e Å3
0 restraints Δρmin = −0.77 e Å3

Special details

Experimental. 1H- NMR (300 MHz, CDCl3) δ ppm 1.26 (d, J = 6.0 Hz, 6H), 2.78 (m, 1H), 3.00 (m, 1H), 3.55 (m, 2H), 4.65 (s, 1H), 5.00 (m, 1H), 5.66 (d, J = 18.6 Hz, 1H)13 C-NMR (75 MHz, CDCl3) δ ppm 22.6, 43.4, 44.6, 64.9, 70.2, 77.9, 155.3
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.276925 (16) 0.10387 (3) 0.190848 (8) 0.01807 (4)
Br2 0.113078 (15) 0.17803 (3) 0.039208 (9) 0.01933 (4)
O1 0.39288 (12) 0.2381 (2) −0.01016 (6) 0.01668 (19)
H1O 0.371 (3) 0.120 (5) −0.0310 (15) 0.029 (7)*
O2 0.68184 (12) 0.16332 (19) 0.07343 (7) 0.0190 (2)
O3 0.69480 (10) 0.47225 (18) 0.14461 (6) 0.01432 (18)
N 0.49624 (12) 0.3442 (2) 0.10291 (7) 0.0134 (2)
C1 0.27415 (14) 0.2599 (2) 0.09769 (7) 0.0137 (2)
C2 0.40238 (14) 0.1940 (2) 0.06403 (7) 0.0125 (2)
H2 0.4265 0.0345 0.0745 0.015*
C3 0.43486 (14) 0.5339 (2) 0.13709 (8) 0.0153 (2)
H3A 0.4716 0.6776 0.1219 0.018*
H3B 0.4479 0.5230 0.1906 0.018*
C4 0.28818 (15) 0.5100 (2) 0.10886 (8) 0.0156 (2)
H4A 0.2297 0.5644 0.1448 0.019*
H4B 0.2673 0.5919 0.0628 0.019*
C5 0.62874 (14) 0.3155 (2) 0.10427 (8) 0.0137 (2)
C6 0.84008 (14) 0.4710 (2) 0.14715 (8) 0.0146 (2)
H6 0.862 (2) 0.423 (4) 0.1000 (12) 0.014 (5)*
C7 0.88361 (16) 0.7097 (2) 0.16218 (9) 0.0185 (3)
H7A 0.8399 0.8076 0.1247 0.028*
H7B 0.9803 0.7206 0.1619 0.028*
H7C 0.8588 0.7553 0.2097 0.028*
C8 0.89639 (17) 0.3118 (3) 0.20548 (10) 0.0223 (3)
H8A 0.9936 0.3090 0.2069 0.033*
H8B 0.8610 0.1617 0.1949 0.033*
H8C 0.8711 0.3613 0.2525 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02072 (7) 0.02068 (7) 0.01338 (6) −0.00119 (5) 0.00450 (5) 0.00190 (5)
Br2 0.01232 (6) 0.02662 (8) 0.01853 (7) −0.00274 (5) −0.00098 (5) −0.00543 (5)
O1 0.0195 (5) 0.0195 (5) 0.0112 (4) −0.0029 (4) 0.0021 (4) −0.0022 (4)
O2 0.0149 (5) 0.0183 (5) 0.0239 (5) 0.0008 (4) 0.0017 (4) −0.0089 (4)
O3 0.0113 (4) 0.0153 (4) 0.0160 (4) −0.0003 (3) −0.0004 (3) −0.0044 (4)
N 0.0116 (5) 0.0136 (5) 0.0150 (5) −0.0012 (4) 0.0007 (4) −0.0046 (4)
C1 0.0126 (5) 0.0162 (5) 0.0119 (5) −0.0013 (4) −0.0003 (4) −0.0009 (4)
C2 0.0120 (5) 0.0142 (5) 0.0113 (5) −0.0017 (4) 0.0016 (4) −0.0021 (4)
C3 0.0142 (6) 0.0137 (5) 0.0179 (6) 0.0002 (4) 0.0018 (5) −0.0047 (5)
C4 0.0148 (6) 0.0145 (6) 0.0173 (6) 0.0018 (4) 0.0010 (5) −0.0021 (5)
C5 0.0127 (5) 0.0149 (5) 0.0132 (5) 0.0000 (4) 0.0004 (4) −0.0014 (4)
C6 0.0106 (5) 0.0160 (5) 0.0170 (6) −0.0002 (4) 0.0009 (4) −0.0011 (5)
C7 0.0160 (6) 0.0165 (6) 0.0226 (7) −0.0032 (5) −0.0006 (5) 0.0003 (5)
C8 0.0187 (7) 0.0180 (6) 0.0286 (8) 0.0002 (5) −0.0052 (6) 0.0022 (6)

Geometric parameters (Å, °)

Br1—C1 1.9624 (14) C3—H3B 0.990
Br2—C1 1.9250 (14) C3—C4 1.527 (2)
O1—H1O 0.83 (3) C4—H4A 0.990
O1—C2 1.3949 (17) C4—H4B 0.990
O2—C5 1.2286 (18) C6—H6 0.97 (2)
O3—C5 1.3360 (17) C6—C7 1.513 (2)
O3—C6 1.4641 (18) C6—C8 1.510 (2)
N—C2 1.4457 (18) C7—H7A 0.980
N—C3 1.4695 (19) C7—H7B 0.980
N—C5 1.3478 (19) C7—H7C 0.980
C1—C2 1.546 (2) C8—H8A 0.980
C1—C4 1.517 (2) C8—H8B 0.980
C2—H2 1.000 C8—H8C 0.980
C3—H3A 0.990
H1O—O1—C2 106.6 (19) C1—C4—H4B 111.3
C5—O3—C6 117.15 (11) C3—C4—H4A 111.3
C2—N—C3 114.36 (12) C3—C4—H4B 111.3
C2—N—C5 121.99 (12) H4A—C4—H4B 109.2
C3—N—C5 123.58 (12) O2—C5—O3 124.43 (13)
Br1—C1—Br2 108.05 (7) O2—C5—N 124.50 (13)
Br1—C1—C2 107.27 (9) O3—C5—N 111.06 (12)
Br1—C1—C4 110.95 (9) O3—C6—H6 107.0 (13)
Br2—C1—C2 113.74 (9) O3—C6—C7 105.83 (12)
Br2—C1—C4 112.98 (10) O3—C6—C8 109.23 (12)
C2—C1—C4 103.71 (12) H6—C6—C7 111.1 (13)
O1—C2—N 110.45 (12) H6—C6—C8 110.8 (13)
O1—C2—C1 111.97 (11) C7—C6—C8 112.58 (13)
O1—C2—H2 111.3 C6—C7—H7A 109.5
N—C2—C1 99.99 (11) C6—C7—H7B 109.5
N—C2—H2 111.3 C6—C7—H7C 109.5
C1—C2—H2 111.3 H7A—C7—H7B 109.5
N—C3—H3A 111.3 H7A—C7—H7C 109.5
N—C3—H3B 111.3 H7B—C7—H7C 109.5
N—C3—C4 102.54 (11) C6—C8—H8A 109.5
H3A—C3—H3B 109.2 C6—C8—H8B 109.5
H3A—C3—C4 111.3 C6—C8—H8C 109.5
H3B—C3—C4 111.3 H8A—C8—H8B 109.5
C1—C4—C3 102.32 (11) H8A—C8—H8C 109.5
C1—C4—H4A 111.3 H8B—C8—H8C 109.5
C3—N—C2—O1 99.81 (14) Br1—C1—C4—C3 73.49 (12)
C3—N—C2—C1 −18.30 (15) Br2—C1—C4—C3 −165.00 (10)
C5—N—C2—O1 −77.31 (17) C2—C1—C4—C3 −41.39 (13)
C5—N—C2—C1 164.59 (13) N—C3—C4—C1 29.33 (14)
Br1—C1—C2—O1 161.81 (9) C6—O3—C5—O2 5.0 (2)
Br1—C1—C2—N −81.21 (11) C6—O3—C5—N −176.05 (12)
Br2—C1—C2—O1 42.39 (14) C2—N—C5—O2 0.1 (2)
Br2—C1—C2—N 159.37 (9) C2—N—C5—O3 −178.85 (12)
C4—C1—C2—O1 −80.72 (13) C3—N—C5—O2 −176.76 (14)
C4—C1—C2—N 36.26 (13) C3—N—C5—O3 4.3 (2)
C2—N—C3—C4 −6.68 (16) C5—O3—C6—C7 152.87 (13)
C5—N—C3—C4 170.38 (13) C5—O3—C6—C8 −85.69 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O2i 0.83 (3) 1.92 (3) 2.7479 (16) 176 (3)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2278).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  6. Magnus, P., Hulme, C. & Weber, W. (1994). J. Am. Chem. Soc.116, 4501–4502.
  7. Salamant, W. & Hulme, C. (2006). Tetrahedron Lett.47, 605–609.
  8. Sheldrick, G. M. (1996). TWINABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2004). CELL_NOW University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810005106/fj2278sup1.cif

e-66-0o597-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005106/fj2278Isup2.hkl

e-66-0o597-Isup2.hkl (468.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES